Hoboken, N. J.; John S. Newberry, professor of geology and paleontology at the Columbia College School of Mines, and late State geologist of Ohio, New York ; Simon Newcomb, astronomer and superintend ent of "Nautical Almanac," Washington, D. C. Hubert A. Newton, mathematician and professor o mathematics at Yale University, New Haven, Conn. General John Newton, late chief of the corps of engi neers, U. S. army, and commissioner of public works, New York; James E. Oliver, professor of mathe matics at Cornell University, Ithaca, N. Y.; Alpheu S. Packard, naturalist and professor of natural his tory at Brown University, Providence R. I. ; Charle S. Pierce, late assistant and acting superintendent United States Coast Survey, Washington, D. C. Charles H. F. Peters, astronomer and director of the Litchfield Observatory, Clinton, N. Y. ; Edward C Pickering, astronomer and director of the Harvard Observatory, Cambridge, Mass. ; Raphael Pumpelly, geologist, and has had charge of the Missouri Stat geological survey, and the transcontinental survey o the Northern Pacific Railway, Newport, R. I. ; Fred erick W. Putnam, ethnologist and curator of the Pea body Museum, Cambridge, Mass.; Ira Remsen, professo of chemistry at the Johns Hopkins University, Balti more, Md. ; Fairman Rogers, engineer, and formerly lecturer on mechanics at Franklin Institute, and pro fessor of civil engineering at the University of Pennsylvania, Philadelphia, Pa. ; William A. Rogers, Cam bridge, Mass. ; Ogden N. Rood, physicist and professo of physics at Columbia College, New York ; Henry A Rowland, professor of physics at the Johns Hopkin University, Baltimore, Md.; Lewis M. Rutherfurd astronomer, New York; Charles A. Schott, connected with the United States Coast Survey, Washington D. C. ; Samuel H. Scudder, naturalist, and late edito of Science, Cambridge, Mass. ; William Sellers, mining engineer, Philadelphia, Pa. ; Sidney I. Smith, professor of comparative anatomy at Yale University New Haven, Conn.; John Trowbridge, professor o physics at the Lawrence Scientific School of Harvard University, Cambridge, Mass.; William P. Trowbridge, professor of engineering at the Columbia College School of Mines, New York, N. Y. ; James H. Trum bull, philologist and superintendent of the Watkinson Library, Hartford, Conn. ; Addison E. Verrill, naturalist and professor of zoology at Yale University, New Haven, Conn. ; Francis A. Walker, statistician, late superintendent of the census, and president of the Massachusetts Institute of Technology, Boston, Mass. Dr. Horatio C. Wood, professor of materia medica, pharmacy, and general therapeutics, and clinical pro fessor of nervous diseases of the University of Penn sylvania, Philadelphia, Pa. ; A. H. Worthen, geologist, and in charge of the State Survey of Illinois, Spring field, Ill. ; Arthur W. Wright, physicist and professor of molecular physics and chemistry at Yale University New Haven, Conn.; Charles A. Young, astronome and professor of that branch at the College of New Jersey, Princeton, N. J.
The foreign associates, limited to fifty members, in clude: John C. Adams, astronomer, discoverer o Neptune, Cambridge, England; Sir George B. Airy astronomer royal of England, Greenwich, England Arthur Auwers, astronomer, Berlin, Germany ; Joseph L. F. Bertrand, mathematician, Paris, France; Pierre E. M. Bertholet, chemist, Paris, France ; Jedn B. J. D Boussingault, chemist, Paris, France ; Robert W. Bun sen, chemist, Heidelberg, Germany; Hermann Bur meister, naturalist, Buenos Ayres, S. A. ; Arthur Cay ley, mathematician, Cambridge, England ; Michel E. Chevreul, chemist, Paris, France ; Rudolph Clausius, physicist, Bonn, Germany; Alphonse De Candolle botanist, Geneva, Switzerland; Baron Hermann v. Helmholtz, physicist, Berlin, Germany ; Thomas H Huxley, naturalist, London, England ; Sir Joseph D Hooker, botanist, Kew, England; Gustav R. Kirch hoff, physicist, Berlin, Germany; Rudolf Albert von Kolliker, physiologist, Wurzburg, Germany ; Theodor von Oppolzer, astronomer, Vienna, Austria; Richard Owen, anatomist, London, England; Louis Pasteur chemist, Paris, France; Ferdinand v. Richthofen, ge ologist, Berlin, Germany; George G. Stokes, mathe matician, Cambridge, England; Otto N. von Struve astronomer, St. Petersburg, Russia; James J. Sylvester mathematician, Oxford, England; Sir William Thom son, Glasgow, Scotland ; Rudolph von Virchow, anato mist, Berlin, Germajy.

