is performed, the offcer returns to his old place, and waits to get from time what faithfulness has falled to secure.
Those familiar with the military or naval station will scarcely fail to have been struck with the relative difference in the capacity and performance of the vari ous offleers. One devotes all his spare time to the study of some special department of the art of war; let it be small arms, heavy guns, torpedoes, powder, pro pulsion of ships, construction of forts, or the like Another, and perhaps his superior offcer, does not do anything save what is actually required of him in the discharge of his duties. He cannot find the road to diligence himself, nor is willing to take it when it is pointed out by others. But if his commission antedates the commissions of those who do work, he is secure. Let him devote a modicum of time to his studies-just enough to pass a possible or pending ex amination for promotion-and they cannot hope to pass him.
The annals of the civil war clearly illustrate how pernicious is this system of promotion by priority Regular officers, of high rank too, were constantly found incapable of important command. They wer slow and often stupid, nesther progressive nor alert their chief ambition and occupation was to see that the ordinary routine of discipline was maintained, wholly forgetful that this was but secondary, and not the main object of keeping men afoot and ships afioat in time of war.
Tbey could let an enemy escape or neglect to follow up an advantage, and lay themselves down to rest with ardent satisfaction that at least good order and"military discipline was being observed throughout their commands; that aboard their ships the daily routine of detail and assignment was working smoothly, or in their camps that the proper dispositionand alignment of tents was rigidly enforced.
There is another side, however; to this question of promotion by seniority, and one that should not be overlooked in its discussion. There are evils and abuses in the system of promotion by preferment quite as menacing, perhaps, as those which inhere in that of promotion by seniority. They are caused by favoritism and political influence. It is surely less disheartening to an officer, less demoralizing to a corps, to see merit go unrewarded than to witness incapacity go forward through the pressure of political " backing," or becanse of the whim or favoritism of a commanding officer. In the navy, because of the teebnicality of the duty, favoritism could perhaps do little to press incapables into important positions. It might serve to give them easy and pleasant posts, and.that much it does at present; but in the army, promotion by seniority being displaced, influence and favoritism might, up to a certain pnint, lead to grossinjustice, while yet its effects would scarcely be discernible, rave to those immediately intereeted. As an example of this, a second lieutenant in the army might be jumped over the heads of several files of more efficient offlcers, and made a first lienten ant, without such change materially endangering the proper ordering of a company or of the regiment of which it formed a part. But should an incapable naval lieutenant be promoted to a position where he was called upon to exercise the functions of navigating or executive officer, his incapacity would he at onee apparent, might imperil the safety of his ship, and could not, therefore, be endured.
It would seem as if some means might be.found of promoting, and thus encouraging, the efflient and faithful and industrious offleer, whether in the army or navy, and, at the same time, maintaining a safegrand against unjust discrimination. Then, even the boy who is at Annapolis or West Point, and who today has little to look forward to, might, if posseesed of soldierly qualities, ambition, and ability, be enabled, before his hair has turned white with age. to make a name for himself, and there would be nothing left for indolent officers, whether old or young, but toapply themselves to their profession or leave it.

MAT AND THE WILD ANDMA.

Those who have carefully observed the management of wild animals in menageries, zoological gardens, and in the pens of the animal dealers, must, at times, have been astonighed at the ease with which hired men, comparativelyunarmed, subdue beasts which we have been taught yield only to the blazing rifle, and fight gamely until death. A lion escapes from his cage, and cronches at the darkened end of the menagerie. Remembering the stories we have read of the ferocity of this beast and of the terrible scenes at the lion hunt, we can imagine only one mode of action. The keepers shonld arm themselves with rifles. hide behind barriers, and open a rapid fire upon him. To our surprise, they don't do this. They simply wheel a great cage up to him, fall upon him with cluba, and thrash away untilhe enters it.

