fficient of absolute expansion of glycerine is 0.0004 for $1^{\circ} \mathrm{C}$. In correcting a barometer, the absolute coefficient is the one to be eused. Messrs. Black \& Pfister, now of the Draper Manufacturing Company, e 152 Front Street, were the instrunfent makers who assisted in its construction

COMBINED HOOK AND BUCKLE

The wire of which the main portion of the buckle is made is bent to form an oblong loop, with paralle arms projecting from one of the longer sides; these
 arms are curved over to ward the loop and pro. vided at their extremities with eyes. The tongue is formed of a. wire pointed at one end, and provided with an eye at the other end, which is placed be tween the eyes of the apms; a wire, forming the pintle of the buckle, passes through the eyes and has its ends bent over to hold the parts in proper position. The arms form a double hook for the reception of the link of a chain, a ring, or a wire rope, while the tongue may be used in the same manner as the other buckle tongues for engagement with the strap, a link of a chain, or a loop in a wire cord ar rope. This buckle is useful for application to harness and saddles, and for the temporary repairing of straps and various kinds of rigging.
Further particulars can be obtained by addressing the inventor, Mr. James J. Pinkhain, of Stillwater Montana.

A Suré Lnvesitment-pividend Every Week.

This issue closes the .fifty-fifth volume of the Scien tific American, and with it a considerable number of subscriptions expire.
Noticeis to this effect have been sent to many thou sands of our present subscribers. But the quick response and rapid rate at which the renewals are being made, together with the accession of new subscribers, encour ages the publishers to believe that before the middle of January they will have a lärger list of old and new subscribers than has ever before appeared on thei subscription books
The fact that the public have lost money and con fidence in many ventures leads them to seek new and better paying investments. This paper, 'established forty years ago, provides an opportunity of making an investment, the returns of which are sure and made weekly.
The security is unquestionable, and dividend guar anteed every week. The following are the conditions on which everybody can become a stockholder, and the public arecordially invited to examine the quatation herewith appended :
Rates For the scientific american publications Scientific american.
Scientific American Supplemen
1 year, $\$ 3.00$
Scientipic American and Supple
$\begin{array}{lll}1 & \text { " } & 7.00 \\ & & \end{array}$ (Proportionate rates for half year.)
Now is the time to send in your names for the new volume of each publication, which .commences next week.
The safest way is to remit by check, postal order; express order, or registered letter, made payable to the order of Munn \& Co. Address all letters to 361 Broadway, New York.

COTTON CHOPPER.

This cotton chopper is so constructed that the cot ton will be chopped to a stand as the mačhine passe

PULS' COTTON CHOPPER

along the rows of the plants, leaving the hills of the plants at uniform distances apart. The axle revolve in bearings in the lower ends of hangers, whose upper
ends are attached to the lower side bars of the frame. Upon the inner ends of the hubs of the drive wheels are formed ratchet wheels, with which engage pawls pivoted to the outer ends of arms, and which are held against the wheels by springs. The other ends of the arms are held to the axle by set screws. To the axle is attached a large beveled gear wheel, which meshes with a wheel on a shaft mounted so as to have a movemen in the direction of.its length. The forward part of the shaft is squared, and to it are secured two parallef slotted bars in which fit lugs formed on the ends of the shanks of the chopping hoes. The shanks are thus prevented from turning, and the hoes can be ad justed, by loosening the nuts of the holding bolts, to work deeper or shallower in the ground as may be required. By means of a suitably arranged lever, placed ithin easy reach of the driver, the shaft can he moved longitudinally, so as to throw the forward gear wheel into or out of gear with the main wheel mounted on the axle. The chopping hoes can thus be made to revolve or can be held stationary whenever required.
This invention has been patented by Mr. E. C. A. Puls. of New Braunfels, Texas.

TELEPHONE TRANSMITTER.

