## IMPRONED ATEAK BOILER.

The upper ends of the flues of vertical boilers, as connuonly constructed, are exposed to hot steara npon one side and the heat of the fire upon the other, and the flue sheet is similarly subjected to the action of steam and fire. The result is that the Hises become leaky, and are eventually destroyea. In the boiler here iliustrated, and which is the invention of Mr. Wim. J. Chapman, of 97 Forest Street, Rutland, $V t$., the upper ends and the flues are continuously submerged in water. The bods of the boiler is formed with a recessed


## CHAPMAN'S IMPROTED GTEAM BOILER.

head, surrounding which is an annular space provided with outlet pipes. Resting upon the head is a chamber of the same diameter as the boiler, and within which is a hollow cone. The internal diasneter of the base of the cone is the same as that of the recessed head, and the cone and bead together form a smoke chanber, in which are received the products of combustion passing through the flues. In the side of the chamber, near the bottom, are inserted tubes that connect with the tubes in the hody of the boiler. Theise tubes establish communication between the upper part of the body and the lower part of the chamber. As the water level is maintained above the months of the tubes, the submerging of the flues is always insured The chamber, in addition to raising the water level so that the flues are pro tected, provides efficient steam room, increases the heating surface, and util izes the heat of the flues, which would otherwise pass directly to the smoke pipe and be lost. Whenever necessary, the cham ber can be readily re moved.

## LARGE PUNGEING AND sheariva hackire.

 Owing to the grea breadth, as well as length of steel plates which shipbuilders can now procure and which it has been found most advantageons in many way's to adoptparticularly in tbe plating of large vessels-a necessity has arisen for punching and shearing machines with gaps of a depth not hitherto thought of. The machine wbich wo now illustrate has to purich and shear $13 / \mathrm{g}$ in. stee plates, but the power re guired to do that is not the only element which renders necessary so large and heary a machine. The depth of the gap, more than anything else, regulates the size and weight of such a tool ; and as the gaps on the above machine are 42 in. deep, admitting of punching holes in the center of a plate $\gamma \mathrm{ft}$. wide some idea may be formed of the proportions of the machine. Messrs. James Rennse \& Co., says The Engineer, bave just completed two of these for Mesers. Harland \& Wolft extensive ship yard at Bel sast, and one of them hasbeen at work for some weeks past. One peculiar feature in the arrangement is the design adopted for the cranes. In a machine of this kind, of course cranes are requisite with jibs having range enough to deal with plates up to 27 ft . length, and strong enough to carry upward of two tons at the point of the jib safely. But hitherto, with the "cam and lever" type of machine, now so greatly preferred by ship platers, it has been difficult to get cranes with freedorn to swing in all ositions without coming in the way of the driving belt. This difficulty has been overcome in the inachine under notice byy carrying the strap over guide pulleys or a framing up over the ordinary driving pullojs, and at such height as clears the cranes altogetber. The latter are thus free to slew in all directions, without being interfered with by the driving belt.
The design will be readily understood from the illustration, although, to save space, the eranes are shown with the jibs cut off short. It is vell known that, for obvious reasoris, it is a bad practice to carry the upper end of a crane post up to the roof of the building for support there. By the above arrangement the frawing carrying the guide pulley's is made to form a substantial support for the top end of the crane pest, and thus the walhine becoures self-contained, and might be placed in any outside shed or building.

## Alloje.

In a recent lecture, Professor Austen Roberts mentiened that the union of copper and antimony by fusion produces a violet alloy when the proportions are $s 0$ arranged that there is 51 per cent of copper and 49 per cent of antimony in the mixture. This alloy was well known to the parly chemists, but, unfortunately, it is brittle and diffcult to woris, so that its beautiful color can hardly be utilized in art. The addition of a swall quantity of tin to copper hardens it, and converts it, from a physical and mechanical point of view, into a different metal. The addition of zinc and a certain amount of lead to tin and copper confers upon the rnetal copper the property of receiving, when exposed to the atmosphere, varyivg shades of deep velvety brown, characteristic of the bronze which has from remotes antiquity been used for artistic purposes.


JARGE PUNCHING AND SHEARNG MACEITR

## WATER GADGE FOR STEAY BOILERS

The body of the galage consists of a hollow metallic shell closed at the ends, and made with side openings near the top and bottoin, and having projecting flanges that form connections with the steam and water space of the boiler. A narrow chamjer is formed in the gauge by a partition that is perforated near its top and bottow, to permit the entrance of stean and water. and equalize the pressure which preserves the equili brium of the water, and also checks its agitation The front of this chamber is provided with a slight


CHEEX'S WATER GADGE FOR STEAM BOILERS,
opening, covered with a plate of mica, through which the height of the water can be seen. The mica is held in place by a fiat metallic frame, secured to the body of the gauge by screws, and is swelled outwardly so as to present a coovex surface, as shown in the cross sectional view, no that tbe water may be seen by the attendant when in a position at an arjgle to the gauge. Openings in the opposite eads of the chamber are closed by screw plugs, which can be removed when it is necessary to clear the chamber or clean the mica. The advantages attending the use of mica in this situation are manifest as compared with glass, there being no danger of fracture resulting from Huctuations of temperature or prissure to which the gauge may be subjected. The gauge may be provided with

This invention has been patented by Mr. Thomas H. Cheek, of Chattanooga, Tenn.
chmaey.
For those parts of a chituney which are supported throughout, stone may, under some circumstances, be admissible, but brich is always preferable for the purpose. The abutinents of a chimney shoukd be tied into the walls by wrought iron bars of sufficient number and strength, turned up and down at the ends, and built into the jambs for several inches on each side. No part of a flue should be of less thickness than half a brick, or 41/a inches. Where slabs of stone or slate are placed level with a floor before the opening of a chinney, they should invariably be laid in sound mortar, cement, or other incombustible and non-conducting substance, and it should be at a distance of not less than 43/2 inches frosn the joists, flooring, or any other wood work. A chimney built oniy up to the rool and stopping at that point is always dangerous. Every chimney in a bouse should be perfectIf distinct and separate from every other chinaney, from the hearth to the external opening. Chimneys may safely be built in stacks, but they should on no account have any connection within the stacks. Brickwork around flues should not be less than $41 / 2$ inches thick in any part. By the Code Napoleon it was not permitted to build a chituney against the wall of an adjoinion bouse without isolating it by an intermediate wall of suf. ficient thickness to prevent heat passing to the neighboring premises.-The Architect.