A few weeks ago, an anaconda 17 feet long broke away while being carried across a publio park in New York eity. With vivid pictures of the exploits of this reptile in the Amazon watersbed before our eyes,
we expect to see him sall upon the neareat homan
being, infold him in his toils, and crush him to a jelly. Surely, it will take armed and resolute men to capture him ! No; on the contrary, this is not re quired; and it must have been with a feeling akin to disappointment that those who bad read of the ferocity of the anaconda saw one man, armed only with a blanket, advance and seize him by the throat, while wo others, also unarmed, grasp bis tail, and then the trio, still holding on, carry him through the streets and thrust him back intothe den whence he had been taken.
Not long since, the writer aaw Mr. Thomenn, a ealer in live animals, open a box containing an anaconda, quite as long as this one, take the reptile by the throat, and cahnly examine his mouth, opened though it was in rage, to look for cancerous humors. Then from adjoining shelves he took python after py thon, each about 10 feet long, and examined them in like manner. Only last week, at the place of anothe dealer (Reiche), a big, powerful Syrian bear, a type known forits ferocity, was subdued without thefiring of a shot. The bear broke through iron bars half an inch thick, and, standing up with hís back against a cage of monkeys, thrust his terrible paws threaten
ingly toward tbree keepers gathered about him. He didn't have a chance to use them, however, for he wa belabored with clubs until glad to get back again into his cage. On a pedestal near the gate of the Cincinnati Zoological Gardens, there recently stood the stuffed figure of a donkey which, when alive, with tood the attack of a lion and beat him off. The lion, it seems, had broken out of nis caye and escaped to a
wood near by. On a grassy hillock adjoining, a donkey ay stretched in placid slumber-a slumber that we rudely disturbed. by the lion, who, in a few bounds, was upon thim. When the donkey felt the great mass of flesh descend upon him as if from the clouds, he was stunned and indignant, but not frightened, per haps because he had never read any of the wonderful tories about the lion. He quickly recovered from the blow, and, rising, shot out both hind feet at the same time, and caught the lion squarely in the forehead. Badly hart, the lion skulked off, and later the donkey died of the wound he received at the onset.

FHOTORRAPHIC HOTES.

Development of Dry Plate Lanterri Slides.-Plate having a sensitometer register of 12 or 13 are mostly used for making. lantern slides, andit is generally ad vised that they be developed with the ferrous oxa ate, or more commonly called iron. developer, if clear high lights and a warm brown color is desired.
The use of the pyro developer is now so general fo negatives that it affords a great convenience to th amateur in case it can also be employed for the devel opment of transparencies.
It is only within a recent period that it has been recommended for this purpose, one method being the use of dry pyro in connection with sulphite and car bonate of soda.
From some experiments we have lately made, we have ascertained that it is possible to obtain lantern transparencies of superior merit very easily and quick ly by using Beach's sulphurous acid pyro and potash
We repant the formula as heretofore published
No. 1.-pyro solution.

Silphte unda chem. pure | . | oz |
| :--- | :--- |
| . | |
| . | oz |

When cool to 700 Fah., add 4 oz.

And finally 56os.

No. 2.-Potasi solution.
A. $\left\{\begin{array}{l}\text { Garbonate of potash chem. pure. } \\ \text { Waterar..... }\end{array}\right.$
-. $\left\{\begin{array}{l}\text { sulurprite odd chem, pure } \\ \text { Water. }\end{array}\right.$
(437 cralns to each ounce of salt.)

Combine A and B_{y} in one bolution. -
To develop four $3 / 4 \times 4$ lantern slide plates at one time, place them in a $6 \frac{1}{2} \times 83 / 2$ developing tray, then prepare a developer as follows: 8 ounces of water and 40 minime of No. 1 and 80 minims of No. 2; flow it ver the plates.
. In the course of three or four minutes development will commence and the image will appear very slowly Continue the development until the shadows look quite black, otherwise the plates will fix out too thin in case the development hangs back, a few drops of the potash solution should be add ded.
If the exposure is correct, a clear, crisp, blackisb brown transparency will result. The method we employed was. to place the printing frame holding the sensitive plate in contact with the negative, at a dis tance of two feet froin the flame of a oneinch wick of a kerosene lamp, making an exposure of from 85 to 40 atainas, according to the density of the negative. No staining of the plate appeared, which indicated that as long as suffleient sulphite of soda is employed, the pyro stain will be prevented; no after clearing solution of citric acid or alum wis used. Several plates may be developed successively in the same solution. After
saturated solution of fresh hypo, then washed in chang ing water for one hour and dried. After mounting, it is then ready to be shown in the lantern. The process as a whole is exceedingly simple, and affords a pleas ant and profitable amusement for long winter evenings.