In the engraving upon preceding page, Fig. 1 represents a liquid transmitter, which is so wired that in its normal state the current circulates around the induction coil, D, with its full strength. The reason for this is hatthe vibrator is then nearer the screw, A, than the crew, C. The vibrator is actuated by the diaphragm of the mouth piece, E , and its lower end enters, between the points of the screws, A C, the conducting liquid contained in the non-conducting vessel, G. It is evident that the strength of the current passing around the induction coil will be governed by the variations of the distances of the vibrator betw een the screws, and which are due to the action of the diaphragm in the mouthpiece. One of the many ways of wiring the instrument is clearly shown in the engraving. Another is to connect the wire leading from the positive pole of the battery where the negative wire is showin connected, and connect the negative wire with the wire of the screw, A.
Fig. 2 shows another construction of the transmitter in which the morator consists of a centrally pivoted lever, which is actuated by the diaphragm in the man ner illustrated. Each end of the lever carries a scre that projects downward into the liquid, so as to face screw passing through the bottom of the vessel. The distance between each pair of screws will thus be varied by the movement of the diaphragm, and the strength of the current passing throgh the coil will be regulated accordingly.
This invention has been pate ted by Mr. F. G. Sar gent, of Graniteville, Mass., who will furnish any urther information.

IMPROVED SUGAR MACHINERY.

Among the exhibits in the machinery department of the Edinburgh International. Exhibition, one of the most conspicuous is that of Messrs. A. \& W. Smith \& Co., Eglinton Engine Works, Glasgow, a specialty f sugar machinery.
The most conspicuous object in the group is a vacuum pan for the finishing process of boiling and crystallizing the sugar, of which we give herewith an illustration from Engineering: The heat is imparted by steam to the contents of pan through an inner bottom of copper and by a series of copper coils or worms ; and the operation is conducted in vacuo by means of a neatly designed horizontal vacuum pumping engine. This pan is mounted on a elevated platform (for convenience in discharging its contents into the hopper of the centrifugal sugar-dpying machines), and the body and top of the pan are lagged $\$ y$ ebony and whitewood; the fittings* and gauges are of argozoid, a new white metal, whic. gives the whole apparatus a very attractive appearance. The discharge of this pan is equal to six tons of dry sugar. ${ }^{\circ}$ The sugar, after having been.concentrated and crystallized in the vacuum pan, is run into the hopper or mixed over the centrifugal sugar-drying machines of improved construction.
These machines are on the tell-known self-balancing suspended principle, the cylindrical baskets which receive the sugar revolving at a high speed, and purging the sugar from any molasses which it contains. Each basket dries one cwt. of sugar at a charge. The dried sugar is discharged from the bottom of the baskets on to conveyers or bogies, as the case maty be.

MERCULT BUBBLES.

- by t. o'conor sloane phed

Lord Rayleigh, in one of his recent addresses before the British Association for the Ad vancement of Science, made an interesting allusion to soap bubbles: He declared that one of the unsolved problems in natural science is comprised in the question, why soap and water form almost the only solution out of which reasonably large bubbles can be blown.
Both the formation of bubbles and globules can be produced with mercury exactly as with water. A quantity of the metal is placed in a vessel of glass, and
water is poured over its surface to the depth of an inch. From a bottle more mercury is now poured into the vessel. The height of fall should about six inches. As the falling fluid strikes the mercury in the vessel it acts as water falling into water does, with one exception. The latter carries air under the surface forming bubbles filled with air. The falling mercury, instead of carrying air in its descent, forces water under the surface. Mercury is thirteen times as heavy as water. The water thus carried down instantly rises,

MERCURY FOAM.
and the exact reciprocal of the action described in the case of water and air takes place with mercury and water as factors.
As the water rises above the surface of the mercury on account of buoyancy, it picks up and raises a film o mercury. A hemispherical bubble is formed upon the surface of the fluid under the water. Water foam con sists of incompletely spherical films of water filled with air. In the experiment just described, mercury foam is produced, the partial spheres of mercury film being surrounded by and filled with water. The fact that they are bubbles may be recognized by their shape They form the characteristic line or angle of junction with the mercury on which they rest. They are evi dently filled with water, for when they break no air es capes. They can be contrasted. with globlues that usually form upon the surface at the sametime. These tend to run to the periphery of the vessel, and possess their characteristic spheroidal shape. Sometimes bub bles half an inch or more in diameter can thus be ormed.
To demonstrate still further the analogy with water films, bubbles may be blown. A tube or pipette is filled with water. Its end is placed beneath the sur face of the mercury, and bubbles are blown by forcing the water out of the pipette. As a rule, a far inferio effect is thus produced, but the method is of interest and shows more clearly to what action the formation of these bubbles is due.
Finally, a flat film can be formed, such a one as water

BLOWING MERCURY. BUBBLES-MERCURY FILM.
forms across the opening of a pipe or within a wire ring: A piece of copper wire about as thick as a steel knitting needle is bent at the end into a circle. The end must touch the wire at the bend, making a con
tinuous circle. By bringing the bent portion in contact with a globule of mercury and some dilute sul-- phuric aci-on a saucer, the wire loop becomes amalgamated or alloyed with mercury. Then, by sweeping it through mercury overlaid by water, with a quick skimming movement, a film can.bepicked up. Water will rest on its upper surface. This can be removed with blotting paper, leaving a [pure mercury film. It must be held horizontal. It immediately breaks if an attempt is made to bring it into the vertical plane. The loop should not be much over a quarter of an inch in internal diameter.

