Smentive virncux

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
$\underset{[\text { NEW }}{\text { VOI. LETESE. }}$. 6.$]$
\qquad

VIEWS OF MORNINGSIDE PARK, NEW YORK CITY.-[See page 85.]

grimutifir \mathfrak{c} gmexicau.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. Une copy, one year. postage included....
Clubs.-One extra copy of THE SCIENTIFIC AM ARICAN will be supplied
kratis for every club of tive subscribers
Bame proportionate same proportionate rate. Postage prepaid.
Remit py postal or express money order. Address
MUNN \& CO., $3 i 1$ Broad way, corner of Franklin Street, New York. The Scientific American Supplement is a distinct paper from the ScIENTIFIC AMRRICAN. THE SUPPLEMMENT
is isued weekly. Every number contains 16 octavo pakes. uniform in size
with ScIENTIFIC AMELICAN.

 papers to one addrese or difrerent add resses as desi red.
rekie safest may to remit is by draft, postal order, express money order, or
rexister letter. rekistered letter
Address MUNN

NEW YORK, SATURDAY, AUGUST 7, 1886.

Contents. (Illustrated articles are marked with an asterisk.)	
Bracket, lamp, Barney's*. Boat torpedo, submarine Boys, our.................................. Calorimetry Churn, in proved: Mad Cruisers, new, the character of.... 80 Electisicity, transmission of power	
Emery wheel dust, stalgmitic formation of, curious*...	
Engines, quad ruple expansion, six	
Erysipelas, treatment of, with	
Fire extinguishing apparatus, im proved	Science, American Association
Fire from steam pipes. Force. centrifugal Foundations. Hook, snap, improved*	
llorse, a shying Horseshoe, improved, Monroe'; ${ }^{*}$ 84 82 8	
Horseshoe to tit the natural ioot of a horse*	
Inventions, agricuiturai................ 90	

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT No. $5 \boldsymbol{3 B}$.
For the Week Ending August 7, 1886. Price 10 cents. For sale by all newsdealers.

the american association for the advance-

 MENT OF SCIENCE.The thirty-fifth meeting of the ${ }^{2}$ merican Associatio for the Advancement of Science will be held at Buffalo New York, from Wednesday morning, August 18, until Tuesday evening, August 24. This is the third time that the Association has accepted an invitation to hold a meeting in Buffalo, the previous occasions having been at intervals of ten years. The city offers such excellent facilities for a gathering of this kind, both in its spaceous auditoriums and hotels and in its general accessibility from either the East or the West, that it has grown to be a favorite locality with the members, and a large assemblage has been assured. Special attention will be given by the section on geology and geography to the problems connected with Niagara Falls and its gorge. The retiring President, Prof. H. A Newton, of New Haven, will deliver his address on the Prof. E. S. Morse of Seeting. The

TRANSMISSION OF POWER BY ELECTRTCITY

The carefully conducted experiments of M. Marce Deprez, on the transmission of electricity over long distances, have finally resulted in success. After many trials and difficulties, the conductors established be tween Creil and La Chapelle Station, Paris, begin to work satisfactorily.
The power transmitted, and rendered available at the receiving station, was found by measure to be 50 horse power, an efficiency of 47 per cent. As the distance be tween Creil and Paris is almost 32 miles, this result i not unsatisfactory. The line consists of a copper cable the total cross section of which is equal to that of a solid wire having a diameter of three-twentieths of an inch. The cable is aerial, and supported on porcelain insulators. When near frequented spots, it is incased in insulating material, but at other places it is exposed. The success of these experiments suggests the ad vantageous introduction of the practice into this country. In many localities, and particularly where water power is available, it would be possible to produce electricity under such favorable economic conditions that a loss of even fifty per cent in its transmission would still make the arrangement a profitable one when compared with the direct generation of electricity n the spot where it is needed.
It frequently happens, too, that power is available in one place at certain periods of the day, and, from the nature of its origin, must be wasted unless trans mitted to a distance. Its conversion into electric energy and subsequent transmission would then repre sent a saving in the course of the year of no inconsiderable magnitude. Water power has been utilized in several localities in the United States and Canada for the generation of a current to be used in the electric illumination of towns and works located at a distance of perhaps two or three miles; but the limit has not nearly been reached, and even within these shorter ranges there have been as yet but few attempts to utilize the power at hand. There is room here for onsiderable ingenuity in securing the services of
the character of the new cruisers.
It has been said that the best thing after knowing a thing is to know where to find it; and in selecting designs for the cruisers provided for by the act of March, 1885, the-Naval Board has, apparently, acted on the suggestion. It could scarcely have been expected that the Board would originate a new system of marine architecture or otherwise revolutionize naval warfare. The most that could reasonably be hoped for was that it would intelligently examine the best models of the Old World naval constructors, who have had large and varied experience of recent years, while we have been standing still, and discover which were best suited to the purpose Congress had in view. Among the cruisers built by Sir William Armstrong for the Japanese, Chinewe, and Chilian governments are to be found by far the mest successful models of unarmored and partly nerord fighting ships afloat. They have speed,
streenth, and stiffness, work quickly, and are good sea , and stiffness, work quickly, and are good sea ture and dameription were recently given in these pages, may nafoly be maid to be the best of her class now afloat. Bhe has hade 18.4 knots speed on the measured mile; and while whe pan readily run away from such ponderous and deventy moaters as the Devastation, Invincible, Imperieuse, Dapdolo, or Duilio, and attack the merchant fleets they art euppoed to protect, she can fighty too, upon occasion, oboown her own target got enough. The Japanese cruieer ramtreriten is an other of this class--a staunch, speedy, themerais and the Chinese Tchao-Yong is Hkoned unth These are the craft that the $\mathrm{N}=\mathrm{m}=$ Bond have wisely it seems, selected as criteria for the mont fort cruisers, modified in some respects
and the demands of Congress required. ed. The map tude as to decks, spars, barbette towers, and the 1+ and it remains to be seen whether Yankee ingenuity
retains its pristine promptitude in selecting the best and improving by combination and innovation.
It seems fortunate, now that Congress and the country are in the hutmor to do something for our long neglected navy, that the naval constructor and expert, on whom we must depend for models, have not shown a disposition to fit us out with floating forts, such as the great powers have been building for many a yearmonsters whose lagging prows will not admit of their approach to hostile ships on the high seas near enough o do them injury, and which, when they make the shore, may be made the prey of a torpedo fleet, whose sum total of cost will scarcely make up that of one of their number, as a school of whales is scattered and beaten off by a few resolute though comparatively inignificant thrashers.
Whoever has read the naval history of our civil war wust remember the effective work of the swift-running, unarmored corsairs Alabama, Georgia, and Florida-at a time, too, when we had the greatest fighting fleet the world ever saw. Had these Confederate cruisers been slow-going, steel-clad batteries, it is not likely they would have done a tithe of the injury. Their drums would have been beating " to quarters" from sunrise to sunset, and they would assuredly have got more fight than booty.
One of these slips could overhaul a merchantman with celerity, and lie in wait in the tracks of the various trading fleets with the precision of a cat which knows that within a given time a mouse will issue from the crevice near at hand.
Again, the modern marine gun has advanced so much in efficiency that it will pierce the heaviest armor that can be floated, until now, when some of the best authorities believe that heavy armor is a less defense than ight armor, because it lets a hostile shot in on one side and will not let it out on the other, as light armor will do, and it is under such conditions that a lucky shot ften does its maxinum damage.

OUR BOYs.

In glancing over the possible openings for boys, one is forced to admit that unless a lad have genius, perseverance, and a good, physical consititution, he will find the beginning of a professional life almost insurmountably difficult, if he be obliged from the start to depend upon his profession for a living. So large is the competition, even in our own comparatively new country, and still so in England and on the Continent
that the indu Snts to enter the so-called learned professions are financially very small. The satisfaction of ultimate success, and the intellectual pleasures which such a course makes possible, are regarded by any true student as more than compensations for the early discomforts, and we would never urge considerations of a financial nature against a boy's following his natural bent. That is a fatal policy which advises him to choose his calling simply for the money returns it promises, for he will learn sooner or later that money is but a small factor in true success. But we would very strongly urge such considerations in attempting to dissuade those who have no natural qualifications for a professional life from entering upon so unpromising a career. There are many whose scholarly abilities are too meager to permit the hope of successful competition when pitted against their more gifted brotbers. It is certainly unfortunate, if not pitiable, that these young men should, through mistaken notions of what is respectable and what is praiseworthy, rush into a course which can bring them only failure and mortifi-

ation.

Each year, thousands of young men are graduated rom our universities and schools of learning, only a very sinall proportion of whom are ever heard of after ward in the real contests of life. And it has becone a notable fact that an advertisement for a man to fillany but a manual position will bring a numk er of college graduates out of all proportion to the total applicants This proves nothing against our schemes of education for the contrary evidence is too overwhelming. The men of whom as a nation we are most proud, the brightest minds in science, literature, law, medicine theology, and the fine arts, have been for the mos part educated in universities and colleges. But the failure of such a large proportion of college-bred men to attain even ordinary usefulness in the events of life does prove that, for them at least, some element was lacking which should have contributed to their pre paration for subsequent duties. Had they been blessed with the three qualifications already enumerated, success would have been possible in almost any direc tion. But unfortunately very few have genius; a swaller proportion than should, have good health; and of the three, perseverance only appears to be a cultivable quality, and even this is largely limited by physical endurance. A very successful man of affairs, quoted by an English contemporary, Industries, when anied for the secret of his success, replied, "I had the anguled constitution to begin work at six o'clock in \mathbf{k}^{2} terring, and keep on till eight, nine, or ten at $\rightarrow 4$
14 hot a Utopian tenet that teaches the possibilify
of success for all normally constituted men. The essential condition is the right choice of a vocation. It is a serions question, what to do with our boys, for it is just here that so many fatal blunders are made. The parent or guardian, actuated by the best motives in the whorld, is very apt to lay out a plan of life framed endiedy from his own point of view, and unmindful that what may prove eminently successful in one case may be equally disastrous in another. And very often the decision is rendered more difficult by the necessity laid popon the boy of earning his daily bread as he eats it. Then, too frequently, circumstance usurps the place of decision, and what should be the result of careful thought is left to mere accident. Though one be of optimists the most extreme, it is impossible to deny that the plan of life pursued by the majority of men does not lead to success. And since this plan, whether it be of design or the mischievous fatalistic drifting which is no.plan, begins when the man is still a boy, it is'in the boy that our hope for the future lies. How is he to be trained, and his skill and character developed?
We are accustomed to believe that demand and supply regulate themselves, but in this very problem of the future of our boys, we are brought face to face with a carious incongruity. We see on the one hand the overcrowded professions, and hosts of clerks who are ready to apply for any vacant position, however low the salary, while on the other hand we see a market for labor which is so far from being glutted that its supplies must be brought from foreign countries. But between these unequally balanced classes, little or no exchange is possible, for it is a characteristic of the latter class that its members must be able to use their hands and eyes, as well as the brain, and must have a manual dexterity sufficient to place them among the ranks of the great industrial army of producers.
What is wanted to-day in our own country is $\begin{array}{ll}\text { in our own } & \text { country is } \\ \text { skilled labor. } & \text { Education }\end{array}$ in its highest form is wanted, but it must be coupled with an ability to do something, if it is to gain for its possessor any position in life. It must find some mode of expression, or the world is none the richer. Americans are noted for their ingenuity, but in how few has a thorough technical education brought out its highest powers of expression! Here is a field which can be heartily recominended to any boy commended to any boy
who has decided to take who has decided to take
the reins of life in his own the reins of life in his own hânds instead of leaving cumstances. If he has a taste for the mechanic arts,
he has a splendid opportunity for the exercise of his this method proceeds from the fact that the process powers. The acquisition of manual dexterity is not of combustion is total and instantaneous. Besides difficult. It requires little beyond intelligent perseverance. But when this skill of hand is once acquired, it brings an independence which many a man in apparently easier circumstances of life might well enyy Nor-is it the humble elling which the drawing room is apt to picture it. The possibilities open to the skilled worker are almost unlimited. Some new and more excellent creation is always possible, and from the workshop the directors of large undertakings are commonly chosen.

An Electrical silo Cutter.

We have before had occasion to place on record the work done by means of electricity at Hatfield, both at the Marquis of Salisbury's house itself and on the estate. In addition to the various operations of light ing, pumping, pile driving, weed cutting in the river, and others, another application of the power has just been perfected by Mr. Shillito, the resident electrician of the estate, one which, as far as our experience goes, is quite novel. Ensilage is being stored on a large scale for the use of stock at one of the farms, where, for this purpose, some of the old farm buildings have been oonverted into silos. This year it has been decided to chaff the green food before placing in the silo, and
this, the experiment in question requires but one weighing. The authors declare that combustion under ordinary pressure is seldom, if ever, complete, and leaves some thousandths, or possibly more, of carbon monoxide and of hydrogen more or less carbureted. They claim that their method is especially applicable to solid bodies and such as are not volatile, which can scarcely be burnt satisfactorily by the old methods, even with free oxygen.
It also dispenses with the complicated connection necessitated by the use of chlorate of potash. MM. Berthelot and Vieille have made a great number of determinations. by their method, operating with oxy-gen- compressed to 24 atmospheres in a calorimeter containing 1800 kilos. of water, and with
 ntity of material capable of raising the temperature about $2^{\circ} \mathrm{C}$. The material is compressed into the form of small pastilles, and placed upon a piece of dished platinum foil, with a spiral of iron wire weighing 0.018 gramme suspended above it. The oxygen is not previously dried. When the arrangement is complete, the iron wire is rendered incandescent by a momentary electric connection; and at once takes fire and ignites the material to be tested. The latter burns instantane ously, without a trace of smoke, carbonic oxide, or hy drocarbon gases.
this arrangement has necessitated the placing of the chaff cutter used in cutting up the rough grass some 20 feet above the ground. The electrical power is used not only for driving the cutting machine, but also for elevating the grass to the level of the cutter. Some four tons of rough grass are raised and cut per hour by this means. The generator, a 16 light Brush machine, driven by a water wheel, is situated a mile and a half distant, on the banks of the River Lea; the electrical power being transmitted to one of Siemens Brothers D 2 type, specially wound to work as a motor with the Brush machine. The same source of power is also brought into use in working the elevators at the various hayricks on the estate.

Calorimetry with Compressed Oxygen.

With regard to the calorimetric testing of combusti bles by burning them in apparatus like that of Mr . Lewis Thompson, MM. Berthelot and Vieille observe, in a communication to the Comptes Rendus, that the only really exact process consists in burning the substances in a great excess of compressed .oxygen, in the authors' calorimetric bomb. The exactitude of

In the map, stars of the first magnitude are eight-pointed; second magnitude, six-pointed; third magnitude, five-pointed; fourth magnitude (a
few), four-pointed; ffift magnitude (very few), three-pointed, counting the points only as shown in the solid outline, without the intermediate lines signifying star ray

NIGHT SKY-JULY AND AUGUST.

The Great Bear, Ursa Major, is now in the north west, his paws near the horizon. The Pointers, α and β, direct us to the Pole Star, α of the Little Bear, Ursa Minor. A line from the Pole Star to the Guardans of the Pole is in the position of the minute hand of a clock about seven minutes before an hour. Below the Little Bear we see the Camelopard, a little to the east of due north. The Dragon, Draco, curves round from between the Pointers and the Pole, above the Little Bear toward the east, then upward to near the point overhead, its head, with the bright stars β and γ, being highest. Low down in the west we see Berenice's Hair, Coma Ber enices, and one star of the Hunting Dogs, Canes Venatici, is seen in the chart between Coma and the Great Bear. The Herdsman, Bootes, occupies the midheaven in the west, the Crown, Corona Borealis, higher up, and due west; Hercules, between the Crown and the point overhead.
Low down, extending from the west to near the southwest, we find the Virgin, Virgo, the bright Spica near its setting place. In the southwest are the Scales, Libra, and father to the left, extending from the Scales to low down near the south we find the Scorpion, Scorpio, one of the finest of the constellations, Antares, the rival of Mars (as the name means), marking its heart. Above the Scorpion and the Scales are the Serpent Bearer, Serpentarius or Ophiuchus, and the Serpent, Serpens, extending right across him to near the Crown, after which the Serpent seems reaching.
A little east of due south, low down, we find the Archer, Sagittavius; in the southeast, low down, the Sea Goat, Capricornus; and farther east, and lower down, the Water Bearer, Aquarius. Above the Sea Goat is the Eagle, Aquila, with the bright bluish-white star Altair; on its left the pretty little Dolphin, Delphinus, and above the Dolphin, nearly overhead, the Lyre, Lyra, with the bluish-white star Vega (even brighter than Altair) nearly overhead.
Below the Lyre we see the Swan, Cygnus, due east; and below the Swan the winged horse, Pegasus, the winged horse, Pega
 meda the CHained La ${ }^{2}$ is rising, her heind marked by the star α (which was also called δ of Peggsusa (The "Square of Pegasus" is formed by α jof Andromeda and α, β, and γ of Pegasus.)
Between the north and northeast is Cassiopeia, the Seated Lady, and above her, her husband, King Cepheus. And lasty, Perseus is just rising, between the north and northeast.

