fficient of absolute expansion of glycerine is 0.0004 for $1^{\circ} \mathrm{C}$. In correcting a barometer, the absolute coefficient is the one to be eused. Messrs. Black \& Pfister, now of the Draper Manufacturing Company, e 152 Front Street, were the instrunfent makers who assisted in its construction

## COMBINED HOOK AND BUCKLE

The wire of which the main portion of the buckle is made is bent to form an oblong loop, with paralle arms projecting from one of the longer sides; these
 arms are curved over to ward the loop and pro. vided at their extremities with eyes. The tongue is formed of a. wire pointed at one end, and provided with an eye at the other end, which is placed be tween the eyes of the apms; a wire, forming the pintle of the buckle, passes through the eyes and has its ends bent over to hold the parts in proper position. The arms form a louble hook for the re ception of the link of a chain, a ring, or a wire rope, while the tongue may be used in the same manner as the other buckle tongues for engagement with the strap, a link of a chain, or a loop in a wire cord ar rope. This buckle is useful for application to harness and saddles, and for the temporary repairing of straps and various kinds of rigging.
Further particulars can be obtained by addressing the inventor, Mr. James J. Pinkhain, of Stillwater Montana.

## A Suré Lnvesitment-pividend Every Week.

This issue closes the .fifty-fifth volume of the Scien tific American, and with it a considerable number of subscriptions expire.
Notices to this effect have been sent to many thousands of our present subscribers. But the quick response and rapid rate at which the renewals are being made, together with the accession of new subscribers, encour ages the publishers to believe that before the middle of January they will have a lärger list of old and new subscribers than has ever before appeared on thei subscription books
The fact that the public have lost money and con fidence in many ventures leads them to seek new and better paying investments. This paper, 'established forty years ago, provides an opportunity of making an investment, the returns of which are sure and made weekly.
The security is unquestionable, and dividend guar anteed every week. The following are the conditions on which everybody can become a stockholder, and the public arecordially invited to examine the quotation herewith appended
Rates For the scientific american publications Scientific American.
Scientific American Supplemen
1 year, $\$ 3.00$
Scientipic American and Suppley
$\begin{array}{lll}1 & \text { " } \\ 7.00 \\ & & \end{array}$ (Proportionate rates for half year.)
Now is the time to send in your names for the new volume of each publication, which .commences next week.
The safest way is to remit by check, postal order; express order, or registered letter, made payable to the order of Munn \& Co. Address all letters to 361 Broadway, New York.

## COTTON CHOPPER.

This cotton chopper is so constructed that the cot ton will be chopped to a stand as the mačhine passe


## ULS' COTTON CHOPPER

along the rows of the plants, leaving the hills of the plants at uniform distances apart. The axle revolve in bearings in the lower ends of hangers, whose upper
ends are attached to the lower side bars of the frame. Upon the inner ends of the hubs of the drive wheels are formed ratchet wheels, with which engage pawls pivoted to the outer ends of arms, and which are held against the wheels by springs. The other ends of the arms are held to the axle by set screws. To the axle is attached a large beveled gear wheel, which meshes with a wheel on a shaft mounted so as to have a movemen in the direction of.its length. The forward part of the shaft is squared, and to it are secured two paralle! slotted bars in which fit lugs formed on the ends of the shanks of the chopping hoes. The shanks are thus prevented from turning, and the hoes can be ad justed, by loosening the nuts of the holding bolts, to work deeper or shallower in the ground as may be required. By means of a suitably arranged lever, placed ithin easy reach of the driver, the shaft can he moved longitudinally, so as to throw the forward gear wheel into or out of gear with the main wheel mounted on the axle. The chopping hoes can thus be made to revolve or can be held stationary whenever required.
This invention has been patented by Mr. E. C. A. Puls. of New Braunfels, Texas.

