EMCNG OF FLODS-EXPANBION BY HRAT. o'conor bianste, pen

The phenomene of diffusing fluids have already been alluded to, in an early article. of this series. The mixing of thick silicate of soda solution with water was used as the illustration. To a suggestion from Afr. C. Trautwine, Jr., of Philadel phia, the experiment here illustrated is due. He observed that, in dropping whisky into glycerine, a peculiar effect was obtained. The whisky by its euergy, due to falling, penetrated deop. into the thick and heavier glycerine, and imme diately tended to rise to the surface. In so doing, it subdivided the glycerine into veins, and seemed incapable of mixing periectly with it.
In the illustration, a glass containing some glyce rine is shown. From a height, in order to obtain ial

THE MIXING OF OLYCERIHE AND $\triangle L C O H O L$.
petus, alcohol is poured into the center of the surface. The effect deacribed above is produced. If rightly done, the veins of subdivided glycerine will ortend quite deeply into the center of the fluid, and produce a very curious and striking effect.
The subject of heat is sureeptible of illustration by a number of experimente. Until reduced to the ab solute zero, -273° Cent., the constituent molecules of all substances are assumed to be in intense and rapid vibration. This implies that they do not touch each athor. By ebais comildatory potiorr undor the ialluonce of the kinetic force. or objective heat, they are not allowed to reat touching, each other. Hence, it follows that by applying more heat, their paths of vibration should be lengthened, and theyr should occupy more space. An a priori consideration would therefore lead to the conclusion that bodiee increase in size as they growhotter.
Such is actually the case The statement that heat expande and cold contracts is ec old as to be known to all. It is a crude expres sion of a universal law.
To illustrate its universality, it should be shown experimentally as applying to all three states of mat ter-the solid, the liquid, and the gaseous. The expension of solids shall Grat be considered here.
In general termsit is the most difficult of the three forms to use as the basis of a satisfactory experinent. Iron, per degree Centigrade, only expands 0000012 . brase 0.000018 , and zinc 0.000029 . Non-metallic substances are not so available as the metals, becanse they cannot, as a rule, be heated so highly. If a bar of metal is adopted, its expansion can only be shown by waltiplying its move. menta very largely.
From the coefficients of expansion given above, it will be seen that rinc is a very suitable metal for the purpose. It is fusible at a rather low point, but not so inuch 60 as to impair it for experimental use where the temperature need not rise very high. The apparelus for exhibiting the erpabsion of metals is shown in the cut.

A wooden baee, provided with two standards, is ifrst
constructed. Itmay be about twelve inches longand three wide. The stendards are best mortised into the base, and glued or keyed so as to be free from shake, or they may be screwed or nailed directly to the

SOLDERINO HEAD ONF SCREW.

ends of the base piece. These uprighteshould be about four inches high. Through one of them, the left band one in the cut, a hole is bored, near the top, through which a wood screw passes freely, screwing in and out. In the inner face of the opposite etandard, at the same height, two sharply pointed pieces of wire (about one: gixteenth inch in thickness) are inserted, whose points project about an eighth of an inch from the wood.
The rod of piece of metal to be expanded comes next. Several are shown lying in front of the apparatus. A perfectly straight piece of brass, copper, or iron wire, ora corresponding rod of zinc is needed. The piece should be of slightly less length.than that of the space between the standards. One end is filed off equare, and a slight excavation is drilled or punched in its center. This is to receive the point of the wood screw. The other end is filed of obliquely, and a slit filed in the center axis of the rod. If the rod is very thin, less than a quarter of an inch, its end may also be sliphtly upturned, so as to proddce a larger oblique surface. One of the pieces is shown thus constrocted. In any case, a shape is giventhe end somewhat similar to that of the claws of a carpenter's hammer.
A short piece of wire has two holes punched or drilled in its surface, to receive the two points projecting from the right hand standard. Another very fine hole is drilled alnoost orquite through its center, in which a pin about the diarneter of a ladies' hair pin is coldered. This pin should projeet a quarter of an inch, and should boatrout 135° from the two holes, as referred to the circanference of the wire. Finally, in the end of rinebart pipee of wire.another hole is drilled, and the ong arm oeen in the drawing is soldered therein. The experimental rod is praced in the position shown, and adjusted by serewing inor out the serew until the least motion affects the movernents of the lowg index wire. Now if the rod be heated, it will expand, and raise the index wire perceptibly.