FALL OF A GREAT WATER TOWER.

In various parts of the country it has become common, in connection with local water works, to erect slender towers or stand pipes for the purpose of maintaining the required head or hydrostatic pressure in the distributing pipes. The common method is to erect a simple iron cylinder or stack of, say, 16 ft . diameter and a hundred feet or more in height, into which the water is pumped and held like a cistern, the lower end of the cylinder being. connected with one of the water distributting mains. In our paper for October 23, 1886; we gave an illtstration of one of these stand pipes, as erected at Victoria, Texas, the upper end of which, not being at the time filled with water, had been damaged by a hurricane.
We now give illustrations of the far larger stand pipe of the Kings County Water Works, located at Sheepshead Bay, near Brooklyn, N. Y., which, at 1 P.M. on October 7, 1886, suddenly collapsed and fell, while being charged with water during a preliminary trial of its strength.
This stand pipe was 250 ft . high, 16 ft . in diameter at its base and for a height of 70 ft ., then tapering upward for 25 ft ., and then rising 8 ft . in diameter. A very strong and substantial foundation of concrete had been constructed, 33 ft . in depth below the surface of the ground. On this the stand pipe was built, the contractor beting H.S. Robinson, of Boston, Mass.
In the construction of the work, the steel plates were hoisted to place by a derrick worked from within the tower, as indicated in the illustration at the left, which shows the structure partly completed.
As before stated, the explosion took place at 1 P.M., when the neighbors were startled by a rumbling noise followed by a crash like that of thunder. There was a slight vibration of the earth, but it was all over in less than thirty seconds. The people thought it was an earthquake, and rushed from their houses in terror. The shook wās felt in all directions within a mile or two:
of Sheepshead Bay. A cloud of dust was seen rising; from the locality, and when it had floated away the water tower was discovered lying on the ground, with tons of steel plates scattered in every direction. Great volumes of water rolled from and around the prostrate structure, and in a few moments nineteen acres of land was submerged.
Some water had been pumped into the tower a week previous to the explosion, but the real test was not made until the day of the explosion. It was supplied from drịve wells in the immediate vicinity. The large engines were set in motion at the pumping.station shortly after 11 o'clock. Two hours later the great .tank was nearly filled, there being $227_{\text {feet }}^{\text {fee }}$ water in it, which would make about 400,000 gallons. The pressure was then 127 pounds to the square inch. It was noticed then that the tower leaked in some places, and Mr. Robinson prepared to mount the narrow iron ladder that led to the top of the structure, and make an examination. He approached within about five feet of the tower when he heard a rumbling noise like that of a rushing train, as he expres it, and the płates for a distance of twenty feet from
the grourd parted and let loose the water. Others dethe ground parted and let loose the water. Others de-
scribe it as like the explosion of a steam boiler. The volume of liquid rushed with great force, and Mr, Robinson was caught in. t : He was carried nearly fifty feet by the wave, and that saved his life. Almost in the same moment a large section of steel plate weighing a ton or more crashed down upon the spot where he had stood. Another section weighing five tons was thrown fifty feet in an opposite direction. Small pieces were tossed all around the base of the tower.
Meanwhile, the tower, supported by the wire cables alone, tottered for a moment and then fell with a crash and rgar in a northeasterly direction. The heavy steel plate, bolts, and braces were broken, bent, and twisted like so much paper. The rush of the water-had stirred up clouds of dust, and for a time the scene was concealed from view. People in the immediate vicinity thought that the dust was escaping steam. When Mr. Robinson recovered himself, he was floundering in three feet of muddy water. His hat, coat, pocketbook, and a number of papers were gone. He strug gled to his feet and waded toward a dry spot a quarter of a mile away. Though considerably bruised, he was not seriously injured. His pocket-book and clothing were found some hours later near the wreck. The soil about the tower was of a sandy character, and the
water quickly disappeared, exeept in places where the
sand was mixed with clay. Several acres of rye that had been planted by Mr. Stephens disappeared after the explosion. No other damage was done.
The following from the contract gives the particulars
of the structure. The general conclusion appears to be that bad work in putting up the great pipe and poor material were the causes of its failure.