The Telephone of 1664 .

And as glasses have highly promoted our seeing, so 'tis not improbable, but that there may be found many mechanical inventors to improve our other senses, of hearing, smelling, tasting, toutching. 'Tis not impossible to hear a whisper a furlong's distance, it having been already done; and perhaps the nature of the thing would not make it more impossible, though that furlong should be ten times multiplied. And though some famous authors have affirmed it impossible to hear through the thinnest plate of Muscovy glass, yet know a way by which it is easy enough to hear one peak through a wall a yard thick. It has not yet been thoroughly examined how far Otocousticons may be mproved, nor what other ways there may be of quickening our hearing, or conveying sound through other bodies than the air; for that is not the only medium. I can assure the reader that I have, by the help of a distended wire, propagated the sound to a very considerable distance in an instant, or with as seemingly quick a motion as that of light, at least, incomparably swifter than that, which at the same tine was propagated through the air; and this not only in a straight line, or direct, but in one bended in many angles.-From works of Robert. Hooke, published in 1664.

LAMP BRACKET.

The bar forming the body of the bracket is provided with apertured ears to receive the pintles of the lampsupporting bracket. Two bars, each formed with a hook at the upper end to pass over the upper edge of the front board of an upright piano, are slotted at their lower ends for the passage of a bolt, by which they are held to the main bar. The hooked ends are separated to form a wide bearing, and each hook has a thumbscrew, by means of which it is clamped securely on the back of the piano front. The free end of the bracket holds a lamp in the usual way, and the height of the

BARNEY'S LAMP BRACKET.
lamp may be'adjusted by shifting the position of the bolt in the slots in the bars; it may be still further adjusted by separating the free ends of the bars or bringing them together. The lamp may be supported at any desired position along the piano front, and the rattling of the bracket is prevented by the clamping screws and by a soft button upon the inner surface of the lower end of the vertical bar. The bars may be made in one piece, as shown in the left of the engraving.
This invention has been patented by Mr. James W. Barney, of Junction City, Kan.

MPROVED SASH FASTENER.

The engraving shows a fastener which may be used either singly, and occupy a central position when the window has a mullion through the center, or in duplicate on eitler side of it, when the window is a wide one and without a mullion. Secured within the stile or the mullion of the upper sash is a metal frame having a vertical slot and a recess in its face terminating in a finger notch. Pivoted by its upper end in the slot is a locking bar of such length, as when swung slightty outward is low end will bear on a plate extending aross the trifrail of the lower sash, as shown in the vertical section, Fig. 2. This very securely locks both

cary's improved sash fastener.

the upper and lower sash, which can only be released by forcing the bar back into the frame piece. The lower end of a finger piece is pivoted within the frame in such manner as to admit of its being shut closely within the recess, as representad in Fig. 3. This lever has a longitudinal slot in it, to allow the locking bar to
work through it. The lever and bar are connected by a pin passing through a slot in the bar. To lock the window, Fig. 1, the lever is pressed downward, its free end passing over a nose formed on the end of the plate on the lower sash, and thereby binding the sashes together laterally. This movement of the lever brings the locking bar forward, and locks the window. Push ing the lever back into its recess releases the sashes. A turn button on the nose prevents the lever from being raised. This fastener presents but little or no oppor tunity to tamper with it from the outside, and, unlike the ordinary fastener, it cannot be pushed one side by a knife blade inserted between the sashes.
This invention has been patented by Mr. Alanson Cary, of 234 W. 29th St., New York city.

IMPROVED SNAP HOOK.

This snap hook has a rigid tongue, held in place by spring-acted latches, and which does not depend upon the spring to retain it in a closed position. The shank of the hook, Fig. 1, has a chamber, in which is pivoted a tongue beveled at its free end to fit the beveled end of the hook. The inner end of the tongue is widened and formed with transverse slots for receiving the ends of pivoted latches, which are pressed into enyagement with the tongue by a spiral spring, as shown in Fig. 2. The inner ends of the latches extend beyond the sides of the shank, so that these ends may be pressed together to release the tongue.
When the tongue is open, the ends of the latches rest upon the sides of the tongue, with the spring com pressed, so that the latches are in condition to drop into the slots as the tongue is moved into a closed position.

The form of snap hook shown in Fig. 3 is carried by an angle plate, which fits over the thill, upon either the inside or outside, for receiving the trace loops. In this case the shank of the hook is the plate, and the hook and tongue when closed are axially in line with each other, forming a straight bar, upon which the trace hook is carried. The snap hook is like that above described.

STAHL'S IMPROVED SNAP HOOK.
This invention has been patented by Mr. S. S. Stahl, of Connellsville, Pa.

or Erysipelas

Dr. H. J. Fox, writing in the St. Louis Med. Jour. May, 1886, claims that creosote may be regarded al most as a specific in the treatment of erysipelas. His manner of application is to keep the parts constantly covered with cloths wet with a solution of 6 to 20 drops to the ounce of water. In ulcers or wounds it may be used in the form of a poultice by stirring ground elm into the solution, the strength to be regulated according to the virulence of the attack. Ordinarily, 10 drops to the ounce is strong enough for the cutaneous form of the disease, and in dressings for wounds or re cent injuries. If the inflammation threatens to spread rapidly, it should be increased to 20 or more drops to the ounce of water.
The antiseptic properties of this remedy render it of additional value, as it will certainly destroy the tend ency to unhealthy suppuration, and thus prevent septicæmia.
In the treatment of hundreds of cases of erysipelas, according to Dr. Fox, but a single fatal case has oc curred, and that one in an old and depraved system In the less violent attacks no other remedy was used, but where constitutional treatment was indicated, the usual appropriate tonics were prescribed.

Fire from Steam Pipes.

Glaser's Annalen says : After wood has remained a long time in contact with steam, hot water, or hot air pipes, the surface becomes carbonized. During the warm season, the charcoal absorbs moisture. When again heated, the moisture is driven off, leaving a vacuum, into which the fresh air current circulating around the pr rapidly penetrates, and imparts its oxygen to the charcoal, causing a gradual heating and eventually combustion.
The rusting of the pipes contributes also to this re sult, inasmuch as the rust formed during the hot sea son may be reduced by the heat of the pipes to a condition in which it will absorb oxygen to the point of red heat.
The same article also notices that a building was set on fire by pitch distilled out of a pine plank placed nearly three inches above a steam pipe, which dropped on the pipe and took fire
\triangle HORSESHOE TO FIT THE NATURAL FOOT OF A HOREE, In the invention herewith illustrated it will be seen, from the cross sectional view shown in Fig. 2, that the shoe has a flat top part, which fits upon the lower edge of the wall or shell of the hoof from its heel portion clear around the front of the shoe, while the lower edge is sharp all around. At the heel the side parts or extremities are bent forward abruptly to form lips, tapering downward to form an edge on a level with the sharp lower edge of the shoe, and thus forming heel calks, their broad upper faces giving support to the bars or braces of the animal's hoof, which are not to be cut away, but preserved to give proper support to the heel of the foot, according to Nature's provision. At the angles of the opposite heel parts are lugs with

MONROE'S IMPROVED HORSESHOE.

threaded screws, whose ends may be forced against the inner sides of the outer walls of the hoof to prevent or cure contraction of the hoof. The shoe is attached to the hoof by screws passed diagonally outward and upward into the wall or shell of the hoof, as shown in Fig. 2, from which it will be seen that the shoe can be readily put on by an amateur after being properly fit ted by an expert, it being the intention to make the shoe of cast malleable iron or cast steel, and fitit to the foot when cold, the shoes to be cast from patterns in graduated \qquad m impressions taken from horse's feet that ar ormal condition. This shoe is designed to readily clear itself of mud and snow, etc., and to give an excellent foothold to the horse on either pavements, soil, or turf.
This invention has been patented by Mr. Edwin A. Monroe, of No. 370 Broadway, Saratoga Springs, N. Y.

IMPROVED CHURN.

The churn herewith illustrated is the invention of Mr. C. A. Madsen, of Gunnison, Utah. The screw is ormed of sheet metal or other suitable material, and is provided with blades, as clearly shown. Both the screw and hollow shaft to which it is attached are secured to a disk. Between the screw and disk is a chamber having outlets between the blades, and in the hollow shaft are openings. thus forming communication between the shaft and chamber. From the center of the under surface of the disk projects a pivot having a bearing in the bottom of the churn. The shaft is rotated by suitable means. To retard the rotation of the cream, there are two vertical ribs extending from the bottom of the churn, about two thirds way of the side. When the dasher is so turned as to propel the cream upward, a partial vacuum is formed under the blades

MADSEN'S IMPROVED CHURN

in the chamber, into which air is drawn through the haft. This air mingles with the cream, and in its upward passage assists in agitating the cream, thereby hastening the separation of the butter. In actual practice, this churn has been found to produce a great saving both in time and labor.

A Great Steel Forging.
The steel forging for the fighting tower of the Italian armorclad Lepanto is 10 feet in outside diameter, 7 feet 11 inches inside diameter, $121 / 2$ inches thick, and 4 feet 9 inches high, and is intended to protect the captain of the ship in battle.
The weight of this huge block of steel is 30 tons, and the rough ingot from which it was forged was 65 tons. the rough ingot from which it was forged was 65 tons.
It was produced by the firm of Schneider \& Cie., of

NEW ELECTRIC ORGAN MOVEMENT.

The introduction of the pneumatic movement for organs was one of the great steps in the development of this instrument. By it the strain of directly opening the pipe valves was removed from the fingers of the performer, and a light acting manual, as easily played upon as a piano keyboard, was placed at his command pon as a piano another improvement that is as distinct a ste we show
 vance as the one just mentioned. By it electricity is called into play, and the pneumatic movement is controlled by the electric current.
In Fig. 1 a section of the mechanism is shown. The details of the pneumatic movement will be at once recognized by those familiar with it. It is controlled by the electric attachment, that
elevation of the draw stop mechanism are given, by which arrangement this difficulty is avoided com pletely. Referring to the section, two magnets, BB, wound in the same way are shown arranged horizontally, and supplied with a horizontal cylindrical armature, which is permanently magnetized. It is attracted to one or the other of the magnets, according to the one the current is caused to pass through. Air pressure from the organ bellows comes through the passage, G When the armature, A, is attracted toward the left, as a current passes through the left hand magnet, this air pressure raises the bellows and opens the stop. As the bellows rises, the spring, F, breaks contact with the piece, D. This cuts off the left hand magnet from the line, but the polarization or magnetization of the armature causes it to retain its place. Hence the bellows stays open. But in rising by means of the spring, \mathbf{E}, and another contact piece corresponding to it, it throws the right hand magnet into its own circuit. Then, when another pulse of electricity is sent by the opposite movement of the stop handle, it passes through

WACKER'S IMPROVEMENTS IN ELECTRIC ORGANS AS APPLIED IN THE CATHEDRAL, GARDEN CITY.

Le Creusot, France. The ingot was worked to a dia-|forms the subject of this article. Within a wind chest meter of about $61 / 2$ feet, then bored, and then worked by forging on a mandrel to the dimensions given above. It is the first fighting tower that has eyer been made in one single pigce.

CURIOUS ACCRETION OF EMERY WHEEL DUST. The particles of material removed from solid bodies by the abrasive action of dry emery wheels are always more or less heated. Dust from metals is often fused, and sometimes dissipated altogether. Fused globules of metal are frequently found in emery wheel dust, but the stalagmitic formation consisting of particles welded together, as shown in our engraving, is not common.
These curious growths are formed almost hourly by a wheel 14 inches in diameter, revolving at the rate of 900 revolutions per minute, employed in shaping some of the steel parts of a sewing machine. The position of the stalagmite relative to the work and the wheel is a hollow cored electro-magnet, indicated by \mathbf{B}, mounted in a vertical position. A it The armatur and core are made of soft iron. The armature fits loosely in a cylindrical chamber directly below the magnet. Its top and bottom are covered with disks of leather.
Below the armature a nozzle communicates with the open air. Thus, when the armature rises, the open:ag in the magnet core is closed. When it falls, it closes the opening of the nozzle, C. The wind chest is in constant communication with the organ bellows, so that the air within it is maintained at a pressure above that of the atmosphere. Within it is a bellows that is held open normally by a spring. It will be seen that when the armature has fallen the bellows is filled with air from the wind chest. The pressure is carried down through the hollow core and space surrounding the armature and through the passage, W. The bellows, under the

curious stalagmitic formation of emery wheel dust. circumstances, remains distended and closes the valve, K, and keeps the valve, L, open. This leaves the outer bellows free to remain open or shut. The tracker attached to the arm at M, acted on by the pipe valve, pulls it shut, and no air is admitted to the pipe,
When it is desired to sound the pipe a current of electricity is passed through the wire. This draws up the armature, and closes the opening in the magnetic core, and at the same time opens the nozzle, C. The bellows in the wind chest, having its interior put in communication with the outer air, at once closes under the effect of the air pressure within the box. This opens the valve, K, and closes the valve, L, so that the outer bellows is forced open by the pressure from the wind chest. The tracker is caused thereby to open the pipe valve, and the pipe begins to speak. In Figs. 2, 3, and 4 different modifications of the magnets and armatures are shown.
All this is done so quik that a sensitive pipe can be made to speak six hundred times a minute.

These are the pipe movements, and one such magnet and attachments are supplied for each key in the manual and for each pedal key. hown in Fig. 1. Under the microscope the particle do not appear to have been entirely fused, but only sufficiently softened to cause them to stick together.
The mass of the aggregation is quite solid and strong. Except in color, it more nearly resembles a spire of coral than anything else.

For the draw stops a somewhat different apparatus is provided.
It is clear that what has been described would answer for them, but with the attendant disadvantage that electricity would have to be supplied as long as the stop was kept open. In Figs. 6 and 7 a section and
the other magnet, and draws the armature to the right. The bellows under the influence of the spring shown in Fig. 7 collapses, closes the draw stop, and at the same time cuts off the current of electricity. A separate wire is provided for each magnet going from the draw stop handle, but a single return wire acts for both. The horizontal position of the magnets in conjunction with the polarized armature are the distinguishing features of this mechanism. The bellows acts by a tracker directly on the stop valve.
One of these movements is supplied for each stop, and thus the whole range is controlled by electricity. Very little current is required, as the draw stops are worked by a current of a second's duration. The manual consumes but little.
To give some idea of the connection between manual and sound board, the section shown in Fig. 5 has been given. To the right is a key in its normal position. When depressed by the finger, it makes an electrical connection between the oscillating piece, A , and the contact piece, B. All the magnets connect at one ter minal with a single wire, running from them to the contact piece, B, and including in its course the bat-

STALAGMITIC ACCRETION OF EMERY WHEEL DUST
tery. Each of the other terminals of the magnets has its own wire which runs to the manual, each wire being connected by the binding screw and spring, C, to its own key. Hence, when a key is depressed it actuates the magnet connected with it, and makes the corre sponding pipe give its note. On the left of the draw-
ing will be recognized in section the electric valve movement just described. A variation is here introduced by placing the outer bellows below, instead of above, the supporting board. The cable containing the individual wires, insulated from each other, is shown between the keyboard and movement, while above the movement is shown the soundboard, a pipe valve, and a row of pipes.
This arrangement leaves the manual perfectly free from strain. The keys, by being weighted, or by the use of springs, are made to work as easily or stiffly as desired.
What this invention effects is to render possible the playing of any number of organs from the one manual and by one organist, whatever be the distance of the soundboards from the performer. It is the invention of Mr. George Wacker, of 168th Street and Franklin Avenue, New York city, an organ builder of long experience, and, as this invention shows, a competent electrician. The complications and difficulties that beset the simple organ movement have to be al lowed for, and here the skill of the organ builder is necessary. An electrician would not be able to cope with these difficulties any more than a mere organist could solve the electrical problems. A combination of the two was required in the solu tion of the problem.
The Stewart Memorial Cathedral, in Gar den City, on Long Island, furnishes a good illustration of the practical application of this invention to the second largest organ in the world. There an organ with two hun dred and forty keys in the manual, thirty pedal keys, one hundred and fifteen stops and seven thousand pipes, is provided with this instrument. A sectional view of the cathedral accompanies this article
The organ is divided into five parts. The main or gan is in the chancel, immediately back of the manual. In the crypt under the front entrance is what is known as the "chapel organ." High up in the tower are the " tower" and "solo" organs, the latter unprovided as yet with its pipes. Then over the stone ceiling, between it and the roof beams, is the "echo organ." The bellows for the chancel organ are driven by a steam engine under it. A second engine and bellows supply the other four divisions. A small magneto-electric machine, run by a sewing machine belt, generates the electric current. At will the organist plays on one or the other of these organs, producing the most beautiful distance and echo effects.
In the processional hymn with which the service commences, the system is brought into play most effectvely. The choir forms in the chapel, and is accompanied by the chapel organ. As they come up into the body of the church, the tower organ is brought into action. Then, as they approach or reach the chancel, the current being shifted from the tower, the chancel organ may take up the strain.
Each of the different divisions has its own manual for the convenience of the tuner. When the chapel organ is played from the chancel manual, the keys of its independent keyboard, the church's length from the organist, move up and down as the notes are sounded, producing a most peculiar effect, as if some invisible performer were seated in front of it, and moving the keys.
In the entire organ there are about four hundred of these magnets. Having no springs and no adjustments, when once in place, they are set forever. The great wind valves, sometimes of fourteen inches area, open and close with absolute certainty. The most beautiful effects of this great organ are due to and depend upon electricity, and it never yet has failed
As an illustration of the size and range of the organ, it is of interest to note the largest and smallest pipes. The largest is 19 in . by 23 in . in area and 32 ft . long, giving $161 / 2$ vibrations per second (sub-contra C or C_{2}); the smallest, rather less than half an inch long, gives 16,896 per second, corresponding to the upper $\mathrm{C}\left(\mathrm{C}^{7}\right)$ a range of ten octaves, and practically covering the musical capacity of the huteq ear, though Preyer has claimed that from 16 to $41,0,0$ vibrations per second, or an octave and a fraction higher, can be heard by some ears.

