QNOW MELTIFG AND USDRRGROUND CONDUITs. |keep on the safe side, will double our estimated cos
How to dispose of the snow: This is one of the most serlous problems connected with the comfort and convenience of a great city in this latitude. Many ways of disposing of the snow in the streets have been pro posed, but, with a single exception, we believe the ouly method heretofore adopted to any extent, other than the slow and very costly method of allowing the sun to melt it, is the old way of carting it off. This we all to melt it, is the old way of carting it off. This we all know is exceedingly costly and i
single exception, we understand, is found in London, and consists in digging at convenient points in the street suitable pits, connected with the sewer, placing steam coils therein and carting the snow thereto , the haul of the snow, undoubtedly lessens and expedites the task of its removal. This task, coming, as it usually does, suddenly and unexpecterly, is always great, and sometimes herculear.
Still, with the ertensive steam supply plants existing in most cities, it would seem that nothing like a snow blockade of our streets ought any longer to he experienced; for, as we took occasion to bay on the 23d of last January :

The use of steam for removing snow is feasible; both in a practical and economical point of view.
"To melt a ton of snow when the letter is at a temperatule of $20^{\circ} \mathrm{F}$. will require an expenditure of 147.4 heat onits $\times 2,000=294,800$ heat uni

LOCKE'S SYSTEM FOR REMOVING SNOW BY USE OF STEAM

 the pavement of the street.of the cover, being held in place only by gravity, are easily removed, so enabling the whole contents of the conduits to be quickly exposed for the purpose of examination or repair, without disturbing in the least

Does not this plan offer to our telegraph and telephone companies a practical way of disposing their wires underground, in a position where they can be reached at any time, and that, too, withouttearing up our streets? If so, a long suffering public, always bejng provoked to righteous wrath by the constant digging up and laying down of street pavements, will take courage and be glad.

Bidicallog Farnace Temperatare.

A method for determining the temperature of furnaces has been recently described by M. Wallerand, a Belgian mioing engineer; in the Belgique Industrielle. The arrangement is applied in the frst instance to a Siemens-Martin steel furnace ; but the principle is capa ble of adaptation to other classes of furnaces. It depends upon the observation of a pendulum, beating veconds, hung against the furnace wall in a convenient place for the fireman. The pendulum is made of a simple rod, carrying at one end a ring by which it is suspended, and a weight capable of being adjusted up or down by a serew. In every case it is necessary to regulate the pendulum at the commencement by
steam used will deliver 966.5 heat units while becoming condensed to water at $212^{\circ} \mathrm{F}$. it therefore 294,800 would be the pounds of stean required to reduce a ton of snow to water at $32^{\circ} \mathrm{F}$., exclusive of all waste.
"If an effective evaporation of $6 \mathbf{1 b}$. of water per pound of coal could be secured, which is only about half what is now obtainable from well-constructed and housed boilers, we should have $\frac{305}{6}=50 \frac{6}{8}$ pounds, say 51 lb . of coal required to do the work.
"Now, as to the economy, we have for a ton of snow removed the cost of 51 pounds of coal or about onefortieth of a ton, which, at $\$ 5$ per ton, would be $121 / 2$ cents per ton."

We illustrate in this article a new method of utilizing steam for this purpose, proposed by S. D. Locke Hoosick Falls, N. Y., that is certainity very simple and econornical, and seems to be entirely practical. It is the subject of two or more patents issued to him, to whom all comaxunications should be addressed:

Mr. Locke's method is shown fully in our illustrations, and conternplates utilizing the steam plants existing in most cities to melt the snow, so avoiding all carting. Dnderneath the surface gutter he proposes to construct a sub-gutter, of cast iron or other suitahle material, that connects directly with the sewer and that is covered with a grafe, monderneath which one or more steam pipes are carried in racks, as shown in Figs. 1 and 2. The snow, as it melts. falls through the grate and is conducted by the subgutter into the sewer. Fig. 4 is a longitudiual section, showing how the condensed steam is allowed to escape from the steam pipes a the lowest levels, through float valves, into wells

By this method there is nothing on the suriace of the street to interfére with or in any degree impede its tratie. and the snow can as quiobly be moved by horse scrapers and brooms into the gutters as the atreete can nuw be swept.

The cost to lay this sub-gutter is: figured to be from $\$ 3.50$ to $\$$ per lineal foot. Assunning it to be 84 , the entire cost per mile, on both sides of the street, will be $\$ 42,240$.

To show the economy of Mr Locke's plan, we submit an estimate of the comparative cont of cleaning one mile of Broadwáy by his method and by carting. In thise estinate we will take the width of Broadway to he 44 feet, and, to

LOCKE'S SYETEM FOR REMOVING SNOW BY USE OF STEAM.
comparison with a watch or clock giving seconds. When the stoker wishes to ascertain the temperature of his furnace, he inserts an iron hook into the middle of the fireplace through a hole left for the purpose in the door. The iron is made from 8 mm . round rod, andis left in the fire for 22 seconds, or the same number of left in the fire for 22 seconds, or the same number of
oscillations of the pendulum, when it must be quickly withdrawn. If the furnace is at a proper heat, the end of the hook will in this time have attained a welding temperature, as shown by the fact that sparkling drops of molten iron will be thrown off by vigorously swinging the bar through the air. If, on the contrary. the test rod comes out of the furnace merely red or yellow, and does not throw off drops, the furnace is not hot enough. It is evident that this procedure will not indicate the exact heat of the furnace in absolute measurement.

Preservation of the Dend.
In speaking of the preservation of dead bodies, Gaillard's Medical Monthly says that Edward I., who died in 1307, was found not decayed 465 years subsequently. The flesh on the face was a little wasted, but not putrid. The body of Canute, who died in 1017, was found fresh in 1766. Those of William the Conqueror and his wife were perfact in 1522. In 1569 three Roman soldiers, in the dress of their country, fully equipped with arms, were dug out of a peat mass near Aberdeen. They were quite fresh and plump after a lapse of about 1,500 years. In 1717 the bodies of Lady Kilsyth and her infant were embalmed. In 1796 they were found as perfect as in the hour they were embalived. Every feature and limb was full. The infant's features were as composed as if he had only been asleep for eighty years. His color was as fresh and his flesh as plump and full as in the perfect glow of health. The swile of infancy qud innocency was on his lips. At a little distance it was diffecult to distinguish whether Lady Kilsyth was alive or dead. The question is, What preservative was used, and bow applied?

Sirif Whales Captared.

A large school of whales was lately captured at Cullivee Yell, Shetland, after a very exciting chase. The whales first approached the Unitshores, and when observed a number of boats set out in pursuit. They succeeded, however, in gaining the water, but, after a six hour's chase, they were driven ashore and killed at Cullivoe. The school numbers over sixty, some of them measuring over twenty feet in length.

