is placed in the cylinder, which is a perforated vesse of copper, or even galvanized iron, according to the nature of the bath, and this cylinder is fixed at the bottom of the cistern and put in communication with a centrifugal pump, which forces the dyeing or mordant ing liquors through a pipe into the cylinder, and after reacting on the material through the perforations al over the surface of the cylinder, back again into the dyeing cistern. This latter is filled only with sufficient liquor to affect the dyeing or the mordanting of the material, and consequently it is possible to work with stronger liquors, which means also a saving in the fuel, since only small quantities of liquors have to be heated, and not as in the old process of having to heat comparatively a large amount of liquor for a smal quantity of the material. The liquors in the cistern only average in all about 15 inches.
The construction of the cylinder or receptacle for holding the material to be treated differs according to the nature of the material itself, and consists either of a plain cylinder with a perforated column in the middle, with which it communicates with the pump, or the apparatus is of more complicated construction, having one central cylinder and several others protruding from it, in which the material is placed, and is es pecially suitable for the dyeing of tops. In both case the main cylinder is supplied with a lid to press down the material and keep it in its place, and at the same time to allow, by means of a hook at the top of the lid, the whole of the cylinder to be lifted up and down by a crane, and thus a great saving of labor and hand ling is effected.
To this must also be added the advantage of its being possible to do all the operations of mordanting, dyeing or washing without removing the material from th cylinder. The drying may similarly be done without removal of the material, it being only necessary to pu hot air through after the drying and washing off ar completed, since from the first placing of wool in the apparatus to its being completed in a dyed and thick state, there is no handling required. As to the amoun turned out, three men will do $12,000 \mathrm{lb}$. to $15,000 \mathrm{lb}$. o wool a week, of course according to the quality of the wool. The dyeing of blacks especially seems to b ffected with special ease and thoroughness by thi system, either for wool in the sliver or loose wool ; the method of dyeing being the well-known process of mordanting with bichromate. This operation lasts one hour ; the dyeing itself takes one and one-half hour or the washing, or two and one-half hours in all.
We have seen the process at work in the extensiv establishment of Messrs. Markendales, in Salford, and are thus enabled to give details.-Textile Manu facturer.

Grano-Metallic stone.

The grano-metallic stone, the invention of $\mathbf{M r}$. J H. Bryant, of London, is composed of blast furnace slag and granite, which are erushed, chemically treat d, dried, and mixed with Portland cement. For use these ingredients are brought to a pasty consistency with an alkaline solution, and laid. It possesses the important property of always having a rough surface which is due to the atoms of the vitreous slag alway presenting themselves justabove the other ingredients, which are more readily worn. This stone has under gone a special trial in one of the metropolitan gas works, where a section was laid at the request of the engineer. It was there successfully subjected to test which natural and artificial stones have, it is stated been unable to withstand. It is found to stand not only the wear and tear of heavy horse and van traffic but the sudden and extreme alternations of temperature incident to the slaking of coke upon it. Valuable as this material has proved itself for paving and road mak ing purposes, however, it has now been proved to possess the additional important feature of being highly refractory
A cement kiln lined with this stone has stood a num ber of burnings without any repairs having to be done. Even where the lining happened to be torn away by a portion of adhering clinker, there is not the least sign of the stone having been injuriously acted upon by the heat. This is certainly a most crucial test, and the satisfactory manner in which the stone has passed through it stamps it at once as an absolutely fire proo material, and, therefore, of special value for construc tive purposes.-Iron.

Umbrellas.

The Chinese and Japanese, long, long ago had their neer parasols, and in Burma a man's rank is known by the number of umbrellas he is allowed to carry the king limiting himself to 24. Jonas Hanway in troduced the umbrella into England more than a hundred years ago. The people all made fun of him but may be it was because they hadn't sense enough to get out of the wet when it rained. There are mor than $7 ; 000,000$ of umbrellas made every year in the United States: If they were placed open in a row allowing three feet of space for each, they would mak a procession more than 8,000 miles long.

THE EPIORNIS.

Michelet, in his book, "The Bird," thats speaks of the epiornis as the conqueror of the giant saurian, he plesiosaurus :
"Who would have met face to face the horrible leviathan? The capacity of flight was absolutely needed, the strong, intrepid wing which from the loft iest height bore down the Herculean bird, the epiornis, an eagle twenty feet in stature and fifty feet from wing tip to wing tip, the implacable hunter, who, lord of three elements, in the air, in the water, and in the deep slime, pursued the dragon (plesiosaurus) with easeless hostility."
This rhapsody of our brilliant writer has for text little more than the egg which is illustrated in our cut Michelet's imagination has supplied most of the material, and has done well. It is certain that the egg never could have produced so marvelous a creature. The piornis was probably a strictly terrestrial bird, incapable of flight. Nothing has been found to determine its conditions and way of existence, except some eggs and a few other semi-fossil remains. The giant bird of Madagascar otherwise belongs to tradition. The Sakalawas of Madagascar tell of a bird that kills cattle and devours them. To it they attribute these eggs, still occasionally found. The fact that nev species are continually being discovered on the island lends some probability to the expectation that a living epiornis may yet be seen. Its remains occur in recent alluvial

EGG OF THE EPIORNIS.