Tetanus Treated by Rest.

Dr. De Renzi states, in the Rivista Clinica, that by treating patients with traumatic tetanus by means of perfect rest, he has been able to restore four out of five to health ; whereas, when treated in other ways, these patients usually die in two or three days. He places the case in a special room, where absolute silence reigns. Even in the passages leading to it and in the neighboring wards care is taken to lay down carpets, so that no sound shall penetrate the tetanus ward. The door of the latter is of course well oiled, so as to open and shut noiselessly, and the patient's ears are stuffed with cotton wool, he himself being strictly en joined not to make the slightest noise. He must, of
course, be fed. This has generally been considered imcourse, be fed. This has generally been considered im-
possible, the teeth being clinched and the spasmodic contraction being increased by attempts to masticate.

The obstacle may, however, be easily overcome by parting the jaws and introducing liquid food through curved sound ; swallowing is accomplished withou has been tried with success by several Italian prac titioners-Drs. Pisani, Maragliano, Ria, etc. The only titioners-Drs. Pisani, Maragliano, Ria, etc. The only
disadvantage is that the affection is sometimes prolonged for two months. It seems to increase in duration as it diminishes in force.

IMPROVED PIPE WRENCH.

This wrench is strong, durable, and very simple in construction, and not liable to get out of order. It is preferably made of cast steel, the serrated block being made of the best tool steel. For its gripping power it does not rely upon the spring, which is applied to hold the block in place when working the wrench in an inverted or overhead position. The gripping power is obtained by placing the serrated block eccentrically in elation to the hook-shaped jaw. To operate the wrench the block is simply closed on the pipe, and to remove it the handle is pushed backward, when the peculiar curve in the jaw will allow the wrench to easily leave the pipe. When using an adjustable wrench, fitting

the fatrin pipe wrench.
which they are to be used. For the use of jewelers and opticians, the fine emery is poured into water containing gum, and the coarser particles allowed to settle the fine, impalpable dust remaining suspended in the liquid is then collected and used in polishing fine lenses spectacles, and similar articles. The largest amount of emery is used by the manufacturers of plate glass, though great quantities come upon the market prepared in a great many different shapes to suit specia purposes. One of the largest of these industries is the manufacture of emery wheels; these are prepared by mixing the powder with glue or cement, and subjecting the paste to great pressure. Mixed with paper pulp and rolled into sheets, it is sold in the form of patent razor strops and knife sharpeners. Spread out on paper and cloth, it forms an excellent substitute for sand paper. Recently it has been discovered that crystallized corundum, when ground, forms a better abrading material than emery, owing to the fact that it breaks into sharp edged fragments, while emery has rather a rounded form. This discovery was followed by the discovery of large deposits of corundum and ennery in Massachusetts, North Carolina, and Georgia. All of hese localities are being actively worked, and large quantities of American material are being put on the market.
In the near future it is probable that corundum will assume a far more prominent place among the useful minerals as the source of the metal aluminum. The cheap production of this metal has long been the object of experiment to metallurgists ; and corundum, furnishing the purest source from which it can be obtained, will probably be
pipes of various sizes, the pipe is liable to be crushed; but with a wrench such as this, three-fourths of the cir cumference of the pipe is covered, and that danger is obviated. It is claimed that the several sizes of this wrench can be furnished for the sam
Further particulars regarding this wrench, which has been patented, can be obtained from Mr. T. O. M. Davis, of Winifrede, W. Va.

Corundum and Its Uses.

Corundum in its pure state is composed of the oxide of aluminum, having the formula $\mathrm{Al}_{2} \mathrm{O}_{3}, i$. e., it contains two atoms of oxygen in each molecule. It is an exceedingly tough, compact mineral, occurring in a great variety of colors-blue, red, yellow, to nearly white. The pure crystals are translucent, and used as gems. It is one of the hardest known minerals, being placed in the scale of hardness next to the diamond. This quality is the source of its greatest value in the arts. The species is divided into three varieties-sap phire, corunduim, and emery.
Sapphire includes the purer kinds of fine colors, transparent or translucent. These stones are used as gems, and are known by names indicating their color. The following well known jewels are forms of this mineral: Ruby, sapphire, oriental emerald, oriental topaz, and oriental amethyst. These gems are found chiefly in the beds of rivers in Ceylon, though some rubies are brought from Syria. The value of these stones was well known to the ancients, who used them under various names now obsolete. The stone called sapphire by Pliny is now known to lapidarists as lapis lazuli.
The oriental emerald is perhaps the rarest gem known. A few specimens have been found among the gold sands of the Missouri Rivernear Benton. But few of these jewels are in existence, and these are in the great collections of Europe.
Corundum generally means the dull, untransparent occurrences of the mineral. They vary in color-blue, gray, or brown-but are never clearor capable of being cut; it usually occurs in large, rough crystals, or in massive cleavages.
Emery is granular corundum. It is black or grayish black in color, and mixed with grains of magnetite. Emery has very much the appearance of fine-grained iron ore, and for a long time was considered to be such The texture is variable, some specimens being composed of almost impal pable grains, while others are made up of large, rough fragments of crystals.
Until recently the only source of emery was the far East, the island of Naxos, in the Grecian Archipelago, containing the chief mines. The emery was shipped from the port of Snyyrna, and was known to commerce as Smyrna emery. Between the years 1835 and 1846 the entire business was in the hands of an English capitalist, who had onopoly obtained from the Greek Govern ment. In 1847 Dr. J. Lawrence Smith, an eminent Ameri-
can scientist employed by the Turkish Government to explore the dominion for valuable mineral deposits, dis covered two large deposits of emery, one at Smyrna and the other on the site of ancient Ephesus in Asia Minor. These deposits have since then been worked by companies paying a royalty to Turkey.
Emery and corundum are chiefly used in the arts as abrading and polishing materials. The mineral is ground, and separated by passing through sieves into classes of various dimensions, which are then further prepared in different ways adapted to the purposes for
the most valuable ore. Even at present a good deposit of corundum is as valuable a "find" as one could desire to have on his property, there being a steady and regular demand for it. Corundum is generally found associated with crystalline rocks, such as granular limestone, gneiss, granite, or slate. The emery of Asia Minor is associated with granular limestone. The characteristic by which it is most readily distinguished by the prospector is its extreme hardness. A fragment of corundum will scratch any of the constituents of the rocks in which it is found.-The Milling World.

To the inqu Why does a horse shy 9 the Kationgl Live stock Journut replies: Because he sees something
which he does not understand, and is filled with greater or less degree of fear, something as the boy feels. when he shies at the burying ground, and goes around to keep clear of it. It may be some new or un usual object that the horse sees, or it may be an imper fect view of it. Even a familiar object, if it comes to view suddenly and unexpectedly, will cause a horse to shy or jump, just as an unexpected object or sound causes a nervous person to start. When a person is so startled, how much would it improve the matter to be scolded at or given a cut with a whip? Just as much as the same treatment would in the case of the horse. Harsh ness only aggravates the matter.
The more the horse is scolded and whipped, the more nervous he gets; and every time he passes the place where the fright and whipping occurred, he will recollect the unpleasant affair, and he will begin to prick up his ears and fidget, ready for another jump. Give him the lines, and he will go by in a hurry. The proper way is never to strike or scold a horse that is startled or frightened. Speak to him coolly, calmly, and kindI ; give him time to see and collect his scattered senses, and make him feel that you are his friend and protector. When be sees that all is right, there is an end to all further trouble. We have seen a horse refuse to cross an unsafe-looking bridge; but when the driver took him by the bits and walked ahead, the horse cau tiously followed. Next time he required no coaxing or urging to cross the bridge. He might have been whipped into it at first, but was not the milder course although a little trouble, the better one? The horse showed his confidence in the driver ever afterward.

Photometry.

A neat method of indicating the precise rate of conumption of candles, used in photometrical work, has been carried out in Germany. The candle holder is hung in an unequal arm balance, the beam of which has a long pointer hanging down from the fulcrum, for marking the position of the balance on a vernier scale. At the two opposite ends of the scale there are two me tallic pins, while a movable pin, in electrical connec tion with a battery and a bell, is arranged in the mid dle of the scale. The candles are lighted and weighed until the pointer just swings clear of one stud of the vernier, when a certain weight is placed in a pan provided for the purpose underneath the candles, a clock being started at the same moment. When, owing to he consumption of the candles, the weight placed in the pan is lifted by the weight in the opposite pan, the pointerswings back and touches the pin, which completes the circuit and so rings the bell. By noting the time the candles were burning, the precise rate of con sumption of the candles can be easily determined.

MORNINGSIDE PARE, NEW YORR CITY.

Naturally, one of the most picturesque and attractive portions of New York city is that bordering the Hudson River for a considerable distance south of the Harlem. Along the water front at Riverside Park-made famous as the final resting place of Grant-is a high bluff, beyond and to the east of which is a rolling, elevated country, plentifully covered with large trees. The high land abruptly terminates at Morningside Avenue, where a comparatively low and flat section commences. This level portion has been selected by the city to form Morningside Park, which will be, when the present plans of the Park Department shall have been fully carried out, a most pleasing pleasure ground.
The park is bounded by 123 d Street on the north, by New and Ninth Avenues on the east, on the south is 110th Street, and on the west Morningside Avenue. Separating the park from the more elevated country is the wall that forms the subject of our frontispiece. Otr artist, while faithfully depicting the general characteristics of the wall itself, has availed himself of that license for which artists, as well as poets, are cheerfally forgiven, and has slightly drawn upon his imagination for the pleasing features seen in the adjoining landscape.
The massive retaining wall was built by the Department of Public Works. Beginning at 110th Street, the wall is straight to a point near the northern extremity, where it curves, as shown in the center view, closely following the contour of the land to 123d Street. The wall is built of gneiss rock, obtained from the excavations. It has a batter of 1 in 12 , and the face is broken ashlar. In some places it is over 20 feet thick at the bottom, and at the highest point, at 116th Street, it is 40 feet from the surface of the ground to the top, the foundation extending some distance below. The entire face of this wall will ultimately be covered with clinging plants.
Four bays and two entrances, which may be said to comprise the strictly ornamental branch of the work, combined, of course, with the useful, have been erected by the Department of Public Parks, whose jurisdiction may be said to begin at the face of the wall. There are two approaches to the main entrance or steps at 116th Street, shown in the upper view. The stairways measure $24 \frac{1}{2}$ ft. from out to out ; the first platform is 22 ft . long by 7 ft . wide, and the on two are 15 ft . in length. The extreme width of the top, illustrated in in length. The extreme width of the top, illustrated in large semicircular bay. The steps, coping, and caps of the columns are of granite, all the rest of the work being of gneiss. On top of the wall there will be placed stone coluinns and bronze railings.
The steps at 110th Street present similar features, as will be seen from the middle left hand view, and there will be like ones at 123d Street.
Located at 111th, 113th, 115th, and 117th Streets are four bays, semi-octagonal in form, and built in a style in keeping with the entrances. At the intervening streets it is expected to erect additional steps. The bays are designed to serve as outlooks and resting places from which the park may be viewed.
The tops of the bays are formed of iron channel beams resting upon the outer and inner walls, transverse partitions being erected in the larger entrances to support the ends of the beams. Between the beams are thrown brick arches, covered with asphalt. The chambers thus formed are entered through doors in the outer wall, and will be used for keeping tools, etc.
In this entire work no attempt has been made at profuse ornamentation; the whole is quiet, rich, and massive, and will be in harmony with the park upon one side and residences upon the other, and will form an appropriate division mark between the two.
The cost of the walls of the bays and entrances was $\$ 53,500$; the steps, platforms, balustrades, and coping of the bays and entrances cost $\$ 75,000$, making the total cost of the improvement as far as carried out -

Improved Fire Extinguishing Apparatus.

A novel system of fire extinguishing has just been introduced in London by Mr. William Glenister, chief of the Volunteer Fire Brigade, Hastings, and Mr. J. C. Merryweather, of London. The apparatus forms the subject of a patent. The new fire and life saving machine consists of a tricycle with which are embodied the following: 1. A hose reel carrying a large quantity of specially constructed hose for winding in a small compass, with all the attachments for working on to a fire from the street hydrants. 2. A light double-pump fire engine in collapsible cistern, capable of throwing 25 gallons per minute, to be worked by two pumpers. 3. A simple fire escape, with descending ropes and bag. 4. Jumping seats formed from the riders' seats. The machine is run at full bicycle speed by two men, and if desired the treadles can be so disposed as to work the fire pump, but for this a special gearing is required. For country districts and suburban towns, this im proved machine will doubtless be appreciated.

Oarrespondence.

The Island of Malta.

To the Editor of the Scientific American:
In the May number of your Export Edition is a short article, in which it is stated that the island of Barbados, with an area of 166 square miles, contains a population of over 175,000 souls, that is to say, an average of 1,054 people to the square mile, and that therefore the Barbados is the most densely populated part of the earth.
Permit me to present the claims of this historic island of Malta for the peculiar honor of being even more densely populated than Barbados. The total extent of the land (or, more properly, rock), surface of Malta is about 95 square miles, and the proportion of the population (exclusive of the British war forces and of the visitors or non-residents) is, as near as can be estimated at this date, 1,500 to the square mile.
The city of Valetta contains the greatest: plethora of population -its area being 0.318 of one square mile and its population 24,854 , a proportion of 78,157 persons to the square mile. There is one specially populous quarter of Valetta known as the Manderaggio, whose area is 0.004 of a square mile, or 2.56 acres, wherein dwell 2,544 persons-a proportion of 636,000 souls to the square mile.
Excluding the one-third of the island which is un suitable for cultivation, and the area occupied by buildings, and the population of Malta reaches th biggish number of 2,000 persons per square mile.
The island raises enough to support about onethird of its inhabitants. Nevertheless, the people are contented and fairly prosperous. There are no direct taxes levied of any kind, nor any insurance, for the buildings are absolutely fireproof; there is no fire department to support. The buildings are of the soft Malta stone, and the builder scarcely needs any other tools than a hatchet and a square, for the material is worked almost as easily as cheese. The island has no debt ; per contr a, it has upward of $£ 250,000$ invested in English funds. Honesty and economy distinguish the administration of this model little government. It is a so-called free port, but its custom house receipts are upward of $£ 140,000$ annually, and $£ 50,000$ or $£ 60,000$ of that total is derived from the import duties on wheat, and $£ 40,000$ from the duties on wines and spirits. The laboring clases pay these duties, but they don't seem to know it !

Malta is one of the busiest and most important ports in the Mediterranean, and in one year I have known 6,675 vessels to arrive in the harbor.
The following countries are represented in Malta by Consuls or Consuls-General : United States, Austria, Belgium, Brazil, Denmark, France, Germany, Greece, Italy, Morocco, Netherlands, Persia, Portugal, Roumania, Russia, Spain, Sweden and Norway, Turkey, and Tunis.
The real property of the island is, as near as possi ble, thus owned : One-third by the Church and her priests, one-third by the wealthier inhabitants, and one-third by the British government, the latter succeeding to the property formerly owned by the Knights of Malta.
The franchise has lately been extended, so that now about 10,000 of the inhabitants are privileged to vote for members of council. The franchise is based on a money qualification, not on the intelligence of the voter. For instance, my Maltese cook, who pays not less than $£ 6$ per year for his house, but who cannot read or write, is a voter, whereas my intelligent friend Mr. Giovanni Vella, who is a gentleman and scholar, cannot vote because he lives with his father and pays no rent.
Education is, however, on the increase, for in 1842 there were but 3,833 scholars in the schools, and 12,390 in 1881 . This year the scholars number upward of 15,000 . About $£ 20,000$ is expended annually by the edueational department. In 1881 the percentage on the native population of those able to speak, read, and write their own language was 16.50 , leaving $83 \cdot 50$ illiterate or only able to speak their own tongue.
The Maltese is a most peculiar language. It is of Oriental origin, Arabic in its chief characteristics, but sprinkled all through with Italian incorporations. It
has no grammar. It is phonetic and idiomatic. I will give you a sample. It is from a Maltese love song:

Tridu tafu shbeiba sh taghmel
Min fil ghodu sa fil ghashia,
Taghmel il bokli f' rasa,
U tokghodlok fil gallaria.
The translation of which is:
Would you know what a maiden does
From morning until evening?
And seats herself in the balcony.
John Worthington, U. S. Consul.
U. S. Consulate, Valetta, Malta, July 10, 1886.