PHOTOGRAPEY OF A MOVING PRNDULUM

To etill farther multiply the extent of motion the index attached to the left hand standard is provided. A wire axis is thrust into the wood. A thin tube which may be of glass, is placed over this axis, a pape index is secured thereto by sealing wax, and the end o the wire is bent to secure all. If desired, a graduated dial may also be pasted to the standard. A thread attarhed to the end of the wire index is carried thre or four times arouna the tabe. At its end is a smal weight.

By the wire inder every movement of the rod in the direction of its length is maltiplied, perhaps eighty or a hundred times. This, by the paper index, is again coultiplied probably twenty times, giving a total in crease of motion of two thousandfold. Hence the sen-

APPABATUB FOR ILLUBTRATING THE EXPANSIOA OF METALS BY HEAT.
sitiveness is very great. A match held ander the rod will produce a visible movement in the index, while a caudle or alcohol lamp will produce more than a full rotation of the index.

The soldering is very easily done. A little hydrochloric acid is neutralized with zidc. The places to be soldered are cleaned and filed up bright, and a little of the "soldering acid," as it is called, is placed on them with a wire or a toatch. On heating one of the pieces in an alcohol lamp, with a bit of solder resting on it, the solder will melt and flow over the metal. This is done to both pieces separatoly, and afterward they are heated until the solder melts, and pressed together while held in the flame, removed, and allowed to cool. In the cut the operation is shown of attaching a head, which may be a copper ceat, to the wood acrew, to Prcilitate its manipulation. After tiuning or coasting with solder one side of the cent and the screw bead scparately, the screw and cent are placed as shown, are heated until the solder melts, and allowed to cool, when the union will be secure.

PHOTOGRAPHY OR A

W_{e} represent in the cut accompanying this article an interesting achieveruent in photography. It is not only of value in itself as a perfect production of the art, but is very suggestive. It opens the question as to how much wovernent can be allowed to an object which shall not be detected in the blurring of its image, and -also as to the relation between the distance, speed of object, and time for instantaneous. exposure in photographing a moving object. Thus the onehundredth of an inch is a dietinctly visible quantity. A movement during the time of exposure which would, on the plate, produce this amount of displacement would tend to cause a blur. By one high authority the awount allowable is placed at 1-10 millimeter, or the 1.250 ot an inch. It is uncertain how far this can be ac cepted as an absolute law.

If a moving steamer were photographed so as to be reduced te $1-1000$ of her size, a displacement on the plate of 1.250 inch would represent on the part of the stearner a movement of $1000-250$ inches, or four inches At a speed of 15 miles an hour, this would occupy a period of $1-C_{B}$ secend. This reduction would represent the City of Rome as a little over six inches long.
In photographs of distant objects, there would be a certain difficulty in detercaining the blur. The grain of the paper would tend to conceal it. When a near object is photographed so as to be reduced to one-half only of its natural size, any displacement in the time of exposure is much more easily detected. It is such subjects that test most rigorously the limitations of the photographic art as affected by the shutter mechanism and sensitiveness of the plate.
The cut represents ulmost of full size a photograph of a swinging pendulusn. It was taken by Dr. J. J. Hig gins, an amateur photographer of this city. The con ditions were as follows:
The pendulura was eipht inches long as regarus the distance from its point of suspension to its center of who usciliation. Thus its period for small arcs would be the in France has done the most important work of
ter and pendulum. The pendulam swung down, passed the lowest point of its arc, consuming very near y $1 / 4$ second in the journey, and just as it was rising on the opposite side was photographed. The charpness of the image is surprising. Absolutely nothing can be detected to indicate the motion of the pendulum. The length of the pendulum is known; the divisions of the are can be reduced to degrees, so as to give its angular diaplacement, and thus we are in possession of the data necessary to arrive at an idea of the tine of exposure. The pendulum in its journey from starting point to the place where it was photographed had spent about is second. It was at this point moving at the rate of 258 inches per second. Taking the qreduction as one half, which is not far from the truth, and allowing for a displacement of image on the plate of $1-200$ inch,

$\overline{12.9 \times 200}$

$1-2680$ second. For Mr. Muybridge's exposures the time of 1.500 of a second has been clained. Mr. E. J. Marey, who in France has done the most important work of
the last few years in photographing moving men and

THE PORCOPLNE ANT EATER

An important question in natural history can now be answered. There are egg-laying mammals. This fact, which has long been believed by scientists, has finally been proved, and the link "between manmals and birds, which, according to the saying that ${ }^{\text {+ }} \mathrm{Na}$ ture inakes no jumps," must necessarily exist, has been found. It is worthy of note that Darwin was interested in this question.