deposits, and from their recency are classified as sub cossils. The legend of the ferocity and carnivorou habits of the bird are groundless. In all probability it was a vegetable feeder. Tradition has brought down to us a similar tale of the extinct dinornis of New Zealand. It is said to have been seen by some sailors, who frightened at its size and height, left it unmolested But while the remains of this bird include organi issue, and bones still impregnated with gelatine, the epiornis has left no such recent relics. All that has been found of it belongs to an earlier period.
In 1850 Isidore Geoffroy St. Hilaire exhibited the egg of the epiornis to the French Academy of Sciences, and named its producer the E. maximus. The museum in Paris placed the egg in its collection, and a few of the bones, constituting enough to classify it imperfectly were brought to Paris a short time after. Three and possibly four well defined species of the genus, placed in the family of Struthionidæ (ostriches), have now been identified. It comes in the same order with the dinornis and the rare apteryx, soon to become extinct iso, though at first there was some disposition to conder it reptilian. The extinct dodo of the Mauritius slands, immortalized by Du Maurier in his illustra ions of "Alice in Wonderland," gives a probable typ as regards its appearance. Though five or six times larger than the ostrich, its height is not supposed to have exceeded ten or twelve feet
Its egg is of gigantic size, as may be inferred from th his "Encyclopedie d'Histoire Naturelle" Paris, 1875 Its largest diameter is 13.38 inches, its smallest diame ter 8.86 inches. The largest circumference is 33.46 inches. Its capacity is 77 quarts. Compaied with those of existing birds, its capacity is equal to at of fifty thousand humming bird, of six ostrich, of sixteen and a half cassowary, or of seventeen emeu eggs. The thickness of the shell is given by the same author as a iittle over one-tenth of an inch. In the Magasin Pit toresque, for 1851 , one of the earliest references to it may be lound.

The discovery of these eggs recalls the roc of the Arabian Nights," and in the natural histories we even find this allusion. But they do not come near the size requisite to remove the roc from the realms of myth.
There is a curious confusion noticeable about the spelling of the name. It is spelt æpiornis or epiornis. St. Hilaire, in naming it, is said to have derived its title from the Greek words $\varepsilon \pi \tau$, above, and onv 25 , a bird, presumably in allusion to its size. If this derivation is correct, a very general error in the spelling seems to have been fallen into by modern naturalists. The diphthong is used in the article on birds in the last edition of the "Encyclopædia Britannica."

Instantancous Method of Retting Flax

The retting of llax is an operation designed to convert the pectose that surrounds the fibers of cellulose, in the green plant, into pectic acid, which, in the retted material, constitutes the brilliancy, and facilitates the sliding of the fibers in a longitudinal direction during the various operations of spinning. The detaching of the boon is a useful consequence of this transformation of the pectose.

Flax is usually retted by allowing it to undergo the long and irregular action of fermentation. In the Bulletin de la Societe Industrielle du Nord de la France, Mr. P. Parsy describes a method which he calls "instantaneous retting," and which consists in converting the pectose into pectic acid by a method pointed out by the chemist Fremy, that is to say, by heat. He first submits the flax to the action of water under pressure, at a temperature of about 150° C., and then finishes the operation by substituting for the water steam under pressure at the same temperature. Under the action of the heat, the transformation of the pectose begins. The steam, which has not the same dissolving effect as the hot water, permits of afterward maintaining the temperature necessary to finish the conversion of the pectine into pectic acid, without the loss of any of this valuable substance. The operation takes but an hour and a half.
By this process, Mr. Parsy succeeds in giving the retted flax either a blue or yellow color at his pleasure. For blue, he uses the water of a preceding operation, which is then slightly acid from the organic acids of the flax that it holds in solution. For yellow, it is only necessary to employ a slightly alkaline water.
One of the principal advantages of the method resides in the rapidity with which the drying is effected. Mr. Parsy states that the flax, on being removed from the steaming apparatus, contains but one and a half time its weight of water.

Varied Accomplishments of an Armless Man.
There recently died at Potsdam, St. Lawrence County, N. Y., Richard Donovan, who was in some respects one of the most remarkable men in northern New York. Twenty years ago, when a boy, Donovan worked in a flour mill. One day he was caught in a belt and received injuries that necessitated taking off both arms at the shoulders. This misfortune did not discourage him, and, after recovering his health, he set about earning his livelihood as best he could without the use of hands or arms. Part of the time he had lived alone, and from the necessity of helping himself he became wonderfully adept in performing all kinds of work, using his feet and mouth principally. He owned a horse, of which he took the entire caresharnessed it; fastened and unfastened the buckles widh his teeth, and drove with the reins tied around his shoulders.

Being in need of a wagon, he bought wheels and axles, and built a box buggy and painted it. He went to the barn one winter day and built a cow stable, sawing the timber with his feet, and, with the hammer in one foot and holding the nail with the other, he nailed the boards on as well as most men could do with their hands. He dug a well twelve feet deep on a farm in this town, and stoned it himself. He could mow away hay by holding the fork under his chin and letting it rest against his shoulder. He would pick up potatoes in a field as fast as a $\ddot{m} a n$ could dig them. He would dress himself, get his meals, write his letters, and in act do almost anything that any man with two arms could do.-Boston Transcript.

A Large Engine.

Messrs. Douglas \& Grant, Dunnikier Foundry, Kirkcaldy, have at present in hand a compound Corliss engine of a very large description, for a cotton mill in Bombay. The high pressure cylinder of this large engine is 40 in . diameter and the low pressure cylinder 70 in ., each having a stroke of 6 ft . The fly wheel, which weighs about 110 tons, is 30 ft . in diameter by 8 ft. 6 in. wide, grooved for 38 ropes, by which the power is to be transmitted to the various lines of shafting in the mill. The engine is to run at 60 revolutions per minute, giving a speed of ropes of considerably over one mile per minute. The crank shaft, made of Whit worth fluid compressed steel, is 25 in . in diameter in the body and 20 in the bearings. The steam pressure is to be 100 lb . per square inch, and the engines will work eanily up to 2,500 horse power.