There are in Germany 620 paper mills, 437 wood pulp mills, 42 straw pulp mills, and 39 mills making
chemical fiber.

PHOTOGRAPHIC NOTES.

Reducing Over-intense Negatives.-Farmer's wellknown method of using a fresh 5 per cent solution of hyposulphite of soda in which is dissolved a few grains of red prussiate of potash (ferridcyanide of potassium), for reducing intense negatives, needs no further description here, since it is now generally used by both amateur and professional photographers.
Quite recently, Mr. Edward Leaming, a member of the New York Amateur Society, experimented with his process, using a 5 per cent solution of hypo and a 10 per cent solution of ferrideyanide of potassium ; and noticed that while the reduction took place very uniformly, yet, when the operation was finished, a yellow tinge was left on the negative, which in a measure counteracted the effect of the reduction, as it slowed the printing on silvered albumenized paper.
His remedy was to change the color of the negative, which was accomplished by putting it into a saturated solution of common alum. In a short time it was changed from yellow to a bluish color, making it well adapted for quick printing.
The reason of the change is due to the fact that commercial potassium alum contains iron as an impurity, and when it comes in contact with a mixture of a fer rous salt and the ferridcyanide of potassium, a bluish précipitate of ferrous-ferridcyanide results. This pre cipitate is known under the name of Turnbull's blue.
Sulphurous Acid for Developers.-In experimenting with this acid, we have found that the samples to be purchased from leading manufacturing chemists are not as powerful as they should be, and we lately were led to prepare a fresh solution by the simple method described in Supplement, No. 460. We were much surprised to note the better keeping qualities of this freshly prepared solution. The pyro solution in which it was employed retained its full strength and kept perfectly clear, being very nearly colorless. As the sulphurous acid may be very easily and quickly prepared, we believe using it fresh is of much utility in preserving the pyro solution intact.

decisions relating to patents.

U. S. Circuit Court.-Northern Distriet of Illinois. drummond et al. vs. venable et al. plug tobacco.
Blodgett, J.
A claim reading "As a new article" manufacture plug of tobacco one or both faces of which are marked off by indented lines, which serve to secure the wrapper to the filling, and also as guides for cutting up the plug into small pieces of definite size and weight," is void for want of novelty, in view of the fact that it was common prior to the date of the alleged invention to mark cakes, candies, chocolate, etc., with indented lines to indicate measured quanities.
A feature of utility which is merely incidental to the main purpose of the invention is not of itself sumfcient to sustain a claim where it is shown that the main purpose has been accomplished prior to the date of the alleged invention.
Patent No. 200,133, of February 12, 1878, to James Drummond, for an improvement in marking plug to bacco, is void for want of novelty.
U S. Circuit Court.-District of New Hampshire. Colt, J.
This bill in equity is brought for infringement of Letters Patent No. 168,644, granted the complainan for improvement in spindle bolsters. The suit is between citizens of New Hampshire, and the first question to be determined is whether there is a subsisting license between the plaintiff and the defendant corporation covering the patented bolster in controversy. The plaintiff was in the employ of the defendant corpgration as overseer or superintendent from June, 1861, to 1877. During this time he made several improvements in the machinery used in the mills. His patented adjustable rings were put into the mills in 1866 and 1870, and his patented traveler cleaner in 1868 and 1870. The patented bolster, upon which suit is now brought, was put in between 1875 and 1877. The date of the patent is October 11, 1875. The defendants contend that Jencks agreed to give the company the free use of his inventions as an advantage to him in introducing them elsewhere; that he was to make no charge for royalty, and that no royalty was ever paid; that he took the time which belonged to the company to devise and experiment with his improvements, used the tools, workmen, and materials of the company in making the improvements, and tested them in the machinery which was run by the company.
Held, When complainant was an employe of defendant company, and used the time it paid for, and its tools, workmen, and materials in experiment and perfection of the invention, and put it, when completed, in use in defendants' mill, and made no contract as to compensation or royalty, the law will infer a license to the defendant to use the invention in the particular mill without royalty during the term of complainant's patent.

SIL CYLINDER QUADRUPLE EXPANSION ENGINES. We give engravings of a very interesting set of en gines lately constructed by Rankin \& Blackmore, of Greenock, for the steel screw yacht Rionnag-na-Mara, built for Mr. A. G. Pirie, of London, by John Reid \& Co., Port Glasgow. For the illustrations and following particulars we are indebted to Engineering. Her dimensions are 170 ft . long over all, 21 ft . beam, and 13 ft. 6 in. depth (moulded), tonnage (Thames yacht measurement) 311 tons, while the speed specified was $111 / 2$ linots, but on trial 12 knots was easily maintained.
The engines are of the six cylinder "disconnective" quadruple expansion type recently patented by John F. \& Matthew Rankin, of the makers' firm. The three high pressure cylinders are placed tandem fashion over the first and second intermediate and low pressure cylinders; the respective diameters being 7 in ., 7 in ., 7 in., 16 in ., 22 in ., and 34 in ., and the stroke of pistons 24 in. The reason why six cylinders were adopted in this case instead of the four cylinder arrangement which the makers at first proposed to the owner, was that Mr. Pirie particularly desired to have an engine which would run so slowly (say not more than 15 revolutions, as against 30 in his former yacht) that he might be able to fish direct h might be able to fish direct from the vessel, and thus save the trouble of pulling about in a small boat, as is customary. Another motive for distributing the power equally over three cranks was to make as sweet working a job as possible, this be ing a matter of the first importance in a yacht. Again, by admitting in: a yacht. Again, by admitting
steam to the three high pressure cylinders simultaneously, prompt handling is insured and starting valves are dispensed with, as the three cranks are set at angles of 120 deg. apart.

Further, this combination of cylinders enables the so-called "disconnective" arrangement to be applied in a singularly efficient way, as each high pressure cylinder forms a natural starting point for the three principal subdivisions of the engine when working single tandem, for which purpose auxiliary exhaust pipes have been provided. The high pressure cylinders are also utilized for heating up the lower utilized for heating up the lower
cylinders in a very simple manner, by allowing the hot water and steam to drain into them instead of into the bilges as usual. The chief objection to this type of engine, as compared with the ordinary triple expansion working ple expansion working
on three cranks, is the increased friction of the additional cylinders; but there is not so much in this as might be supposed at first, as, owing to the number of stages,
the great advantage of superior economy. This idea
the great advantage of superior economy. This idea
has also been applied to all the other modifications has also been applied to all the other modifications
embodied in Messrs. Rankin's plans, on account of the great security it affords against a complete breakdown or in the event of any part requiring to be overhauled; say, for example, if the white metal often employed for crank pin bushes should give out, it would only be the work of a few minutes to uncouple the connecting rod and set the remaining two-thirds (or one-third if need be) of the engine to work, thus allowing ample time for refilling the bushes at leisure. This might be the means of saving a vessel in the case of a breakdown off a stormy lee shore. It may be of interest to describe in detail the various modes of working as follows: 1. As a Six Cylinder Quadruple Expansion Engine work
ing on Three ing on Three

Cranks. TThe | He | ing |
| :--- | :--- |
| Cran | |

3. As a Four Cylinder Quadruple Expansion work ing on Three Cranks.-This is a still further modification of No. 1 , two of the high pressure cylinders being cut off ; this mode of working might prove useful if he vessel should run short of fuel.
4. As a Four Cylinder Triple Expansion (Non-condensing) working on Two Cranks.-In this case steam is supplied to the two forward high pressure cylinders, which exhaust into the first intermediate cylinder, thence into the second intermediate, which in turn exhausts into the atmosphere.
5. As a Four Cylinder Triple Expansion (Condens ing) working on Two Cranks.-Steam is let into the two after high presssure cylinders, which exhaust into the second intermediate, and thence into the low pressure cylinder and condenser.
6. As a I'hree Cylinde Triple Expansion (Condensing) working on Three Cranks.-In this case the three high pressure cylinders are merely used as guides for the upper por tions of the piston rods, and steam is admitted direct from the boiler through a special valve (suggested by the owner) into the first intermediate cylinder, then into the two succeeding cylinders, thus forming the usual type of triple expansion engines.
7. As a Two Cylinder Tandem (Non-condensing). -In this modification the two after divisions are sup posed to be useless, and the steam is exhausted from the forward high pressure cylinder through the special auxiliary valve and pipe into the cylinder beneath and thence into the atmosphere.
8. As a Two Cylinder Tandem Compound (Noncondensing). -This is practically a repeat of No. 7, with the central high pressure cylinder sending its steam into the second intermediate, which exhausts into the atmosphere.
9. As a T'wo Cylinder Tandem Compound (Con densing).--The after high pressure cylinder works in conjunction with the low pressure cylinder, forming the ordinary single tandem type, so well known in connection with Holt's steamers.

The valve gear is of the ordinary link motion type, with all the working parts made very large and easily adjustable; the

SIX CYLINDER QUADRUPLE EXPANSION STEAM ENGINE.

the high pressure pistons (which with their rods form admirable guides for the larger pistons in a heavy seaway), and, indeed, the others also, can be made so easy a fit that no oil need be used unless just before stopping the engines, as the steam itself will do all the necessary lubrication, and any portion which may escape will be worked up in the next stage.
The idea of the " disconnective" gear (thus named to distingaish it from the patent "disconnecting" engines of the same makers for paddles and twin screws) originated with an arrangement of four cylinder quadruple expansion engines in the attempt to make the two divisions as independent of each other as is the case in the ordinary four cylinder tandem compound engines, such as are used in the White Star and other liners, the result being quite as simple a machine with
steam is admitted to the three high pressure cylin ders through the small pipe shown in the front view on our engraving, and is exhausted through the horizontal curved pipe shown in the back view, this pipe gradually enlarging until it joins the vertical portion leading to the first intermediate cylinder. Thence the steam passes into the second intermediate cylinder by means of the large horizontal pipe shown on the front view, then through an exhaust passage into the low pressure cylinder, which finally exhausts the steam into the condenser.
2. As a Five Cylinder Quadruple Expansion Engine working on Three Cranks.-This is a modification of No. 1, with one of the 'high pressure cylinders shut off (or with just enough steam to lubricate the piston), thus practically taking the place of an expansion valve.
valves themselves being all of the common locomotive description.
The air, circulating, feed, and bilge pumps are worked from the after division of the engine by levers, in accordance with the makers' usual practice with single screw engines
The propeller is of solid cast steel with four blades thrown well aft, and the absence of vibration on trial was very marked, owing to this and the extremely uniorm working of the engines.
Forced draught has been provided for, but merely or occasional use.
Recently the boat was subjected to running progressve trials for the purpose of testing her consumption of coal, and the results were highly satisfactory.
For three hours the consumption was $1,391 \mathrm{lb}$. of coal,
or a mean per hour of $463^{\prime 6} \mathrm{lb}$. The mean revolutions cation in use in this country that it is too completely were $102: 2$, the mean steam pressure 170 lb ., expanding theoretical.
thirteen times, and the mean indicated horse power 412. This gives the extraordinary result of 1.125 lb . consumption per indicated horse power.
No lubricant whatever was used in any of the cylin ders during the whole day's steaming; but notwithstanding this, the engine was run as low as ten revolutions, or a piston speed of 40 ft . per minute. The feed water was kept about 115 deg . at the pump, and the vacuum about 25 in . Respecting the conclusions to be deduced from these results, Messrs. Rankin \& Blackmore write as follows:
'Reasoning from the present types of engines, we think it may be safely said that large engines constructed on the quadruple expansion principle will be got to work at a consumption of 1 lb . per indicated horse power, a figure which has lured on engineers for years, and is now fairly within their grasp. But it may be asked, When is this diminishing consumption to cease? In our opinion, the answer is easily given. In the first place, the saving on 1 lb . of coal per indicated horse power (even allowing two or three per cent could be gained) would be small indeed; and in the second place, the present type of boiler has reached the limit of pressure at from 180 lb to 200 are fing to the to 200 b., owing to the great thickness of plate required. And as no other faney description can approach the present type, which has been evolved through the law of the survival of the fittest we can look for nothing nore in this direction; so that if any further saving is to be effected, recourse must be had to some other agent, if that is possiblewhich is doubtful indeed. From the above facts, it is unnecessary to say that the triple expansion engine must be as rapidly displaced as it itself has displaced the compound engine."

The injurious consequences of this fault appear in several forms. As the country grows industrially, the demand for skilled workmen increases. In the presence of this demand we have, first, the fact that the old and excellent apprentice system has fallen" completely into disuse, and, second, the further fact that the modern trades unions are hostile to apprenticeship in any comprehensive f he counts againt the unions that they stand resolutely in the way of young Americans who wish to acquire knowledge of any craft. As a consequence,
we import from Europe every year

terests of individuals and of the whole community In a republican and industrial country like ours, it ought to be that the most expert handicraftsman is the man most honored. This is not a land for loafers. It is, in an exceptional and unigue sense, the country of workers ; and there can be no duty more truly patriotic than to instill into the minds of American young men that a man who works at a mechanical trade with : strong arm and a hard fist, and works dexterously, should have more respect than a lawyer who can hardly shuffle along in his profession or a doctor who feeds graveyards. That lesson, as our readers well know, has yet to be learned here. The prejudice against the horny-handed toiler exists; but it ought not to exist, and when the schools and colleges do their duty, it will cease to exist.
We would put into every public school a course of mechanical instruction. Both principles and practice should be taught, so that when a boy leaves school he will have his head and his hand already trained for some form of work in the shop or the factory. The colleges might well take up the course of instruction where the humbler schools end it, and push pupils onward to the higher things in the arts. But he is a sanguine man who expects the old collegiate institutions to lessen their affection for dead languages and pure theory. The hope of advanced industrial education, therefore lies in the creation of technical schools, of which ther are now but two or three of high quality in the coun try. There is encouragement in the rapid growth, plainly discernible, of public opinion favoring such schools and such training for the young. This is the greatest manufacturing nation in the world, and as it becomes independent of other countries for its supplies of fabrics, so it should become dependent solely upon its own population for its skilled workers -The Textile Record.

Krakatoa.

Mr. Verbeck, who was deputed br the Dutch Indian Government to report on the origin and character of the volcanic outbreak in the Sunda

SIX CYLINDER QUADRUPLE EXPANSION STEAM ENGINE.

Teaching for Hands as well as for Heads.
During the last thirty days all the colleges, high schools, and other advanced institutions of learning have held their commencements, and thrust their graduates out upon the world. The number of these young persons probably reaches tens of thousands, but of them all, perhaps not two per cent have learned how to do anything. The education has been of the head alone, and not at all of the hand. They have been taught to know a great many things of greater or life less importance, but of the practical work of the world, by means of which men and women earn their bread and butter, they are absolutely ignorant. Much of what the schools impart is certainly useful, and the least important of it may have some value; but it is
fairly a subject of complaint against the system of edu-
thousands of skilled workmen, while our own young people are driven into poorly paid clerkships or persuaded to attempt success in the overcrowded professions. It is extremely discreditable to the practical common sense of the American people that they should permit this state of things so long to continue. It is a reflection upon the good judgment of the nation that it should expend millions every year upon instruction which only half fits the young for the actual duties of life.

Another and very serious consequence of this neglect of mechanical training is that it fosters the impression, already too widely prevalent, that mechanical labor should involve social and other discredit. Not only is this theory undemocratic, and in a political sense dangerous, but it is directly opposed to the best material in-

Straits in August, 1883, has published his report. He calculates that the amount of ejected matter from Krakatoa must have been at least 10 cubic miles. This would be enough to make a respectable range of hills about 1,000 feet higher than the surrounding plain. The velocity of ejection was considerably greater than that of the heaviest rifled ordnance, and the ejected material must have reached a height of 30 miles, or six times the height of the highest mountain in the world. The noise of the explosions was heard over one-fourteenth of the earth's surface, and a great atinospheric wave, starting from Krakatoa as its center, spread itself round the world, describing the whole circumfer ence in some thirty-six hours. The mass of floating pumice found after the outburst on the surface of the sea has been drifting in the direction of America.

A NEW SUBMARINE TORPEDO BOAT.