Relative Cost of Water and Steam Power
A suinscriber at Portland, Ore., writes to the Lumber Trade Journal, and wants to know "whether it i cheaper to run a saw mill by water or steam power." He further says :"I am about to engage in a large en terprise at a point in Washington Territory where there is abundant water power, but sometimes the river falls low, and is not available for a steady manufacturing business. Had I better rely upon steam power or water power; which, in the end, is th cheapest?"
In reply, the editor says that the water equipment at Lowell, Mass., was for canals and dams $\$ 100$, and for wheels, etc., another $\$ 100$ per horse power. But thi
as a first experiment was more costly than a similar experiment need be. At Saco, Me., the expense in curred was $\$ 165$ per horse power; but at a later period, for turbines with high heads, the expense would be less a construction and equipment, solidly carried out, with the latest improvement in wheels, would not cost over $\$ 200$ per horse power (probably less) under favor able circumstances. If we remember correctly, an estimate at Penobscot, Me., was for $\$ 112.50$ per horse power. If the construction be with wooden dams, and he equipment with lower grade wheels, then the cost would be Iess than $\$ 50$ per horse power; and al though the construction would be less permanent than the more solid, it would outlast any steam apparatus On the other hand, Fall River (Mass.) estimates o steam equipment, exclusive of foundations and engine houses, run from $\$ 100$ to $\$ 115$ per horse power. A Boston authority gives $\$ 110$ for nominal 300 horse power and upward, inclusive of foundations and masonry Similarly a Portland (Me) authority places it at $\$ 100$ per horse power for nominal 300 horse power.
a perpetval motion machine-will it whork I herewith send you my thoughts on a perpetual mo tion arrangement that I have never noticed in print. It is very simple, and I would very much like to see it illustrated and commented upon by you.
I use a tubular tank, in which the balls to be used just fit. The power wheel is arranged to catch these balls, and the turning of thewheel by the weight of the balls is the power produced.
The tube is filled one side with water and the othe side with enough mercury to force the water up to the
 top of column. In the figure, A is mercury, and B the water. The balls to be used are made of iron, with anair tight chamber filled with gas to make them float in water.
The machine is supposed to operate in this way: The balls are started on mer cury side. Several will be needed to force the first ball through the mercury, but the moment it has passed the center it will rise to the top of column of water. The next coming balls will force it
out until it rolls off on to the proper place on the power wheel. Here the balls exert their weight, turn the wheel, and then drop back into starting channel to force the ones ahead of it through the mercury back into the water again
If each ball weighs say ten pounds, it seems as i there would be enough weight to force it through the mercury into the water, and then it would at once rise up higher than from where it started.
The difference of power seems to be the weight of the ball on one side and the buoyancy of the same ball on the other, but I am a fraid that the mercury is so dense that the amount of weight needed to force the irst ball through the mercury will just balance the weight of the column of water. If we take two tubes, partly fill the one with water, and the other partly fill with just enough mercury to balance each other. Now, if we take iron balls that will float, and place the balls one over the other in each tube, which one will require the greatest number of balls to force the first ball to he bottom? Can this be determined by science, or must it be found out by experiment

New Albany, Ind.
 Henry A. Goetz.

[The writer of the above communication outlines pretty clearly the fallacy. With regard to the question at the end of the letter, we reply: The same number of balls will be required to force the first ball to the bottom, whether through mercury on one side or through mercury and water on the other side. The amount of weight required to force the first ball through the mercury will just balance the increased pressure due to displacement of the water or additiona raising of the height of its column.-Ev.]

Telegraph Wires in New Orleans.

The city of New Orleans is about to adopt a system of Colonel Flad for overhead wires. This consists in erecting tall towers at the street corners, which will carry the wires over the roofs. The system will be under the supervision of the Commissioner of Public Works, and the older method of running the wires, telegraphic, telephonic, and electric lighting, on poles will be abolished. The towers will be classified for the different classes of wire; and the wires are not to be less than 10 ft . above 林e roofs. The Star Iron Tower Company, of Fort Wayne, has received•an order for 224 towers.