Robinson Boiler Works, 28 State St., Boston October 6, 1885.
Benjamin F. Stephens, Esq., President:
I will make and erect on a foundation prepared by you near Coney Island, New York, a stand pipe 250 ft . high, as described below :
Pipe will be 16 ft . diameter up to 70 ft ., then in the next 25 ft . taper in to 8 ft . diameter. Bottom of $7 / 8 \mathrm{in}$. steel, 17 ft . diameter. Bottom course connected to bottom by $6 \times 6 \times 7 / 8 \mathrm{in}$. angle iron, flange turned out; 15 braces on the inside.
First 5 ft . of pipe of $7 / 8$ steel, with 3 rows of rivets in vertical seam; 30 ft . of pipe of $3 / 4$ steel, with 3 rows of rivets in vertical seam ; 15 ft .'of pipe of $5 / 8$ steel, with 3 rows of rivets in vertical seam; 20 ft . of pipe of $5 / 8$ steel, with 2 rows of rivets in vertical seam; 25 ft . of pipe of $5 / 8$ steel (taper), with 2 rows of rivets in vertical seam ; 5 ft . of pipe of $5 / 8$ steel (1st course above taper) ; 30 ft . of pipe of $1 / 2$ steel; 35 ft . of pipe of $3 / 8$. steel; 30 ft . of pipe of ${ }_{1}{ }_{18}$ steel; 30 ft . of pipe of $1 / 4$ steel; 25 ft . of pipe of B_{16} steel.
For the first 75 ft . the course will be all inside, so at that height the diameter will be lessened by the thickness of the plates.
In the-taper, the course will be all inside, and above that they will be large and small.
All of the plates will be steel stamped $60,000 \mathrm{lb}$. tenile strength. All of the vertical seams above the first 50 ft ., and all of the horizontal seams, will be double riveted, with sufficient lap to make a good job.
I will rivet on to the outside. of pipe a ladder running from top to bottom. Lower half of sides of 2 . in. rounds of $3 / 4$ round iron 16 in . long and 12 in . apart. I will rivet to pipe three manhole frames; position as shown on tracing, also two nozzles on bottom course. I will rivet on to pipe two balconies (one under each of the upper manholes) with wrought iron brackets and loor as shown on tracing.
I will furnish and attach to the pipe twelve guys of 1 in . wire rope-six of them 100 ft . from the ground, and six 25 ft . from the top; the understanding being that you are to furnish and put down the anchors for me.
I will put around the top a 3 in . by 3 in. angle iron, and on the inside of the 25 ft . of $\frac{8}{16}$ iron I will rivet 4 in . by 4 in . \mathbf{T} irons to stiffen the same. I will .also rivet on 12 (twelve) 4 in. by 4 in . \mathbf{T} irons to strengthen the joints where taper section of pipe joins the straight. Each piece to be 10 ft . long, and extend five feet above each joint and five feet below, eight of these T irons on ower joint, and four on the upper.
Price for the "stand pipe" completed as above ater-tight, and to your satisfaction, $\$ 16,625$ (sisteen housand six hundred and twenty-fivedollars).
In the above price I have accepted your proposition to do the teaming from the dock at BayRidge or Long Island City to stand pipe site of all the material and tools used in the construction of said pipe for $\$ 350$ (three ed and fifty dollars).
Signed,
H. S. Robinson, .By J. M. Robinsón.
FALL OF A WATER TOWER AT KANKAKEE, ILL.
During a gale of wind on October 14, 1886, the water tower at Kankakee was overturned. The wind began blowing very strongly in the early morning, and reached an estimated velocity of sixty miles an hour By 9 A. M. the tower was observed to be swaying slightly; the vibrations increased until the successive
wind gusts raised it on one side or the other several inches at the foundation. An unsuccessful attempt was made to arrest this movement by tightening the uts on the anchor rods, but the tower soon fell.
We quote the following particulars from the Kankakee Gazette :
"As the gale grew stronger, the tower with each vibration lifted itself further from its bed. Meantime, he top of the tower inflated and contracted like the sides of a panting horse. Then the windward side collapsed, forming a pocket extending downward from the top twenty-five or thirty feet, and the fall of the tower soon followed in a direction from the wind.
"The tower was 124 feet high and 20 feet in diameter It was constructed of plates of $5 / 8$ inch boiler iron, four feet wide and ten feet long, diminishing in thickness to No. 9 iron (one-eighth of an inch thick) at the top. It was intended to have iron rods across the top to act as braces and prevent a collapse. These were put on, it is said, but takenn off for some reason. The tower was erected .by the Sharon Boiler Works, of Sharon, Pa., under the direction of William Jones. The foundation was of stone and concrete, seven feet deep, about twenty-one feet in diameter, and rose about eightinches above the surface of the ground except on the side to-
ward which the tower fell, where an excavation left
the wall exposed for about a yard. Mr. Shannon, superintendent of the Water Works Company, computed the resisting or supporting capacity of the foundation at $160,000,000$ pounds, while the tower when filled with water would bave weighed only $22,000,000$ pounds. Six anchor rods, two inches in diameter, extended from about six•feet above the foundation into the foundation a distance of two feet where they turned at right angles'and ran laterally where they turned at right angles and ran laterally
into the stone about two feet. One-third of the foundation, on the side toward which the tower fell, is broken down and sloughed off to a depth of three feet. Whether this crumbling began before the fall of the tower, or was caused by the weight of the tower as it leaned far over, we cannot say. On the windward side the rods were broken off."