For some time past Lieutenant Zalinski has been experimenting at Fort Hamilton, in the Narrows, with a novel submarine torpedo boat, the invention of Mr. John P. Holland, of this city. The boat can be sunk to any desired depth below the surface of the water, propelled in any direction, and brought to the surface at any time. The boat has a wooden hull, is cigar shaped, and measures 50 feet in length by 8 feet in diameter at the largest part. The floating surface, under ordinary conditions, is 30 feet long.
All the various operations of the boat are controlled by one man in the turret, which is a small chamber placed about in the center and provided with a domeike cap, in the sides of which are glass bulls eyes, spaced the same distance apart as a man's eyes. Through these glasses obser vations can be made.
The propeller is driven by a petroleum engine. The vertical and horizontal rud ders are operated from the turret. The two horizontal rudders are placed one at each side of the stern, as plainly shown in the large engraving, and are used to raise or depress the stern, as may be required. When the weight of the boat is but little more than that of the water displaced, these rudders can be used to depress the bow and compel the boat to pass below the surface. But the sinking and raising of the vessel is usually accomplished by admitting or forcing out water from certain chambers, compressed air accumulated by a compressor serving to expel the water.
When fitted for actual service, the bow of the vessel will be provided with one of Lieut. Zalinski's compressed air guns for throwing cartridges charged with nitro-glycerine. Just beforefiring the gun, the muzzle will be raised a little above the surface by forcing water out of one of the compartments in the bow, when the vessel will rest at an inclination, as shown in Fig. 2. The recoil will serve to completely submerge the boat. To permit of properly guiding the boat without bringing it above the surface, there will be a tube extending six or eight feet above the top of the turret. The top of the tube will be provided with an inclined mirror, and be bottom will be a camera lucida prism, by m of which the surroundings may be conveniently viewed by the individual in the turret, which may be kept at a safe distance beneath the surface. A cartridge could be thus thrown at a vessel from a distance of one or two miles, while the only indication of the torpedo's presence during its approach would be the small portion of the tube reaching above water.
Another method of attack would be to runbeneath the vessel, detach buoyant cartridges to be exploded byelectricity when the torpedo boat had reached asafe distance. Still another plan would be to fire a steel pointed cartridge into th bottom of a ves sel, and discharge it in the above manner. It is ap nanner. It is ap parent that with perfect subma ine boat, a ves sel could in many ways be destroy ed without expos ing the torpedo to excessive danger. Provision is made for allowing a man in a diving suit to leave the torpedo when the latter s submerged, and there is also means provided for the crew leav ing the lav should it be un able from an cause to rise to the surface. As an additiona safeguard, there are several different methods of accomplishing each of the various operations of the boat, such as raising or sinking, and working the propeller and rudders.
The torpedo now at Fort Hamilton was designed as an experimental boat to test the plans of the in ventor. It has attained a speed of nine miles an hour, and has been successfully sunk to the bottom and raised. It is expected shortly to more thoroughly and severely test the capabilities of the boat by more extened journeys beneath the surface.

Fig. 2.-TORPEDO BOAT IN POSITION FOR FIRING.
defects, and properly laid down and spiked on suff cient cross ties. 74 Ind. 462
If a bridge gives way, it is presumed that the company has been negligent in constructing or locating it. -2 Col. 442.
But if the bridge gives way and the train plunges into the water because of an unusual and extraordinary flood-something. unknown to common experience in that region, and which could not have been reasonably anticipated by skillful engineers-the aecident may be anticipated by skillful engineers-the aecident may be
attributed to "act of God," for which the company is attributed to "act of
not liable.- 53 Texas 46 .
And so if the track is undermined and weakened by sition to notice such an extraordinary condi sion of things, and take precautions. If the water is so high as to afford suspicion that the track or bridge may be out of condition, he must stop and test it, or he will make the company liable for the consequences of an ccident. 76 Mo. 518.
Allusion is made to the acts of a tres passer for which the company is not re sponsible. Thus, if a shot is fired into the ar and you are wounded, the railway is not bound to pay the bill. -27 L. J. 155.
Nor is it liable if an obstruction is sud denly thrown across the track, or a switch maliciously opened, and your train rushes into destruction before the employes have time to right things.-Id.
And if the train is derailed by a tornado
always raise a presumption of negligence, for the acci dent may be imputable to a trespasser, for whose conduct the company is not liable. $-18 \mathrm{~N} . \mathrm{Y} .534$.
Out of regard for the value of human life, and in view of the danger that besets a railway traveler, the law makes it the carrier's duty to convey the passen gers safely, so far as human care, skill, and foresight can do it.-14 How. (U. S.) 468.
As fast as new and improved means and methods are perfected and found practicable and more safe than the old things and old ways, they must be adopted.-64 Pa. St. 225.
It is a first principle that a railway company must employ competent inspectors to make proper examinations of its rolling stock. For instance, it has beon laid down that every test known to science and recognized by experts must be applied to boilers of locomotives to ascertain their condition. But if there are defects which such tests would not bring to light, and which experts could not discover, and by reason of such defects an explosion occurs, the company is not liable.20 Blatch. (M. S.) 338.
The mere fact that an explosion takes place where such tests have not
And likewise, car wheels and other parts of the cars

Fig. 1.-HOLLAND'S NEW SUBMARINE TORPEDO BOAT. an accident caused by "act of God," relieving the company from liability.-3 Neb. 44
It is not always that a company escapes liability for the consequences of an accident caused by a inisplaced switch, though. If not suddenly thrown open by a trespasser, in front of a moving train, the company nust show that by no human skill or foresight could he accident have been averted.-6 Am. \& Eng. Ry Cas. 139.-Myron T. Bly, in Pathfinder Railway Guide.

A New Joint Material.
Portland cement mixed with a solution of calcium chloride rapidly acquires considerable hardness. Set: ting begins in - tree or four minates, and is attended with an elevation of temperature that may attain to 70° C. A slight expansion is also produced in the course of setting. Cement mixed with calcium chlorde softens if it is plunged immediately into water; but after having been air dried for eight or ten days, it may be so immersed without inconvenience or detriment to its cohesion and hardness. Ordinarily damp air has no influence upon the mixture. The fact that, cement mills are repaired with this chloride cement of unforeseen violence, that, too, would be considered according to the Journal du Ceramiste, the runners of mixture is a sufficient indication of the great strength which the com pound is capable of acquiring. The stones are put to work within an hour of repairing and the cement is perfectly resist ant, and wears essthan lead which is common y employed for the same purpose. All joints can be made. with great facility, and ac quire in a short time extreme so idity with thi chloride cement mixture. The slight swelling during setting is ery useful in filling all hollows and making good adhesion. Th cheapness of calcium chloride per mits of the use of the mixture for numerous pur must be frequently inspected. It is no excuse that the poses. When great hardness and quick setting are de cars were bought ready made of a reliable car builder, and that the defect which caused the accident was a defect in manufacture which could not be discovered after the car was completed, provided the defect could have been known during the process of manufacture. -13 N. Y. 9.
When an accident is caused by a broken rail, the company can only relieve itself from responsibility by showing that the rail was sufficient in size, free from
sired, the cement may be gauged pure : but in general an equal mixture of sharp sand or gravel will be found to answer every purpose.

MOST metals and alloys shrink or contract on cool ing. But an alloy which will expand on cooling may be made of lead nine parts, antimony two parts, bis muth one part. This alloy can be advantageously used to fill small holes and defects in iron eastings.

CENTRIFUGAL FORCE.
 . o'Conor sloane, ph.d.

The tendency of modern physicists is to drop the term centrifugal force, that has for so many years done service in the text books. The true force developed by a body moving in a curve is due to tangential velocity, and one of the components of this velocity represents centrifugal force. But the convenience of the expression and the popular acceptance of the term justify its use, and it may be adhered to, as carbonic oxide is called carbonic acid and carbonous oxide is still termed carbonic oxide by the chemist. The inconvenience and confusion caused by changing old terms ften causes the use of such as are incorrect, or rather correct by convention only
If a body is rotated, it tends by virtue of this force to fly away from the center of rotation. Every particle of the body tends to place itself as far as permitted from this point. By the use of fluids, granular solids, and bodies of different shapes very characteristic effects can be produced. The phenomena produced can all be accounted for by known laws, and exactly what will take place under any given conditions can be foretold. The variety of the experiments and the familiar objects that can be used in them make them most interesting. If proper apparatus is obtainable for rotating different articles, the number of variations that can be produced is endless.
The usual machines for inducing rapid rotation, such as the twirling table, are quite expensive. By utilizing a twisted cord as motor in the way to be here described, the experiments can be executed perfectly well at home with the most primitive appliances.
A piece of strong cord, about two yards long, is doubled and its ends are tied together, and the object to be rotated is tied to it.
One hand is passed through the doubled string, allowing the object to hang down, and the string is twisted a number of times. Then, by drawing a pencil or other smooth rounded body down against the twisted portion, an exceedingly rapid rotation can be started. The rotation lasts in one direction until the cord is unwound and rewound, the body comes for an instant to rest, to resume its rotation, but in the opposite direction. The pencil is again to be inserted to accelerate the speed, and the process may be kept up indefinitely. Smooth, round, and hard cord should be employed, and the part of the pencil coming against the cord may with advantage be lubricated with a litte soap.
As an object to begin with, a glass containing a little water, suspended as shown, may be used. As it gains speed, the water, under the effect of centrifugal force, forms a cup, sinking in the middle and rising around the walls of the glass. The outline of this cup is a parabola. The appearance of the water just as the

HOOP AND DISK EXPERIMENT.
rotation is changing its direction is interesting, while the perfect glassy oup formed by the fluid in rapid motion is not less so. Great care must be taken that the glass revolves steadily and not too fast, or it will tip on one side and throw water in all directions. A goldflsh globe, about four inches in diameter, is better, as it does not tend to shower its contents about to the same extent. In the drawing such a globe is shown rotating, and containing either sand and water or shot and water. All alike are forced outward against its walls, but the heavier substance goes to the greatest
distance and forms a central zone, with similar areas of water above and below, while if a proper quantity of water is used, the bottom of the globe will be entirely exposed and free from water.
A lot of keys, the contents of a paper of tacks, or a watch chain, may be placed in the globe, and the water may be colored with a little ink. Taking into account

SPOOL AND FLASK EXPERIMENTS.
the probability of some water being thrown out, it is perhaps as well not to color it.
A solid symmetrical body may be rotated in the same way, but it is better to secure some more steady arrangement. This can be done by employing a disk of wood, about six or eight inches in diameter, and an inch thick. It is suspended from three points near its periphery, staples being used to fasten the string to. In its center a hole is bored, and a cork is supplied fitting this aperture. By suspending it by the rotating cord from some fixed point, so as to leave both hands free, a very high velocity can be given to it. As, moreover, it is often undesirable to have the direction of rotation change so frequently, a well oiled swivel may be placed above the twisted string immediately under the general point of suspension. When once started under these conditions the disk will rotate for some time in the same di rection, and come gradually to rest. Otherwise it will wind the cord up very tightly, rising most cu riously as the twist tightens, with attendant danger of breaking the cord. The disk, in virtue of the tendency of rotating bodies to remain in their plane of rotation, gives a steady basis for the attachment of different objects. Before fastening anything to it, it may be set into strong motion, and moving like a pendulum, when, under the effects of gyroscopic forces, it will describe the most curious curves.
A cover of a tin box has a hole punched through it near its edge, and is suspended thereby to the cork a pin bent at the headed end acting as a hook to which to fasten the suspending cord. On rotating it, the cover rises up into a horizontal position, and appears almost as if it were motionless. A coin may be thrown into it, and will lie quietly there as long as rapid rotation continues. This horizontal position is taken because in it the particles of the box assume the greatest average distance within the limits of the figure from the center of rotation. Above the disk a flexible hoop of thin India rubber tubing, or of writing paper, may be fastened, its upper perimeter being free to rise or fall. On rotation, this will flatten into an ellipse, illustrating the cause of the ellipsoidal shape of the earth. As shown in the other cut, a spoo may be suspended and rotated, a stick or piece of pen cil being forced into its central aperture and the sus pending string being fastened to that. Obeying the same principle, this will approximate to a horizonta! pous in supia mation and will present a most cu rious appearance, that of a central globe surrou by hazily outlined figures of two crossing spools
The object of the cork as a point of attachment is
clear. It will be found a great clear. It will be found a great convenience as adapted to so many objects. A bunch of keys, a loop of heavy cord, of chain, or a skein of silk, may be attached to it, and the effect observed. If properly managed, they will open into ellipses. A turnip, hung by the extremity of one of its long diameters, will be thrown up into the horizontal position, as was the box cover. A moistened sponge or piece of blotting paper will shower water in all directions if pinned to the cork and rotated, even when comparatively dry. This is a good illustration of the methods used in large laundries for drying clothes, and in sugar houses for separating sugar from the sirup from which it has been crystallized.
A small flask nearly filled with water is corked and inverted in the hole in the disk, and secured by tying or otherwise. On rotation the water is driven outward, and the air draws down into a cylindrical shape. If very little air is contained, and the rotation is extremely rapid, it will descend and form a spherical bubble in
the center of the flask. It is well-nigh impossible to obtain sufficient velocity for this last.
Enough has been shown to illustrate the fact that this very simple apparatus will perform nearly all the ordinary experiments in centrifugal force. A light weight may be made to lift a heavy one; a model of the steam governor may be mounted on it, and numberless experiments tried. It is really a substitute for a piece of apparatus that costs as many dollars as this costs cents.
Departing from the line of centrifugal force, it is adapted for another class of experiments-those in which rotation alone is in question. Thus, all color disk comparisons, such as described in Prof. Rood's article in this journal (vol. liv., No. 23), may be executed with it. Wires bent into various shapes may be rotated with excellent effect, producing images of vases and the like.

Foundations.

The modern architect has at his command means and appliances of the greatest utility, which were unknown to men in former times. Steain can be brought to aid in driving timber piles, and simple applications of water or air will sink hollow iron piles with comparative ease. The old Eastern plan of forming deep wells and then filling them up with forming deep wells and then filling them up with
concrete has been too much neglected. Modern well concrete has been too much neglected. Modern well
sinkers will go down in any strata almost to any depth-certainly to any depth required in practice and a secure foundation may thus be made for the loftiest structure in the most difincult ground. Masses of concrete or of brick or stonework placed on a compressible substratum, however cramped and bound, nay prove unsafe. Solidity from a considerable depth can alone be relied on. Enlarging the area of a base or foundation by footings can be resorted to: but mere enlargement of area may not in itself be sufficient. A lofty structure which is to stand secure must have solidity sufficient to maintain each part in the position in which it is first placed. Foundations are too frequently slighted, or labor and material are wrongly applied. The compressibility of oolitic and tertiary clays can only be overcome by piling; deep sinking, heavy ramming, or heavy weighting. The point of bearing must be carried below any possibility of upward reaction. A heavy embank ent or heavy pile of building frequently disturbs the surface ground at a distance of many yards, the subsidence causing corresponding rise around or on either side, as the

EXPERIMENT WITH FLOIDS.
case may be. A tall chimney or tower of like proportions, built on such a foundation, if not made safe to a sufficient depth, would most likely become a "leanng tower," if not actually a falling tower. Probably the depth of a foundation in compressible ground ought not to be less than one-fourth the intended height above ground ; that is, for a shaft of 200 feet the foundation should be made secure to a depth of 50 feet. This could easily be done by piling, or by well sinking and concrete.-Sir R. Rawlinson in the Architect.

chaineering inventions.

A signal has been patented by Mr. Jacob F. Riethmayer, of Lansidale, Pa. It is made with h bar
carrying a flag or light and normally held within a cascarrying a flag or light and normally held within a cas-
ing by a spring catch, but soarranged as to be moved ing by a spring catch, but soarranged as to be moved
forward by the action of a weight when the catch is forward by the action of a weight when the catch is
withdrawn by a tripping mechanism actuated by the withad
train.
A railroad ditching machine has been patented by Mr. Alonzo H. McGrew, of Hurley, Dakota Ter. This invention covers a in improvement oo a a
former patented invention of the esmme inventor, the object being to facilitate and make more easy and certain possible with the prior construction.
A railroad gate has been patented by Mr. Nathan Harris, of Wabash, Ind. It is. pivotally
supported to form a barrier across the track, and has a supported to form a barrier across the track, and has a
crank arm connected to a cylinder by a flexible pipe, crank arm connected to a cylinder by a fiexible pipe,
piston fitting the cylinder to compress air therein, and
and piston ance being antomaticallly operated by a passing
the device open
train to open the gate and adjust it to a normal raised train to open the gate and adjust it to a nor
or closed position after the train has passed.

AGRICULTURAL INVENTIONS.

A potato digger has been patented by Mr. James Van Siclen, of Jamaica, N. Y. It has a plow plate set at such inclination as to pass between the po-
tatoes, and raise them with the soil to the surface of the ground, when a separator with flngers operates to clear
the potatoes from the soil and vines and leave them ready to be gathered.
A plow has been patented by Mr. Artemus Rolow, of Cherokee, Iowa. The invention is an
improvement for plows with hinged mouldboards to spread or narrow the plow, where a lever and rack are omployed, whereny the rack is arranged at a suitable
height and relation to the mouldboard, and is at the height and relation to the mouldooard, an
same time braced frmly from the handles.
A field weeder has been patented by elevated cylinder carrying teethorcombs, in connection with spring.retracted strips arranged tomove in contact
with the teeth and acted upon by cam, the machine with the teeth and acted upon by a cam, the machine
being so constructed as to pull or comb out wild mus. being so constructed as to pull or comb out wild mus.
tard without injury to wheat or other grain in which it may be growing.

miscellaneous inventions.