## TELEPHONE TRANSMITTER.

In the engraving upon preceding page, Fig. 1 represents a liquid transmitter, which is so wired that in its normal state the current circulates around the induction coil, D , with its full strength. The reason for this is hatthe vibrator is then nearer the screw, A, than the crew, C. The vibrator is actuated by the diaphragm of the mouth piece, E , and its lower end enters, between the points of the screws, A C, the conducting liquid contained in the non-conducting vessel, G. It is evident that the strength of the current passing around the induction coil will be governed by the variations of the distances of the vibrator betw een the screws, and which are due to the action of the diaphragm in the mouthpiece. One of the many ways of wiring the instrument is clearly shown in the engraving. Another is to connect the wire leading from the positive pole of the battery where the negative wire is showin connected, and connect the negative wire with the wire of the screw, A.
Fig. 2 shows another construction of the transmitter in which the morator consists of a centrally pivoted lever, which is actuated by the diaphragm in the man ner illustrated. Each end of the lever carries a scre that projects downward into the liquid, so as to face crew passing through the bottom of the vessel. Th istance between each pair of serews will thus be istance between each pair of screws will thus be varied y the movement of the diaphragm, and the strengt accordingly.
This invention has been pate ted by Mr. F. G. Sar gent, of Graniteville, Mass., who will furnish any urther information.

## IMPROVED SUGAR MACHINERY.

Among the exhibits in the machinery department of the Edinburgh International. Exhibition, one of the most conspicuous is that of Messrs. A. \& W. Smith \& Co., Eglinton Engine Works, Glasgow, a specialty f sugar machinery.
The most conspicuous object in the group is a vacuum pan for the finishing process of boiling and crystallizing the sugar, of which we give herewith an illustration from Engineering: The heat is imparted by steam to the contents of pan through an inner bottom of copper and by a series of copper coils or worms ; and the operation is conducted in vacuo by means of a neatly designed horizontal vacuum pumping engine. This pan is mounted on a elevated platform (for convenience in discharging its contents into the hopper of the centrifugal sugar-dpying machines), and the body and top of the pan are lagged by ebony and whitewood, the fittincs* and gauges are of argozoid, a new white metal, whic. gives the whole apparatus a very attractive appearance. The discharge of this pan is attractive appearance. The discharge of this pan is
equal to six tons of dry sugar. 'The sugar, after having been.concentrated and crystallized in the vacuum pan, is run into the hopper or mixed over the centrifugal sugar-drying machines of improved construction.
These machines are on the Hell-Rnown self-balancing suspended principle, the cylindrical baskets which receive the sugar revolving at a high speed, and purging the sugar from any molasses which it contains. Each basket dries one cwt. of sugar at a charge. The dried sugar is discharged from the bottom of the baskets on to conveyers or bogies, as the case maty be.

## MERCUKT BUBBLES.

-. by t. o'conor sloane, ph.d.
Lord Rayleigh, in one of his recent addresses before the British Association for the Ad vancement of Science, made an interesting allusion to soap bubbles: He declared that one of the unsolved problems in natural science is comprised in the question, why soap and water form almost the only solution out of which reasonably large bubbles can be blown.
Both the formation of bubbles and globules can be produced with mercury exactly as withe water. A quantity of the metal is placed in a vessel of glass, and
water is poured over its surface to the depth of an inch. From a bottle more mercury is now poured into the vessel. The height of fall should about six inches. As the falling fluid strikes the mercury in the vessel it acts as water falling into water does, with one exception. The latter carries air under the surface forming bubbles filled with air. The falling mercury, instead of carrying air in its descent, forces water unde the surface. Mercury is thirteen times as heavy as water. The water thus carried down instantly rises,


MERCURY FOAM.
and the exact reciprocal of the action described in the case of water and air takes place with mercury and water as factors.
As the water rises above the surface of the mercury on account of buoyancy, it picks up and raises a film of mercury. A hemispherical bubble is formed upon the surface of the fluid under the water. Water foam con sists of incompletely spherical films of water filled with air. In the experiment just described, mercury foam is produced, the partial spheres of mercury film being surrounded by and filled with water. The fact that they are bubbles may be recognized by their shape They form the characteristic line or angle of junction with the mercury on which they rest. They are evi dently filled with water, for when they break no air es capes. They can be contrasted. with globlues that usually form upon the surface at the sametime. These tend to run to the periphery of the vessel, and possess their characteristic spheroidal shape. Sometimes bub bles half an inch or more in diameter can thus be ormed.
To demonstrate still further the analogy with water films, bubbles may be blown. A tube or pipette is filled with water. Its end is placed beneath the sur face of the mercury, and bubbles are blown by forcing the water out of the pipette. As a rule, a far inferio effect is thus produced, but the method is of interest and shows more clearly to what action the formation of these bubbles is due.
Finally, a flat film can be formed, such a one as water


BLOWING MERCURY. BUBBLES-MERCURY FILM.
forms across the opening of a pipe or within a wire ring: A piece of copper wire about as thick as a steel knitting needle is bent at the end into a circle. The end must touch the wire at the bend, making a con