August 25, 1884, Dr. Wilhelm Haache, former assistant of Haeckel and Director of the South Australian aruseum in Adelaide, discovered that the porcupine ant eater (Echidna hystrix) laid eggs, and the same discovery was madea few days later by W. H. Caldwell, a young English naturalist who went to New Holland to study the developinent of animals of the duckbill species. The anatonical construction of these animals and their position in the zoological jsystew has been a subject of dircussion among naturalists, but they have finally been classed as mammals. The particuar animal to which we wish to call attention (see accompanying cut, taken from the Illustrirte Zeitung) is porcupine ant eater (Echidna hystrix). It is the

tHE PORCUPINE ANT EATER.
about 0.1 sec., and for a longerare such as indicated by the divided circle a very little more. It washeld at one extremity of the graduated are by a catch attached to the telegraphic sounder, so as to be released when a current of electricity was passed through the magnet. In the circuit with the sounder were included a key, a resistance coil and an electrical detent of sintilar character to the sounder, for hoiding and releasiog the shutter of the canera. The paper are was divided into inches, and the general data of the experiment were written on the cards seen 'attached to the standard The apparatus was set upon the roof of Dr. Higgins' residence. To make the print a certificate of its own authenticity, a goblet of mercury was placed by the side of the apparatus, and was phetographed with it. This proved that the table was level. Otherwise, by inclining the apparatus, the pendulum could be taken by a time exposure in any desired position. At the upper end of the rod, two threads were used for suspending the pendulurn. This precl uded the possibility of the pendulum being mechanically held to one side; as it would be inpossible to do this and keep the threads aligned witb the rod. The camera was then placed a short distance from the apparatus, focused, the shatter detent arranged, \& mirror was placed so as to reflect the sunlight directiy npon the pendulum, and all was ready.
A touch of the finger on the key released both shut
animale, has used a regular exposure period of 1.2500 suballest of the monotremes, and reminds one of the of a second. Dr. Higgins, therefore, seems to have porcupine. Its body is plump, and its short legs are about reached the same limit, for when the sharpness each provided with five strong toes armed with sharp of the image is considered, it. is not easy to admit a greater displacenent than that used in the calculation.
Again, it is necestary to distinguish between the efil cient period and wechanically opening period of a shutter. Little effect is produced upon the plate unti the shutter is partly open, and the light ceases to great extent to act before the shutter is fully closed The exposicre, however, way wonderfully short. When the nearness of the object to the camera is talsen into account, the perfection of the photograph produced is very remarkable.

Hydramit Jack Patent

In the U. R. Court, Southern District of New York in the case of Richard Dudgeon v. Watson \& Stilluran, for infringeinent. Judge Coxe sustained the plaintiff's claime and granted an injunction. The defense was want of novelt.y and non-infringement. The Judge in his opinion describesat length the workingsof hydraulic jack8, and says there is no doubt as to the infringement of the patent, as the jack made by defendants works in substantially the same manner.

Some one trithfully asserts that it is cheaper to get a good engineer and a good engine than to procure an inferior quality of both articles.
nails, well adapted for burrowing. Its beak resembles closely that of the woodcock, being thin and tubeshaped. The mouth is very small, only large enongh for the passage of the worm-like; rough-pointed tongue, which can be extended somedistance beyond the beak and is used for drawing in food (ants and other insects). No ears are visible, but there, are hearing passages, which can be opened and closed by lolds of skin. The upper part of the body is covered with black, pointed quills, the roots of which are surrounded by short hair, and the head, legs, a.nd other parts of the body are also covered with hair.
This ant eater lives in mountainous districts and in high,' dry woods in South Australia. where he burrows under the roots of the trees. In his hole ho makes a nest which he lines with partsof plants. To protect him self from an enecoy, he rolls himself up like a porcupine.

The Northwestern Miller, of Minneapolis, Minin., is a weekly publication which has attained a deservedly high position as a representative of the milling inter ests of the country. It celebrated the holiday season this year by issuing an unusually attractive number, a prominent feature of which was the presentation of pic turesof a large number of leading membersof the trade.