A gutter for buildings has been patent ed by Mr. Joseph Gray, of Amelia, o. It is a metal gutcap which overlaps tha dedeas of the gutter, the construc-
tion teing such as to
to tion being such as to dow any amount of expansion or or
contraction, to prevent breaking of joints and leakage
A sash cord fastener has been patented by Mr. Edward T. Bradbury, of Mahanoy City, Pa. This
invention consists of an attachment to receive the end invention consists of an attachment to receive the end
of the cord and wedge itself fast upon i , and also adapted to engage with or embed itself in \mathfrak{a} shoulder formed in the sash, whereby the sash cord can be easily detached from or reattached to the sash.
A heating apparatus has been patented by. Mr. Henry C. Berry, of Wauseon, O. This invention covers a pecuiar construction and arrangement of the
Arepot in connection with the casing of a stove, whereby the ashes and other accumulations are easily removed, and clinkers can be easily taken out, the parts be rig made of cast iron or other suitable material.
A naphthol black color compound has been patented by Mesers. Meinhard Hoffmann and Ar-
thar Weinberg. of Mainkur, near Frankfort-on-theMain, Germany. This invention relates to a new method
of manufacturing blue to violet coloring matters be. of manufacturing blue to violet coloring matters be-
longing to the azo group, the product being delivered longing: to the azo group, the product being d
tothe trade as a black paste or in solid form.
A channeling machine has been patent-
ef by Mr. Charles S. Ames, of Bishop, Ill. It consists ed by Mr. Charles S. Ames, of Bishop, IIl. It consists of a pair of adjustably monnted channeling blades so
arranged that they may be mounted in front of the torrers of a leather rolling machine, or with rollers
which bite upon a strap and carry it forward, or so the trtrap might be pulled through by hand.
A letter file has been patented by Mr Lloyd Nottingham, of Norfolk, Va. This invention re-
lates tothat form of letter flle in which an adjustable wite loop is connected to a base plate, the file being one Which can be adjusted to stand upon a desk or orung Ggainst a wall, the invention providing a more
attachment and a a rreater variety of adjustments.
A suspender or other buckle has been patented by Mr. Charles R. Harris, of Jersey Shore, Pa. It has a hook withina a hook, a tubular hinged construc-
tion of the opening and closing portion of the buckle sdapted to receive the ends of the wires of which the
two main portions of the buckle are composed, with two main portions of
other novel features:
A gig saddle has been patented by Mr. ocodrey R. Lips, of Louisville, Ky. The saddle tree formed with a plate to support the jockevev and give it a curved finish, giving a full and rounded support and preventing it from sagging, with other novel featurea
making a saddle which is light, cheap, and durable.
A cane stool has been patented by Mr. Eric O. Leermo, of Gold Hill, Nev. It consists of a
casting forming the body of the stool, with legs and arms jointed to the body, with arms connectea to a to form a staff or cane, or unfolded to roandy rolded to form a staff or cane, or unfolded to form a conveni-
leant seat.
An animal poke has been patented by Mr. Timothy. D. Reaves, of Farmington, Ky. It is a novel and inexpensive device to attach to the heads of
horsees, catlle, and other live stock, to prevent their oppreasive to the animals, and allowing them to geing more naturally and comfortably than heretofore.

A wire binder for boxes has been pat A wire binder for boxes has been pat
ented by Mr. James A. Grifthe, of Winter Park, Fla consists of wire fasteners bent to form prongs and and also assist in holding the top, bottom, ends, and cover of the box together, in boxes used for shipping oranges, etc.
A writing teacher's cabinet has been las ink bottle led ges, pen rack, compartments forcopyooks, blotting paper, etc., and with hook or other device for pen wipers, all conveniently arranged for writing teachers having to distribute such articles to the pupils in a schoolroom.
A bell crank has been patented by Mr. Velson Magee, of Hoboken, N. J. Its construction is such that the strength of the spring action maybe easily adjusted, and increased or diminished, and the spring
readily detached from the gudgeon when the crank is urned in the wrong direction, so there is no danger of juring the spring and the crank is cheap and durabe
A flexible button fastening for corsets or other garments has been patented by Mr. Sherwood
B. Ferris, of Lakewood, N. J. The buttons are carried B. Ferris, of Lakewood, N. J. The buttons are carried
by tapes or a flexible strip paseed forward and backward by tapes or a flexible strip pased forward and backwad
successively through the center portions of the buttons nd secured to the garment at their terminal portions
A lifting jack has been patented
A lifting jack has been patented by Mr. passes through keepers attached to the standard, its upper end being bent to form a rest, and by swinging
down the operating lever the lifting bar is raised by down the operating lever the lifting bar is raised by
connecting rods and locked in place at such height as desired, the device being simple, strong, and durable.
A folding table has been patented by Mr. John E. Cotton, of Fairfeld, Me. It has hinged
legs, carrying braces having pins on which are triction legs, carrying braces having pins on which are friction der surface of the top in which the pins move, locking pawls being pivoted to the plates to engage with the pins, the table being closed by turning upside down. A hop drier has been patented by Mr William S. Plummer, of Leavenworth, Kan. It is an larly to novel and easily adjusted devices for creating a vacuum, to make a suction above the material to be
treated, and thus draw air up through it and quickly dry the mass.
A violin has been patented by Mr. Gustav A. Skugrua, of Genesee, Idaho Ter. Combined with the violin is a reed instrument, and tube and mouth.
piece connected therewith, with valves and a lever in piece connected therewith, with valves and a lever in he neck of the violin for operating the valves, whereby he violinist may play th.
An automatic brake for vehicles has been patented by Mr. George McIIroy, of Charleston,
Pa. Its mechanism is operated by the holaback of the horses on the tongue, and there is also an arrangement of the running gear with the brake mechauism, whereby the brakes may be operated irrespective of the rea-
tive positions of the front and rear sections of the running gear.
A straw cutter has been patented by Mr. Horatio E. Collins, of Detroit, Mich. This mahine is designed to cut a thicker layer of straw or hay
nd do more work than ordinary machines it has vertically moving reciprocating knives, and relatively ad justable upper and lower feed rollers, whereby the material will be fed to the knives when separated, and the feed will cease when the knives meet.
A whiffletree hook has been patented by Mr. George R. B. Swanton, of Okawa, Hawk's Bay,
New Zealand. It has an internally threaded socket, with axially bored head, having transverse grooves in its inner surface, the trace holder being provided with a transverse pin, and a spring resting on a flange press--
ing the trace holder outward, the device being simple ing the trace holder out
A fire extinguisher for chimneys has been patented by Mr. Desire Putzeys, of Brussels, Belsecured inside the masonry of the chimney, above which suspended a sphere by bands which will be severed y undue flame or heat in the chimney, when the sphere chimney.
A jack carrier has been patented by Mr. Charles H. Driver, of Towns, Ga. It is for transporting lifting jacks horizontally, after they have been ists of a laterally movable jack platform with an ad解t of a a a aterally gear platform bearing operating gears, with a horizontal screw rod, designed to move such loads with safety and with greater economy than now customary.
A permutation padlock has been patented by Mr. Charles A. Volke, of Stapleton, N. Y.
This invention consists in certain novel features of construction of the lock mechanism, covering the combinaion with the case and its bow or shackle of a plate, locking dog, pins, slotted posts, and a manipulating de-
vice consisting of a key and thumbpiece, with other special elements.
A smoke and cinder conductor has been patented by Mr. James H. Meacham, of Petersburg, Va. The body of the conductor extends over the tender and over the top of each car, and between the cars it has a
jointed and detachable coupling, which is the main feaare of the invention, and which allows movement in ny direction without permitting the escape of smoke cinders at the joints.
A mechanical movement has been patented by Messrs. James E. and John W. Adams, of
Glassborough, N. J. This is a device involving novel eatures of construction, and intended to give consider. able speed and power with a small expenditure of force,
being especially applicable for the ruinning of small machinery, such as sewing machines, churns, jig saws, fans, etc.

A cream separator has been patented by Mr. Merritt C. Barden, of West Pawlet, Vt. It is a milk
receiver with a conical bottom, and with a floating stop per of such specific gravity that it will stop at rest be ween the milk and cream, so that when the milk i drawn off from an opening in the center of the conical
bottom, this floating stopper will automatically close bottom, this floating stopper will automatically close
A paper making machine has been pat ented by Mr. Edwin Wilmont, of Laona, N. Y. This invention provides means, either by a roller or vibrating the endess oforating points, for continually perforating the pulp on a paper machine, so that the apron will not have to be taken from the machine for washing and t. its fibers reopened.
A ground marker has been patented by Mr. John V. B. Rapp, of New York city. It has paral lel bars with shafts, and marking teeth clamped to the
parallel bars, there being shoes for regulating the depth parallel bars, there being shoes for regulating the deptu of the marks and a guage for regulating the distance
between the eeries, the device making an easily adjustable implement for marking tilled land in parallel rows r the reception of seed.
A coal mining machine has been pat ented by Mr. Walter S. Gordon, of Atlanta, Ga. It has revolving toothed cutters or saws mounted on a com
mon shaft, and a smaller intermediate rotary cutter working in the same plane between the two larger cutters, to remove the coal between the direct cuts of the larger cutters, and all geared to be run by power transmitted from' a frame mounted on a carriage or truck Porming the rear end of the machine.
A brake for baby carriages has been patented by Mr. William H. Tier, of Astoria, N. Y. A metallic brake strap passes around the inner end of the hub of the wheel, and is connected by a lever with the
handele bar in such way that the movement of the wheel can therebb be readily checked, stopped, or prevented, or the brake can be permanently set so that the carriage when standing upon inclined ground will not be liable ${ }^{\text {start acc }}$
A coffee and spice mill has been patented by Mr. James W. Miller, of Butler, Pa. The shell in Which the grinding cone of the mill works is largest in diameter at the botem, the coffee or orher substance to
be ground being fed downward by gravity from a hopbe ground being fed downward by gravity from a hop-
per between the serrated outer face of the cone and the inner toothed face of the shell, the fineness of grinding being regulated by adjustment of a nut, and the device being such as will make a neat appearance.
A scrubbing brush holder has been patented by Mr. John T. Gramer, of Bowmansville, Pa
It consists of a yoke having downwardly projecting arms with spurs extending inward toward the center of the yoke, and adapted to engage the edges of the scrubnes brushes, a cam being forrnaled in the foke to
press the scrubbing brushes in opposite directions against the spurs, whereby the brushes may be readily A vibrating churn has been patented by Mr. Charles J. Fellrath, of Gatesville, Texas. The invention relates particularly to a motive power or driving mechanism for churns, frezers, etc., and has a slid-
ing frame bearing a tly wheel and crank on one side of ing frame bearing a tly wheel and crank on one side of
the supporting standard and toothed gears on the other the supporting standard and toothed gears on the other
side, the fly wheel and toothed segment being arranged in vertical planes, and the frame being vertically ad
A blind nailing plane has been patent ed by Mr. William G. Stranahan, of Minneapolis, Minn. It has a shuttle operated by a hand lever and carrying
a narrow knife made to project slightly through a lon. gitudinal groove in the body of the plane, to strike against and cut beneqth the surface of the wood in such way that the shaving will not be crumpled or narrowed and will entirely
An atomizer has been patented by Mr. Ferainand A. Reichardt, of New York city. It has an outer and an inner tube of soft rubber, in connection with by which the tubes may be held at any desired curve the outer ends of the tubes are detachably connected
with a tip having a central passage for the liquid and side pasazer a central passage for the liquiu and may be cheaply made, and its parts sold as separate ar icles.
A processof transferring a precipitatedor reduced metal has been patented hy Messrs. Theophilus
and James Millot, of New York city. It consists in preand James Millot, of New York eity. It consists in pre-
cipitating the metal upon a hard surface, then applying a coat of viscid substance to such deposit, flowing the plate, placing the material to which the transfer is to be made upon the treated surface of the plate, expelling the excess of solvent, washing the whole, and stripping
the material and the deposit from the surface of the plate, thus readily bringing out metallic-faced patterns on textile and other flexible fabrics.

NEW BOOKS AND PUBLICATIONS.

Architectural Studies. Vol. I. F.
A. Wright, Architect. William T. Comstock.
This volume contains sixty plates, giving views in
perspective, elevations, plans, and sketches of leading perspective, elevations, plans, and sketches of leading details, stables, seaside and southern homes, and out. buildings. It is a work that can hardly fail to be of great value to any young architect, and of material the profession.
Shoppell's Modern Houses.
The July yumber of this quarterly, published by the Co-operative Builiaing Plan Association, has the usaal variety of designs for many different styles of residences
with partial plans and estimates of cost and is with partial plans and estimates of cost, and is gotten
up in handsome form. An attractive teature of thit nuimber is a sheet of colored drawings for constructing
a paper model honse.

PBisiness and Personal.
The chargefor Insertion under this head is one Doluar a line for each insertion; about eight worpde to a line. Advertisements must be reccived at publication offtce
as early as Thursaday morning to appear in next i ieuse.

For Sale-The Kimball Pearl Barley and Oatmeal Mills. Established in 1847 by V. P. Kimball. Sold on ac-
count of this death. Located in city of Watertown, N. Y. cood water power and trade. M. H. Kimball, Water-
Wanted-A competent, sober, experienced engineer ot take charge of the Ras, water, and steam heating ap-
paratus, and the machinery of a large onoppital. Adaress, paratus, and the machinery of a large hospital. Adaress,
tating wages expected, "Engincer," ${ }_{\substack{\text { stating. } \\ \text { York. }}}$

For Sale or to Work on Royalty-A Shutter Worker, cored by twion
hester, va.
Emery Wheels of unusually superior quality for wet A Catechism on the Locomotive. By M. N. Forney. With 19 plates, 227 engravings, and 600 pages. 2.50 . Sent
on receitpt of the price by Munn $\&$ Co., 361 Broad way, on receipt of
New York.
Guilid \& Garrison's Steam Pump Works, Brooklyn,
Y. Pumps for liquids, air, and gases. New r. Y. Pump
ow ready.

Hasvoel's Engineer's Pocket-Book. By Charles H. Haswerl, Civil, Marine, and Mechanicul Engineer. Givng Tables, Rules, and Formulas, pertaining to MeconanSteam Vessels, Mills. Limes, Mortars, Cements, etc. 200
papes, leather, pocket-book form, 84.00 . For sale by papes, leather, pocket-book form,
Munn $\&$ Co., 361 Broadway. New York.
Nickel Plating.-Sole manufacturers cast nickel an-
des; pure nickel salts, polishing compositions, etc. $\$ 100$ odest pure nickel salts, polishing compositions, etc. $\$ 100$
Little Wonder."
A ole manufacturers of the new Dip Lacquer Kristaline. Complete out ft for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Send for catalogue of Sclentific Books for sale by
ann $\&$ Co. 361 Broadway, $\mathrm{N} . \mathrm{Y}$. Free on application. The Knowles Steam Pump Works, 44 Washington
 proved forms of Pumping Machinery of the single and
uplex, steam and power type. This catalogue will be ailed free of ch
Iron Planer, Lathe, Drill, and other machine tools of
adern design. New Haven Mfg.Co., New Haven, Conn Planing and Matching Machines. All kinds Wood
Working Machinery. C. B. Rogers \& Co., Norwich, Conn. Nystrom's Mechanics.-A pocket book of mechanics onnection of practice and theory, by J. W. Nystrom C.E., 18 th edition. revised and greatly enlarged, platese,
12 mo , roan tuck. Price, $\$ 3.50$. For sale by Munn \& Co, 12 mo , roan tuck. Price, 83.50 .
361 Broadway, New York city.
Iron and Steel Wire, Wire Rope, Wire Rope TramIron, Steel, and Copper Drop Forgings of every de-
cription. Billings \& Spencer Co., Hartford, Conn.
We ar We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure sbestos goods of all kinds. The Chalmers-Spence Co. East 8th Street, New Yor
peal 142. Pat. Geared Scroll Chucks, with3 pinions, sold at same prices as con.
ford, Conn.
Supplement Catalogue.-Persons in pursuit of information of any special engineering, mechanical. or scien-
ific subject, can have catalogue of contents of the SciThific Amirican Supplement sent to them free. the whole range of engineering, mechanics, and physical cience. Address Munn \& Co., Publishers, New York. Steam Hammers, Improved Hydraulic Jacks, and Tube 60,000 Emerson's 1886 Book of superior saws, with upplement, sent free to all Sawyers and Lumbermen. Pa., U. S. A.
Hoisting Engines. D. Frisbie \& Co., New York city.
If an invention has not been patented in the United States for more than one year, it may still be patented in
canada. Cost for Canadian patent. \$40. Various other oroigu patents may also be obtuinid. For instruetionas
didess Munn \& Co., SCIENTIFIC AMERICAN patent ency, 361 Broadway, New York.
"How to Keep Boilers Clean." Send your address
or free 88 page book. Jas. C. Hotchkiss, 93 John St., N. Y. Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 366. Astronomical Telescopes, from $6^{\prime} /$ to largest size. Ob servatory
Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
Grimshaw.-Steam Engine Catechism.-A series of as to give to a Young Engineer just the information required to ft him for properly running an engine. By
Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by Robert Grimshaw. 18mo, cloth, \$1.00. For sale by
Munn \& Co., 361 Broadway, N. Y. A Wonderful Shot. ce of a Milwaukee succession inside the wis paces, was a pretty good shot, but he wasn't half - Pleasant Purgative Pellets" into his system in five
days, and on the sixth walked ten miles " jusit because days, and on the sixth walked ten miles "Just because
he felt so well." If your blood is out of order, if you
feel low spiried and "blue," you will find these Litle

HINTS TO CORRESPONDENTS

Names and Address must accompany all letters, or no attention will be paid thereto. information, and not for publication. References to former articles or answers should give date of paper and page or number of question. be repeated; correspondents will bear in mind that some answers require not a little research, and, or in this department, each must take his turn. Special Written Iuformation on matters of personal rather than general interest cannot be Scientific American Supplements referred to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of price. Minerals sent for examination should be distinctly marked or labeled.