The Holyoke Dam.

In a recent number of the Transactions of the American Society of Civil Engineers, an elaborate illustrated paper is given by Mr. Clemens Herschell, a member, on the work done for preserving the dam at Holyoke, Mass., in 1885. The dam belongs to the Holyoke Water Power Company. The second and present dam at Holyoke, that succeeded the first construction, which gave way in 1848, was begun and finished a year later. The length is $1,017 \mathrm{ft}$., or one-fifth of a mile. At the end are abutments of heavy masonry, between which the dam is composed of heavy timbers, which are built up so as to present on the upper side a surface of plank at an angle of 21 degrees 45 minutes to the water. Tbe timbers, which cross the river transversely, are supported by other timbers at right angles, arranged in 170 sections, 6 ft. apart. The ends of these sloping timbers are spiked to the solid rock at the bottom of the river with $1 \frac{1}{4} \mathrm{in}$, iron bolts, and $4,000,000 \mathrm{ft}$. of timber are contained in the structure, which, being under water, is protected from decay.
Gravel was filled in and ponnded down at the foot of dam, which is protented also by concrete. The open spaces were packed solidly with stone to the height of 10 ft . The height of dan vertically is 30 ft . The sloped top is planked to a thickness of 18 in.. in three layers of 8 in., all spiked and bound together. The rolling top or combing was covered with sheets of hoiler plate extending the whole length of dam. The graveling on the bed of river begins 70 ft . above the dam, and is carried over 30 ft . of the sloping surface, which is 92 ft . in length from the foot to the crest.
A section of the structure shows the transverse and sloping timbers, and the filling of stone, and a description is given of the experiences of 1849 to 1888, and of the damaging effect of the falling water over the dam, which reached $121 /$ ft. in 1862 . The fall of such a volume of water for 3 ft . naturally cut a seam in the layers of rock, and the falling over of loge of timber and ice diii serious damage to the foundation and structure of the face of dam. It was found on inspection that the ledge had been washed out in places to a considerable depth, and caused the dam to be seriously undermined and the timbers to give way. To remedy these defects, an apron was built on the down stream in sectlon exceeding the old dam. It was built of round logs laid up in perpendicular bins, 6 ft . square, and filled up to the top with stone, and covered at the sloped top with maple, beech, and other hard woud planks, 8 in. thick. The lower courses were builtafloat, and in sections 150 ft . long, fitted.to the irregular bottom of the river, and sunk by loading with stone. The effect of the apron has been to prevent further undermining ac tion next the heel of the dam, though a new pool was formed below the dam.
The author goes on to describe the breaks in tbe crest of dam and the cribs used for repairing them. These cribs were sunk so as to inclose the breaks in the plank covering of dams, and consisted of boxes without tor or bottom, the under' side cut off on a level to fit the back of dam. Sketches of the large 40 ft . by 45 ft . crib used in. 1884 to cover a hole in the dam are given. These are framed together with upright and horizontal pieces planked over.
The author describes otferplans to meet breaks in the dam covering by subcutaneous injection of gravel, and the use of coffer dams to reach the crest of dam, by which means a length of a hundred feet, 20 ft . wide, could be laid dry. Drawinge of the coffer dams used, a design for a stane dam, and several photographic views illustrate the work.

The Green Ray.

The green ray is a fiash of emerald colored light, said o be observed sometimes for a second or half a second at the moment the sun's disk disappears below the horizon, and just when one sees only a very small segment of its surface. Tourists in Egypt and the Red Sea testify to the phenomenon. Some consider it objective, and others believe it to be subjective. Accord ing to a letter of M. De Maubeuge to M. Mascart, the well known French physicist, the phenomenon has been several times observed in the Red Sea at the rising of the sun. M. De Maubeuge particularly noticed it, he states, in October, and the firat impression of his eye and that of his assistant was a beautiful emerald green. He has also seen it at sunrises behind mountains elevated from 1 deg. to 2 deg. above the horizon. These observations tend to prove that it is an objective phenomenon. He has also observed it at the setting of the sun. There was not the least cloud between the orb and spectator, and the air was pure, but humid. The same phenomenon has not been observed by him rom the moon, Venus, or any star, although he has often looked for it in the tropics.