John C. Hoadley.

On the 21st of October, 1886, death brought to a close the career of John Chipman Hoadley, of Boston, U. S., an American engineer whose breadth of attainments rendered him one of the leading men in the profession, especially in steam engineering, in which he was an au thority equaled by few.
He was born in the State of New York in 1818, and his first engineering experience was in connection winh the system of State canals, which was founded by the Dutch settlers in the seventeenth century, and increased from time to time as the needs of the day demanded. Leaving the State engineers' corps at the age of twenty-six, he became engineer for the construction and equipment of a number of mills at Clinton, Mass., devoting himself to the wide range of work necessary to build up a variety of industries, a task which could not be accomplished except by one possessed of unusual force, skill, and versatility.
Later, he became manager of a large machine shop in Lawrence, and for a number of years was engaged in the manufacture of locomotives and textile machinery. Hisexperience with locomotivesled himinto an analysis of the dynamical relations which speed bore to the operation of engines; and the result of his investigations, partly mathematical and partly experimental, resulted in the invention of the Hoadley portable engine, which was probably the first application of scientific. principles to the desigh of high-speed engines. These engines contained numerous radical features, since appeopriated by others, notably the application of an automatic variable cut-off to a single slide valve, operated by a governor. attached to the side of the driving pulley of the engine. We do not speak by-the letter as to the exact limitations of Mr: Hoanleytsinventions in thris re spect, as. measured by the patents issued to him, but the fact remains that he was the pioneerin the successful application of the methods of construction of the Hoadley engine, which was manufactured in great numbers for many years.
During the later-years of his life he separated from commercial and manufacturing affairs, and confined his attention to the practice of his profession inconsulting engineering and as an expert in patent causes. In this latter capacity his services were held in highest repute, his retentive memory. rendering. an extended reading and wide experience tributary to a power of keen analysis which would set forth the measure of each patent's merits or the worth of the mechanical features of an invention.
His acquirements were not limited to technical mat ters, but extended through a wide range of general culture. The transactions of the American engineering and scientific societies contain frequent contributions from his pen; the members of the British Association nfay recall among these his paper on "American Steam Engine Practice in 1884," read at the Montreal meeting; and which was the first step in the recent polemical engineering papers respecting English and American railway practice.
Mr. Hoadley was always interested in public affairs, but he held few offices. He was, however, the engineer member of the Board of Health of the State of Massachusetts. He also visited England arfd the Continent in 1862 , on the part of the State Government, making an examination of fortifications for the purpose of deising a system for American sea coast defences.
The professional work of Mr. Hoadley is shown by its nfluence over à wide range of engineering practice in mill work, applications of steam, sanitary engineering, and methods of expert evidence, rather than in any massive structures which bear his name as builder. In his personal address he was especially genial, and endeared bimself to a large number of friends.-London Engineering.

Improved Lock'torifirearms.
In our issue of December 11 we described and illusrated an improved lock for firearms, invented by Mr. Charles E. Goodwin, of Saybrook, O. We omitted one uportant feature : A single pull of the trigger will fire both barrels consecutively. By properly adjusting the arms of the sears, both barrels can be cocked at the same time and fired simultaneously or consecutively, as may be desired; or, when both are cocked, one can be fired and the other not.