(1) J. J. M.-The angle at the circum ference of a windmill varies much for the power and
velocity required. For high speed and light work the velocity required. For high speed and light work the
extreme angle may be from 7° to 10° with the plane of the mill. Where high winds prevail, 10° to 20° may be
desirable. The angle should increase toward the center desirable. The angle should increase toward the center;
at half distance between periphery and center the angle
should be double the peripheral angle. For a full should be double the peripheral angle. For a full
and illustrated description of mills and their power, see a work on "The Windmill as a Prime Mover," by
Wolff, which we can furnish for $\$ 3$. A six foot mill Wolff, which we can furnish fo
will run a churn or grindstone.
(2) D. L. T. asks the number of pounds required to lift bodily from ordinary soil a green oak stump 12 inches diameter, also pine stump 12 inches diameter and 24 inches diameter. A. F
(3) J. G. asks : 1. What is the freezing and boiling point of hydric cyanide? A. Boils at 80° Fah. Freezes at -0.4° Fah. 2. Are ferric disulphide
and sulphide of iron the same? A. Both are identical. (4) J. K. B. asks: What material is used in the manufacture of binder twine, such as used on harvesting machines? Does it require expensive
machinery? A. Jute, Sisal hemp, and waste products machinery? A. Jute, Sisal hemp, and waste products very expensive. Could
with the manufacture.
(5) "Louisville."-The footprints in the limestone found in Waishington Co., Ohio, were probably made daring the Carboniferous or coal-pro
ducing period. It is impossible to state the amount of denudation that this indicates. Where the geological sequenceis complete, the Carboniferous is overlain by
the Mesozoic, Tertiary, and Quaternary formations, but we do not know whether the series was complete at this point. It. Is probable that many thousand feet of sedi-
ment have been removed in order to expose thisforma tion. Having no measure of the thickness of these more recent formations, the time required for their
deposition and subsequent removal is similarly unknown.
(6) J. C. M. asks a recipe for sticky fly paper. A. Melt together one pound of resin and add is warm, dip a spatula into it, and spread what adhere
to the blade on foolscap paper. Different samples o resin require varying proportions of oil to make the composition spread properly.
(7) T. McM. asks : 1. What is the process of preparing salmon for canning? A. See "Canned
Food," in Scientiric American Supplement, No. 499 . 2. Would the mullet make a good canning fish under same process as the salmon? A. Such samples on
canned mullet as have been put in the market have no been well received. 3. A cheap receipt for deodorizing
kerosene oil. A. Mix it with chloride of lime in the proportion of three ounces to each gallon of liquid to be purifled. The mixture is then introduced into a cask, some muriatic acid is added, and the whole well
agitated. It is then passed into another vessel, containagitated. It is then passed into another vessel, contain-
ing slaked lime, which absorbs the free chlorine and leates the oil sufficiently deodorized.
(8) C. L. asks : Can air after having been pumped out of a glass vessel be kept out? A. An exhausted glass vessel may be sealed so as to preserve a
vacuum indefinitely by fusing the glass tube connectvacuum ine vessel with the air pump.
(9) L. H. H. asks: 1. Are there any mica mines now worked in Virginia, and what is the
quality of the product? A. There are mica mines in quality of the product: A. There are mica mines in
Amherst, Bedford, Hanover, and Amelia Counties, Amherst, Bedford, Hanover, and Amelia ${ }^{\text {which }}$, ${ }^{\text {ºunt }}$ but are
 is believed to offer a promising field for prospecting 2. Where are the largest and best deposits of mica
found, to what extent are they worked, and what rank ound, to what extent are they worked, and what ran
do the mines of North or South Carolina hold? A. The
best deposits of mica so far discovered have been in best deposits of mica so far discovered have been in
Western North Carolina and in Custer and Pennington Counties, Dakota. The annual product of the latter lounties, Dakota. $\$ 70,000$. The total product of the
locality amounts to
United States amounts to about $\$ 370,000$. The mica regions of South Carolina have not as yet been tho-
roughly explored. 3. What books would you recomroughly explored. 3. What books would you recom-
mend on mica mining, mineralogy, and geology? A. "Elements of Geology," by Joseph Le Conte (price $\$ 4.00$), and "Manual of Geology," by J. D. Dana (price $\$ 5.00$), are both excellent. "Descriptive Mineralogy,
by J.D. Dana (price $\$ 10.00$), is the standard work on
the subject, but his'smaller book, "A Manual of Mineralogy and Lithology "(price $\$ 2.00$), would probably
serve your purpose. We will send these books postpaid on receipt of price. For information concerning mica mining we would recommend "Mineral Resources of
the E . S ," published by the Government, and the the U. S.," published by the Go
North Carolina Geological Reports.
(10) H. M. P. asks : 1. How do scientific
nen observe the process of development of man from
$\left\lvert\, \begin{aligned} & \text { the fructirying of the egg to the birth of the child, or } \\ & \text { the process of ontogeny } \\ & \text { A. By direct examination }\end{aligned}\right.$ of the embryo or fetus during the several stagamination of the embryo or fetus during the several stages of de-
velomenti. The recent remarkable proagress in em-
bryologi is largel due to the perfection of the me-
chanical chanical means for making these examinations, and
to the chemical reagents to the chemical reagents used to prepare the subject
for extended study. By hardening, clearing, and tintfor extended study. By hardening, clearing, and tint-
ing the feetus with chromic acid, and then making the ing the feotus with chromic acia, and then making the
fnest possible microscopic sections, it is practicable to inest possible microscopic sections, it is practicable to
represent the entire process of development; and by represent the entire process of development; and by
providing for the suitable preservation of the specimens, to secure the opportunity of similar study to
other investigators. 2. Has the supposed organism Bathybius Haeckelii, discovered by Huxley, been confirmed? A. It is donbtful. Several scientists believe that the evidences of organic life which Huxley discovered were due to the alcohol in which the speci-
mens were preserved. Recently, however, the Arctic mens were preserved. Recently, however, the Arctic
navigator Bessels has reported the discovery of a free navigator Bessels has reported the discovery of a free
homogeneous protoplasm in Smith Sound, to which he eneration been produced artificially? A. No.
(11) S. W. S. asks : Will you please inorm me whether there is any coating that can be ap-
lied to the inside of a water lime-plastered cistern plied to the inside of a water lime-plastered cistern
which will prevent the water from becoming "hard " which will prevent the water from becoming "hard "
If there is such an article, please state what it is and there is such an article, please state what it is and
how to apply it. A. Our best recommendation is to me and water o give the water a taste, and would require an absolutely dry surface for application
(12) J. F. writes : Will you please give me a process for magnetizing knitting needles? A.
repare a coil of, wire, No. 15 to 20 , as long as the needle nd of five to ten layers. Place the needles within it and pass a strong current through it. Or by rubbing with a atrong permanent magnet from pole to pole, alwaysin the same direction, you can do it. Or simply
place the ends against the field pieces of a strong dyplace the ends against the field pieces of a strong dy
(13) H. E. S. asks : Can you let me know of a cement that can be used on a tin roof that is old
and leaky, that will stand heat and coid weather? A. old paint skins, such as may be procured from painters,
(14) W. W. S. writes : Reading your a ticles on films, as represented by the sieve and the
foating needle, why is it that the needle floated on floating needle, why is it that the needle floated on
water in a basin will point north and south? Is it water in a basin will point north and south? Is it
through the influence of the magnetic current? A. If hrough the influence of the magnetic current? A. II nough magnetism to be affected by the polarity on lane is opoted and rond its track ufficient power to overcome the influence of gravitation and friction when the ball is put in motion, would
it not continue to move from spring to spring until it not continue to move from spring to spring until either the springs become weakened or the wearing of
ome parts increased the friction sufficiently to bring some parts increased the friction sufficiently to bring
the ball to a rest? A. The springa would have to be worked by some other power than the impulse of the petual motion, could it? A. It would not constitute
rpetual motion
(15) O. S. P. writes : I made a magic antern, but cannot get satisfactory results from it. In my lantern I use 2 plano-conver condensing lenses
$41 / 2$ inches diameter for a condenser (the focal distance from the lamps is $41 / 2$ inches, and the two lenses are placed $21 / 3$ inches apart in the condenser). For an object glass I use a Darlot photographic lens 3 inches diameter. This lantern, when placed about 8 feet from
the screen, only gives a picture of 2 feet diameter (with the screen, only gives a picture of 2 feet diameter (with
60 candle power oil lamp). Where do you think the 60 candle power oil lamp). Where
fault lies? A. Your Darlot objective is of too long ocus. You can only rémedy the trouble by placing not place your condenser lenses closer together, and
(16) W. S. W. asks : 1. Will sal ammoniac cells work an electric lamp? If so, how many power incandescent lamp? A. Leclanche cells are quite nadapted for steady work. 2. What are the relative proportions of zincs and carbons, and sizes required, to retain a 19 platinum wire at white heat constantly for
hour; the exciting fluid to be sul. acid and bichrom$1 / 4$ hour; the exciting fluid to be sul. acid and bichrom-
ate potash? A. It depends on the length of wire.
(17) D. S. S. asks: 1. How many cells of Disque Leclanche battery will it take to operate a elephone line 1 mile in length of No. 16 galvanized ion? A. Two to four cells. 2. Would connection to iron pump pipe in well 70 to 90 feet deep answer for
ground connection? A. Such
connection would be excellent, as long as the well contained water nough to cover end of pipe. 3. Would additional cells hould do everything. 4. Would it be necessary to insulate wire through side of building with rubber tubing, or would silk-covered office wire answer? A. Insulate by rubber tubing. 5. Would a horse shoe magnet elephone, as described in SUPPLEMENT, No. 142, make good serviceable instrument for every day use, and how long would it remain so, using six inch magnets?
A. It would be perfectly serviceable, and would last for any years.
(18) E. B. R. asks : 1. What resistance would a straight electro magnet have to be to repel a
inch horseshoe permanent magnet to work as a motor ituated between its poles, when provided with suitable quired. The electro magnet should have a thick core/6 inch round iron. 2. How can a permanent magnet be spread apart so that the top is as wide as the bottom, without damaging it? A. You could nọt spread apart the limbs of a horseshoe magnet without heating and (19) S. F. M. writes : I built a cherry
fller, sandpapered, and then shellac varnish rubbed in It has a smooth, hard finish, but is dead in appearance look? A. Make a mixture of rather thick alcoholic shellac varnish and boiled linseed oil, equal parts. Shake it well before using. Apply in small quantities
with a cotton cloth, rubbing the work briskly until the desired polish is secured.
(20) J. W. asks : 1. How many cells of the Bennett battery, of the size indicated in Scientipic Amprican, April 11, 1885, will it take to charge the and proportions of the dynamo in Supplement. No $161 ?$ A. About six such cells would be enough. 2 Would well seasoned hard wood answer for a commu tator if well coated with shellac and the set screw is
bedded in the wood, so that the head can be thickly bedded in the wood, so that the head can be thickly
covered with shellac? A. It would answer, though bonite is far preferable
(21) F. S. D. desires a practical recipe we making a first class quick rising dry yeast. A
Aecommend you to strain brewer's yeast until a moist mass is obtained. Place this in hair bags, and press out till the uass is nearly dry. Then sew up in
linen bags, and it is ready for transportation. It will keep for a long time, and is much used by bak
the manufacture of the so-called Vienna bread.
(22) A. S. asks : 1. What volume of air is necessary for the complete combustion of a given
olume of ordinary illuminating gas? A. From 7 to 10 is. 2. Is there any flavoring added to pear phos phates, or is it the natural taste? A.. It is made as
follows: Take Bartlett or other good pears, cut or chop very fine, press, allow to settle; pour off supernapint acid phosphate and one pound of sugar, or enoug sweeten.
(23) A. P. and H. A. M.-The first regupassenger railroad in America worked by steam
comotives was the Charleston and Hamburg, of South Carolina, chartered in 1827 On a part of this road the locomotive "Best Friend" was operated in the latter
part of 1830 . The first trial of a locomotive in America was in 1829, on a road built by the Delaware and Hudson Canal Company, to connect t
dale with the town of Honesdale.
(24) J. L. P. asks : 1. The largest craft afloat? A. The Great Eastern. 2. The weight of the of air are required for the practical combuation or of air are required for the practical combastion or con-
sumption of one pound coal? A. 140 to 152 cubic feet for perfect combustion, according to the percentage o combustible in the coal. 4. By what rule do we deter stack, to be in proportion with grate surface? A. A common practice is to make the chimney equal to two
tenths the area of the grate. The proper formula is:

$\frac{15 c}{v h}=$ area,

being lb . of coal burned per hour, h height of chim ney. 5. A good work on the last question, and price
A. Nystrom's Mechanics (revised edition) is good on this and all subjects appertaining to steam engineering and mechanical subjects. We can mail it you for $\$ 8.50$.
(25) A. S. writes : For home made ginger pop: Add about one gallon of boiling water to two
ounces of bestground ginger. Stir in whites of one or ounces of bestground ginger. Stir in whites of one o
two eggsand let settleover night. In the morning pour off as much clear liquor as possible, add enough wate to make two gallons, and stir in three pounds granulated sugar. Now add 1 ounce cream tartar, the strained juice of three lemons, and two tablespoonfuls of home made yeast. It should be perfectly clear. Stir well and bottle. It will take about two days to ripen in a warm place, as a mantel piece over the kitchen
range, or a week in a cool place, as the cellar. It should never be kept more than two weeks, or yo may lose the bottles.
their sides, to keep the corks wet and tight.
(26) W. K. B. desires (1) simple method ammonia? A. Mix up a quantity of the strongest soap-lees with quicklime, to the consistency of milk, afterward and it will appear as new. hours, clcan of restoring nickel bicycle which has become slightly rusty? A. Ifthe plating has not been worn off, the rus can be removed by polishing with rouge.
(27) J. L. H. asks : 1. What causes the eaves of the sensitive plant to fold up when touched A. Because the petiole, which unites the limb or a construction with a tendency to disunion, shown in a swelling formed of cellular tissue, irritation of the pinnate which induces a depression of the whole bi the base of the leaflets which fold upward. 2. What is the most suitable material for foundation of a heav engine? How much lower should the back end of a How thick should the brick walls for boilers of thi How thick should the brick walls for boilers of this size be, also distance of bridge wall from bottom of
boiler, to burn wood? A. For engine foundations, stone or hard brick laid in Portland cement, with or without dressed capstone, to suit style of bed plate or engine bearings. For a 14 foot boiler, $11 / 2$ inches inclination in its length to rear end. Walls 12 inches with 1 inch air enough to stay it, and solid at places opposite back stays. Bridge wall to be 8 inches clear from boiler
(28) I. D. F., of Mass.-To etch your name on steel tools, proceed as follows: Clean thor oughly of grease, and then spread a thin coat of bees wax or paraffine on it at the place where the name is to .e. This must be as thin as possible. Then, with sharp needle point, write through the wax to the steel
Paint this over with a mixture of nitric and muriatic acid, in the proportion of six to one respectively, and when bubbles cease to rise, the work is done. Wask

TO INvENTORS
hore than one hundred years, and the preparation of ents at home and abroad, enable us to understond the aws and practice on both continents, and to possess unqualed facilities for procuring patents everywhere. A
ynopsis of the patent laws of the United States and all oreign countries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this office for priees, which are low.in accordance with the times and our exensive facilities for conducting the business. Address wand \&ew York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted,

July 20, 1886,
AND EACH BEARING THAT DATE.
[Seenote at end of list about copies of these patents.]
Advertising attachment for clocks, A. V. Stratt... 345,739
Air compressor, M. Harrold...................... 36,999 Air compressor, M. Harrold......................... 345,999
Air compressor, compound, P. L. Weimer........ 345,752
Animals, device for releasing, J. Miller Animals, device for releasing, J. Miller............... 345,929
Axle, car, F. B. Reed.......................346es Axle, car, F. B. Reed...
Axle, car, H. Wolfertz..........
Bale tie, adjustable, F. B. Griswold.
Baling press. G. Ertel..
Band, covered elastic
 Bathtubs, soap dish for, C. Palmer.....................................35.9028
Blacking box holder, L. F. Eaton......................... ${ }^{3}$
Blind or other ventilating adjunct for buildings,
G. Hayes............................
Blind slat and apparatus for operating the same,
\&. Hayes................................ 35,885
Blower, rotary, P. L. Weimer
Blower, rotary. P. L. Weimer...................... 445,751
Boiler. See Steam boiler.
Boiler covering, Ho M. Hanmore.................... 34, 24.24
Bolt. See Door bolt.
Boneblack, retort for calcining, A. C. Harrison..... 345,968
Boneblack, retort for calcining, A. C. Harrison..... 345,988
Book case. H. H. © C. W. Olds.................. 345696
3is.
Boot or shoe, Shea \& Brown......................... 34 Boots and shoes, machine for crimping the quart ers of, T. Nally..
Pudor............. 345,928
Box. See Journal box. Matctoox.
Boxes, wire binder for, J. A. Griffths............... 345,898
Boxes, wire binder for, J. A. Griake.
Brake. See Safery automatic brake
Brake regulator, automatic, G Westinghouse, JF. 245,820
Brake regulator, automatic, G Wening
Breweries, apparatus for utilizing refuse of, K
W. Lafferty.......................................

