CRING OF FLODS-EXPANSION BY HRAT. o'conor stoaste, phin

The phenomens of diffusing fluids have already been alluded to, in an early article. of this series. The mixing of thick silicate of soda solution with water was used as the illustration. To a suggestion from Mr. C. Trautwine, Jr., of Philadel phia, the experiment here illustrated is due. He observed that, in dropping whisky into glycerine, a peculiar effect was obtained. The whisky by its euergy, due to falling, penetrated deep. into the thick and heavier glycerine, and imme diately tended to rise to the surface. In so doing, it subdivided the glycerine into veins, and seamed incapable of mixing periectly with it.

In the illustration, a glass containing some glyce rine is shown. From a height, in order to obtain ial

THE MUXING OF OLYCERIHE AND ALCOHOL
petus, alcohol is poured jnto the center of the surface. The effect deacribed above is produced. If rightly done, the veins of subdivided glycerine will ertend quite deeply into the center of the fluid, and produce a very curious and striking effect.
The subject of heat is suroeptible of illustration by a number of experimente. Until reduced to the ab solute zero, -273° Cent., the constituent molecules of all substances are assumed to be in intense and rapid vibration. This implies that they do not touch each athor. By leas apallatory motior under the iafluonce of the kinetic force. or objective heat, they are not allowed to reat touching, each other. Hence, it follows that by applying more heat, their paths of vibration should be lengthened, and theyr should occupy more space. An a priori consideration would therefore lead to the conclusion that bodies increase in size as they growhotter.
Such is actually the case The statement that heat expands and cold contracts la 80 old as to be known to all. It is a crude expres sion of a universal law.
To illustrate its universality, it should be shown experimentally as applying to all three states of mat ter-the solid, the liquid, and the gaseous. The expension of solids shall Grat be considered here.
In general termsit is the most difficult of the three forms to use as the basis of a satisfactory experinent. Iron, per degree Centigrade, only expands 0000012 . brase 0.000018 , and zinc 0.000029 . Non-metallic substances are not so available as the metals, becanse they cannot, as a rule, be heated so highly. If a bar of metal is adopted, its expansion can only be shown by waltiplying its move. menta very largely.
From the coefficients of expabsion given above, it will be seen that rinc is a very suitable metal for the purpose. It is fusible at a rather low point, but not so inuch 60 as to impair it for experimental use where the temperature need not rise very high. The apparelus for exhibiting the crpabsion of metals is shown in the cut.

A wooden baee, provided with two standards, is ifrst
constructed. Itmay be about twelve inches longand three wide. The stendards are best mortised into the base, and glued or keyed so as to be free from shake, or they may be screwed or nailed directly to the

SOLDERINO HEAD ON SCREW.

ends of the base piece. These uprighteshould be about four inches high. Through one of them, the left band one in the cut, a hole is bored, near the top, through which a wood screw passes freely, screwing in and out. In the inner face of the opposite etandard, at the same height, two sharply pointed pieces of wire (about one: sixteenth inch in thickness) are inserted, whose points project about an eighth of an inch from the wood.
The rod of piece of metal to be expanded comes next. Several are shown lying in front of the apparatus. A perfectly straight piece of brass, copper, or iron wire, ora corresponding rod of zinc is needed. The piece should be of slightly less length.than that of the space between the standards. One end is filed off equare, and a slight excavation is drilled or punched in its center. This is to receive the point of the wood screw. The other end is filed of obliquely, and a slit filed in the center axis of the rod. If the rod is very thin, less than a quarter of an inch, its end may also be sliphtly upturned, so as to proddce a larger oblique surface. One of the pieces is shown thus constrocted. In any case, a shape is giventhe end somewhat similar to that of the claws of a carpenter's hammer.
A short piece of wire has two holes punched or drilled in its surface, to receive the two points projecting from the right hand standard. Another very fine hole is drilled alnoost orquite through its center, in which a pin about the diarneter of a ladies' hair pin is coldered. This pin should projeet a quarter of an inch, and should boatrout 135° from the two holes, as referred to the circanferenoe of the wire. Finally, in the end of rinebart pipee of wire.another hole is drilled, and the ong arm oeen in the drawing is soldered therein. The experimental rod is praced in the position shown, and adjusted by serewing inor out the serew until the least motion affects the movernents of the lowg index wire. Now if the rod be heated, it will expand, and raise the index wire perceptibly.

PHOTOGRAPEY OF A MOVING PRNDULUM

To still farther multiply the extent of motion, the index attached to the left hand standard is provided. A wire axis is thrust into the wood. A thin tube, which may be of glass, is placed over this axis, a pape index is secured thereto by sealing wax, and the end o the wire is bent to secure all. If desired, \& graduated dial may also be pasted to the standard. A thread is attached to the end of the wire index, is carried three or four times arouna the tabe. At its end is a smal weight.
By the wire index every movement of the rod in the direction of its length is maltiplied, perhaps eighty or a hundred times. This, by the paper index, is again coultiplied probably twenty times, giving a total in crease of motion of two thousandfold. Hence the sen-

APPABATUB FOR ILLUBTRATING THE EXPANSIOA OF metals sy heat,
sitiveness is very great. A match held ander the rod will produce a visible movement in the index, while a caudle or alcohol lamp will produce more than a full rotation of the index.
The soldering is very easily done. A little hydrochloric acid is neutralized with zidc. The places to be soldered are cleaned and filed up bright, and a little of the "soldering acid," as it is called, is placed on them with a wire or a smatch. On heating one of the pieces in an alcohol lamp, with a bit of solder resting on it, the solder will melt and flow over the metal. This is done to both pieces separately, and afterward they are heated until the solder melts, and pressed together while held in the flame, removed, and allowed to cool. In the cut the operation is shown of attaching a head, which may be a copper ceat, to the wood acrew, to Prcilitate its manipulation. After tiuning or coasting with solder one side of the cent and the screw bead scparately, the screw and cent are placed as shown, are heated until the solder melts, and allowed to cool, when the union will be secure.

PHOTOGRAPHY OR A

We represent in the cut accompanying this article an interesting achieveruent in photography. It is not only of value in itself as a perfect production of the art, but is very suggestive. It opens the question as to how much wovernent can be allowed to an object which shall not be detected in the blurring of its image, and -also as to the relation between the distance, speed of object, and time for instantaneous. exposure in photographing a moving object. Thus the onehundredth of an inch is a dietinctly visible quantity. A movement during the time of exposure which would, on the plate, produce this amount of displacement would tend to cause a blur. By one high authority the awount allowable is placed at 1-10 millimeter, or the 1.250 ol an inch. It is uncertain how far this can be ac cepted as an absolute law.