©orrespondence.

Casting Steel Ships.

Tothe Editor of the Scientific American
Being greatly interested in our coastdefenses, I would ike to make a suggestion, after reading Sir Henry Bessemer's proposal to cast in situ the whole face of a fort. Why not cast the hulls of our new war vessels ? There are no insurmountable obstacles in the way, and the plant once established could be used for a handred or more vessels, which, when cast, could be cleared and floated away to be finished, the moulds replaced and another cast in the same moulds.
R. Gleason.

Egan, Dakota.

Singular Upheavals.

To the Editor of the Scientific American:
About three years ago, a company was constructing a wharf at Pyramid Harbor, Chilcat Inlet. The bottom was covered with silt to the depth of about 10 feet, lying n a bed of cement or gravel from 8 to 12 inches thick. Under it is a bed of clay or blue mud.
The piler, on being driven through the cement, would be thrown up with great violence. She was thrown on top of the wharf (that part finished), over 20 feet above the water, it being at low tide, and the rise and fall is about 16 feet. Another time, a pile was driven, and in the gin, with the monkey on it. It was thrown out with such force as to raise the monkey to the top, a distance of 60 feet. The weight of the monkey was 1,500 pounds.
To me it was such an uncommon occurrence, and can be so easily substantiated by respectable parties, the contractor, and the members of the corporation for whom the wharf was constructed, I consider it worthy of notice.
W. H. Woodcock

Fort Wrangel, Alaska, April, 1887.

YIOLIN TUNING PEG

The barrel of this peg may be turned to take up any undue amount of slack that there is in the string connected to the peg, after which the necessary fine adjustment may be obtained by turning the barrel, hrough the medium of a worm gear. On a tapered wooden core formed at one end with a head or thumbpiece is placed a metallic sleeve formed with an annular flange, against which fits a plate formed with a number of apertured ears, through which pass screws connecting the peg with the instrument. Against the face of the plate is placed a gear, engaging with which is a worm carried by a short vertical shaft supported in bearings extending outward from the plate. The gear is formed with an internal ratchet; Fig. 2, engaged by a pawl mounted in a transverse recess formed in the core and pushed into engagement with the teeth by a spring. In order that the pawl may be withdrawn from the teeth, it is formed with an aperture, which is entered by an eccentric projection formed upon a bar fitted within the core, Fig. 3, and held in position by a pin entering a groove formed in the bar. The end of the string, in connection with which the peg is employed, is passed through an aperture in the core and sleeve, and the slack is taken up by turning the key, the pawl being pressed inward against the tension of its spring. When a tension approaching that required for a proper tuning of the instrument has been imparted to the string, the required accurate tension is obtained by turning the vertical shaft. If the string should break, it may be stripped from the peg by turning the bar so that its eccentric projection will force the pawl against the tension of its spring; and when the pawl has been forced out of engagewent with the ratchet, the string may be grasped and pulled from the barrel of the peg, the parts being then free to turn in either direction required.
This invention has been patented by Mr. James H. Gardner, of Elkhart, Indiana.

Another Remarkable Torpedo Boat

In our paperfor April 23 last we gave an account of new torpedo boat built in London for the Italian government, 140 feet long, $1,400 \mathrm{~h} . \mathrm{p} ., 100$ tons displacement, which runs 25 knots or 28 miles an hour-the fastest boat ever produced.
Another torpedo boat for the Imperial Chinese navy, by Messrs. Yarrow \& Co., had her official trial on March 31, and attained the remarkable speed of nearly 24 knots per hour, as a mean of six runs over the measured mile in the Lower Hope, three with and three against tide. To be exact, the speed was 23.882 knots; and a subsequent run of two hours' duration gave a mean speed of 22.94 knots, with the engines running easy. She had on board her torpedo armament complete and ballast to represent four torpedoes, also a fair quantity of coal and twenty-four persons. This boat is 128 feet long, and constructed on Messrs. Yarrow \& Co.'s rapid-steering principle, which enabled her afterward to make circles to looth sides, having diameters of about 230 feet.