Jr...: 345.s87
Breweries, utilizing refuse of, H. W. Laferty.... 345;703
Breweries, utilizing refuse of. H. W. Lafferty......
Brewers' krains, etc., packing dried, F. W. Wiese-
brock.....
Brush, J. A. Williams
But
Brush holder, scrubDing. J. T. Gramer
Brush, rotary, T. J. McConnaughay
manufacture of backs for. H. E. Miller...tial,
ackle, hnrness, J. W. Funk......................... Buckle, suspender or other, C. R. Harris...........
Buckles, snap hook for suspender, C. Voorhis.,..

 Buttons and other analogous articles, manufac-
ture of, T. F. N. Finch........................ 345,
 Camera stand, R. A. Bonine...
Can. See Coffee or spice can.
 Car coupling, G. W. Countryman Car coupling, H. J. Davis.....
Car coupling, F. M. Foote... Car coupling, J. Gorny.

Car ventlator, A. H. Harris.........................
Wild
arpet stretcher, E. Gash..
Carriage top, H.'W. Ransom
Cash carrier. C. E. Chinnock.......................... si5;88
ment, temporary, F. A...... 346,068

Chain, drive, N. P. Levalley.
345.873

Channeling machine, C. S. Ames................. ... 345,873
Charcoal kin, W. A. Miles (1)............... 10,446

Cheese from milk, manufacture of artificiali, en
riched, E. J. Oatman........................
hristmas tree holder, J. C. Shoenthaler. .
Christmas tree holder, J. C. Shoenthaler.
Chuck for rock drills. G. R. Cullingworth.
Chuck for rock drills. G. R. Cullin
Churn, ream testing. J. F. Komp.
Churn, oream testing. J. F. Komp
Chunn, vibrating. . J. Fellrath..
Cigar, C. C. Cook...
Cigar, C. C. machine, pocke............... Tose
Cigarette mouthpiece, M. ©. Stone.:
Cigarette mouthpiece, M. C. Stone.
Clothes rack stand. W. H. Thurston
Clothes rack stanger, J. J. Brink
Cockle machine, F. Prinz
Coffee mill. C. Tobias

			trade marks.
Cole			dralo Co-operative erewin
Weiberg .i.i.e........e.		mechanism for, W. Cornely. \qquad $345,88 \div$	dinos, men's and
er. sed	Looms, shattle operating meehanism for, C . H. H		cound
			cind
	ricator.	Sering machine, straw bra	
Cotton pickerer teeth, making, w. Crabb..............	Mail bag fastener und label holder, co	Serins machine	
Craem separator. M. C. . Braten...................			
	and		
	Milil		
	345,68	,ok, B	Plasters, meicicated, Peles White Proprietary Com-
		soa	
34.602	mirr	soa	
realmay, A. H. Mcerrew			
	He,0r	Sole	
Draukht equalizer, M. L. Lsnde........................ 3 3t,i,iss	Mower, lawn, A . M. Williams...................... $36,0,04$	spark arrester. P.H. Adams..................... 26,0012	
Draukh equalizer, J. W. Woife.....................iti.ese		Spee	var
Dre		${ }_{\text {Spenining }}^{\text {Clark }}$ m	${ }_{\text {Wheat }}^{\substack{\text { Enge } \\ \text { Enge }}}$
		spris	
paratus.		${ }_{\text {spring }}^{\substack{\text { porim }}}$	
			cents.
Wlectric lights, circuit	Ore, apparatus for amalgamating, E. Spencer..... Ore separation, saving floating materials in, H	Stand. See Clothes rack Starch from grain, prepa	fications, not being printed, must be copi
			Pratents may now be otained by the
Evectrical synchronous movement, A. L. Par- ${ }_{\text {cele, }}$			
Embroidering machine, \mathbf{F}. Cornely 345,88		Steam ooie	New York. Olher
Fats and oils, bieaeching animal, W. B. Alluribht..			Propertisemen
	${ }_{\text {Paper }}^{\text {allan }}$	steam	Ofdvertisements.
${ }^{\text {Feneece rail }}$			
Criber, appe	Pavin		
${ }_{\text {mafn.... }}^{\text {mer }}$			
			BER RODFINE
$\substack{3515,92 \\ 36,89}$		The	
Frearm, magazilin, J. M. \& M.			
		Tones. eulinary A A.J. Holmes...................85:846	
		Toot	
ding table, R. De	nter,		
	ding.		
			SEBASTIAN, MAY \& CO'S
		Valve for radiato	
		valve	
ment, protective, G. W. Hill................36, 36.58	-35.731	veh	
	Van icien.		
Gas to convert it into illuminating gas, treating	van sic		
ss globés, shades,	Prop		
	machine inining derice, H. F. Bechman.. 3s.7.700	Ventiating screen, 6. Hayes.................... 34.658	
	Pump or similar apparatus, rotary, c. . ¢. Cole-		AN
	Punching and stit		COUNTERSINK and DRILL COMBINED
	Railu		
Heater. See Feed water heater.	Rell	ward	
	,	Warehouse, fireproof portable corrugated, A. W	
Heating apparatus, exhaust steam, J. T. King.... Heating apparatus for warming feet, portable,	${ }_{\text {Re }}^{\text {Ra }}$	Wateh	
Heel nailium machine, F . F. Re. Raymond,			
		wa	
	Ref		
$\begin{aligned} & \text { Hog and } \\ & \text { Knox. } \end{aligned}$		Watches, poising the closet pans to their rock shafts, attaching,	gracuse Melleabe soo Works ra
cord	41,768		
ek. se			
			Punching Presses <on
(e)			
		Winamilis, earing for, \mathbf{G}. H. Pattison........... 35.722	
Micher			
			Branch oftre and Fattors, 23s Center street, , Nem York
2ing machine. J. D. Hill.......................365885	Safety automatic brake. F. E. Kinsman..		
		ers	
fe, penci mann.. Kife, pencil sharpener, etc., po		Designs.	
	s	Rad	
		er, embossed, F., rrenze	

aTHE IMPROVED Rider Hot air Pumping Enotite For City or Country Residences， arns Coal，Wood，or Gas．Safe，Simple
Durable． $\mathbf{3 , 0 0 0}$ in use．Send for AYER \＆CO．， 37 Dej St，New York．

品SHinmuicher：

 SANITARY EXAMINATION OFDRINK

CLARK＇S DRYING，VENTI LATING and EXHAUST Most
Price List Freective GEO．P．ClARK，

PATENT
Fossilmeal Composition．

PERFUMES．－A PAPER BY JACOB

PTIT工卫卫E。 Order from our＂Special List．＂
THE JOHN T．NOYE MFG．CO．， BUEFANO，N．x ．
FOREIGN PATENTS．
Their Cost Reduced．
The expenses attending the procuring of patents to
most foreign countrles having been considerabiy re duced the obstacle of cost is no longer in the way of a
large proportion of our inventors patenting their inven lions．abroad
less than the cost of a United States patent，and th former includes the Provinces of Ontario．Quebec，New
Brunswick，Nova Scotia，British Columbia，

The number of our patentees who avall themselves on
the cheap and easy method now offered for obtainin patents in Canada is very large，and is steudils increus ing． torce on Jan．Ist．1885，enab es parties．to secure patents in Grent Britain on very moderate terms．ABritish pa－
tentinctudes England，Scotland，Wales，Ireland and the Channel Islands．Great Britain is the acknowledged
financial and commercial center of the world，and her goods are sent to every quarter of the globe．A good
Invention is like y to realize as much for the patentee in Enzland as bis United States patent produces for for almostevery patentee in this country to secure a pa tected as in the United States．
OTHELC COUNTRIES．－Patents are also obtaine on very reasonable terms in France，Belgium，Germany，
Austra，Russia，Italy，Spuin（the latter includes Caba and all the other spanish Colonies），Brazil，Britisb 1 Iudia， An experience of forty years nas enabled the
publishers of THe Sckentific Anerioan to establish foreign countries，and it has always been that alpa have the business of thotr clients promptly and proper If done and their interests faithfully guarded．
A pamphlet containing a sy nopsis of the patent laws
of all countries，including the cost for each，and othe information useful to persons contemplating the pro curing of pa
thls office． entrific americican，cordially invite all persons desiring any infurmation reative to patents，or the registry of trade－marks，in this country or abroad．to call at their sultation，and advice free．Inquiries inventions，oon－ snswered．

Address， \qquad
MUNN \＆CO．，
Branct Offices：No． 622 and 624 F Street，Pacif

NOTELTY ELECTRIC 00

Electric Lidhting，Arc，and Inca
Lightirig for Dwelings，Stores，

 mmery wheels．
 NEW YORIK BEITING \＆PACIKING CO．

Telegraph and Electrical Melcal SUTPPRLIES

The WatertonseSysitem arc lighting．

 preservation of bullding ma

beFore you buy a bicycle

Bation tow A Amy

TEAM CATAMARAN MAY BAR－

otto cas encine

ICE\＆REFRIGERATING

Barnes Foot－Power Machinery

THE RESOURCES OF ALASKA．- AN

DRY AIR REFRIGERA TING MACHINE．

RALLWAY AND STEAM FITTERS＇SUFPLIES Rue＇s Little Giant Injector．

CASARTMRYE

Orton ifg．Co．，
STERLING，ILL

Perfect

NEWSPAPER FILE

MUNN \＆CO．

ROCK BREAKERS AND ORE CRUSHERS

HYDRAULIC FLANGED HEADS，

of iron or STEEL，for boiler and tank makers．
Unequaled for Strength and Uniformity． THE DICKSON MANUFACTURING CO．

EORAMTSIN，PA．
57 Oliver stret Boston 112 Liberty street，New York

VOLNEY W．MASON \＆CO．．
FRICTION POLLETS CLUTCHES and ELEVATORS
ESSENTIAL ELEMENTS OF PLANTS

 a．W．A PSEY，North Cambridge，Mass． DEAF－MUTES．－AN INTERESTING PA．

BELTING AND PACKING COMP＇Y

INSURANCE（G．HARTFORD ConN．

 POLLSHING FELTS．ALBERED DOEEGE，
122 East 13th Street，

WORKSHOP RECEIPTS．

For the use of Manufacturers，Mechaniss，and Scien－
tific Amateurs．The best Iate collection published of or tifc Amateors．The best late， lico
such a wide variety of information．

WT Send for our complete Catalogue of book free to EF In ordering single volumes，be particullar to men－
ion the＂series＂wanted． Sent pastpaia by muNN e co．， 361 Broadwav，
ewn York，on receipt of price．

The only Real Treatise on the Subject．
The Windmill as a Prime Mover．

CURE Fi̛ilide AF

ASBESTOS．－NATURE OF THE MIN－
 Fic．Ambrican tiplemer No．A85．Price 10

T0

WIMMING．－DESCRIPTION OFTHE

GURES GUARANTEED TO MEN

2tbvertisements.

 ariLe: PLAIN BRACE, A RATCHET BRACL Materal, style, Finish, , Durability, in all respects this brace is warranted to be postago pald by us on receipt of 83.00 . Most Hard ware dealers will furnish it al the same price. MILLERS FA
No. 74 Chamber St., New York.

To Business Men.

The value of the Scientific American as an adver-

 is many times greater than that of any similar journal now published. It goes into all the States and Territories, and is read in all the principal libraries and readingrooms of the world. A business man wants something more than to see his advertisement in a printed news paper. He wa ts circulation. This he has when he advertises in the Scientific American. And do no some other paper for the ScIENTIFIC AMERICAN, when selecting a list of publications in which you decide it is or your interest to advertise. This is frequently done
for the reason that the agent gets a larger commissio from the papers having a small circulation than is allowod on the SCIENTIFIC AMERICAN.
For rates see top of first column of this page, or ad 361 Broadway, New Yoik.

AERIAL NAVIGATION.- DESCRIP

Mineral Lands Prospected.

I T. Jösi y
ghicago. PHILADRLPHIA. LONDON.
Lightning rods.-DEsCRIPTION OF

INFERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas.

VENTILATION.-GREAT IMPORT ance of ventiation. The ritiation or air that is constant

TITHERBY, RUGG \& RICHARDSON. Manufaoturers

HARRISSOORLISS ENCI Wtith Harts' Pat. Improvements, from 10 to 1,000 H E manual. By di W. Hill, M.E. Price 81.25.

PATENTS.

MESSRS. MUNN \& CO., in connection with the publi-
cation of the ScIENTIFIC AMERICAN, continue to exmine improvem and to for Inventors.
In this line of business they have had forty one years
experience, und now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the prosecution of Applications. for Patents in the United
States, Canada, and Foreign Couatries. Messrs Munn Co. almoattend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Intringements of Patents. All business intrusted t reasonable terma.

raivinn \& CO., Solicitors of Patente, branch offices - No 620 and 21 is clad Bullding, near 7th Street, Wambington, D. C.

Androws' Offices \& Bank Dosks

AQUA PURA Turbid Water Made Clean
 Gard Water Made Soft.

 time

NEWARK FILTERING. CO., NEWARK, N. J. tribune buildina, New Yore.

MACHINERY AND EDUCATION--A

 Colombia Bliccles and Tricgcles. many jipligyements Not Spring Catalogne Sent Froe.

RUBBER BELTING, PAGKING, HOSE

MECHANICAL AND MANUFACTURING PURPOSES THE QUTTA PERCHA AND RUBBER MFG, CO.,

PAGE BELTINREO. CONCORD, N. H.

PERMANENT BROMIDE PAPER

EVAPORATING FRUIT
 Yain

E NGINEERRS, Capitalists. Illustrated working mo
EDUCATION OF TBE AMERICAN
 and

FIRE DAMP IN COAL MINES.-DE

Ose the Jenkins standard packing in the wo Joint you have, and if, after following directions, it is
What we olatm, WE WILit REFUND THE MONEY. Our "Trade Mark" is stamped on every, sheet. None

Ј円NTRIN® BROE., y1 John Street, N. Y. 79 Kilby Street, Boato

 95 MILK ST. BOSTON, MASS.This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

DRAWING \mid Ineatata (ataog

 INSTRUMENTS.ETUP Capable of Transmitting any

ฐrientific Amexicau

The Most Popalar Sdentific Paper in the World.

 Onls 83.00 a Year, incinding Postage. Weekly This widely circulated and splendidly illustrated解 teen pages of use ul information and a large number ororiginal engravings of new inventions and discoveries, epresenting EngIneering Works, Steam Machinery Chemistry, Electricity Telegraphy, Photography, Archiecture, Agriculture, Horticulture, Natural Instory, etc. Alt Clames of Readers find in the Scienvific ormation of the day; and it is tbe atm of the pabitighers to present it in an attractiveform, av olding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive this journal affords a constant supply of instructive reading. Itis promotive of it nowledge and progress in
every communty where it circulates. Teims of Subscription.-One copy of the scrisin-
TIFIC AMERICAN will be sent for one vear- 62 numbersTIFIC AMERICAN will be sent for one year-62 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United states
or Canada, on receipt of three dollars by the pub11shers; six months, 81.50 ; three months, 81.00 . Clubs.--One extra copy of the ScIENTific Ameri-
CAN will be supplied gratisfor every clubof five subscribers CAN will be supplied gratisfor every clubof five subscribers
at
83.00 each; additional copies at same proportionate at 83.00 each; additional copies at same proportionate
rate. The safest way to remit is by Postal Order, Draft, or Express Money Order. Mony carefully placed inside
of envelopes, securely sealed, and correctiy addressed, seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., payable to MIGIVIN \& CO.; 861 Broadway New York.

TIXI

Scientific American Supplement. This is a separate and distinct publication from
THic Scientipio AMERICAN, but is uniform therewith in size, every number containing sixteen large pages. weekiy, and includes a very wide range of contents. It presents the most recent papers by eminent writera in all the principal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History, Geography, A rchæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mantug, Ship Building, Marine . Fngineering, Photoferniny, Technology, Manufacturing Induatries, Santary, En-
gineering, Agricuiture, Hörticíltare, Domestic Eoonomy, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied

and Manufactures at home and abroad are represented and described in the SUPPLEment.
Price for the SUPPLEMRNT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AM-
ERIC AN and one copy of the SUPPLEMENT, both mailed for one year for 87.00 . Address and remit by postal order. express money order, or check.

MUNN \& Co., 361 Broadway, N. Y., Pablishers Screntific American.
To Foreign Subscribers.- Under the facilitles of
the Postal Union, the Scientric American is
 by post direct from New York, with regul rity, to sub-
seribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Gẹrmany, Russia, and all other European States; Japan, Brazll,
Mexico, and ail States of Central and South Americe Mexico, and ail States of Central and South America.
Terms, when sent to foreigh countries, Canada excepted, \$4, gola, for SoIENTIFIC AMERICAN, one year; \$9, gold, one year. This.includes postage, which we pay. Remit by postal or express money order, or draft to order of
MUNN \& ©O., 361 Broadway, New York.

PRINTING INTKS.

