\$rimutific elmarian.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. bublished weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, postage included..
One cops, six munths, pustage include
.8390

The Scientific American Supplement
If idistinct paper from the SCIENTIFICAMRRICAN. THE SUPPL EMENT
 American an
receipt of
se
and scentienent

Scientific American Export Edition.

NEI YORK, SATURDAY, NOVEMBER 27, 1886.

Contents.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 569 .
For the Week Ending November 27, 1886. Price 10 cents. For sale by all newsdealers.
ASTRONOMY-Stellar Photography.-Note on Profs. Henry's
wors in this lineot reesearch.

 CHEMITRT, Combustion.-Oo combuntion with, special refer

 x. PH

THE DYNAMITE CRUISER.

The report that the contract had been let for build ing a cruiser specially designed and fitted for arm ament with Lieut. Zalinski's dynamite throwing gun has been contradicted as premature; but it is admitted that such a cruiser is to be built upon plans practically identical with those stated in the above mentioned re port, namely, length 230 ft ., beam 26 ft ., draught 71/2 ft. , estimated horse power 3,200, highest speed 20 knots. Under the supposition that this speed of 20 knots was intended to be a sustained speed, several critics have privately expressed their belief that no such vessel could be constructed; for they say that, inasmuch as the great 8,000 ton steamers are barely able to wake 18 to 19 knots in crossing the Atlantic, with a developed 12,000 horse power, a small steamer, such as is above knots.
There is a certain axiomatic character to these criti cisms; but the critics probably make a serious mistake in assuming that the speed of 20 knots is to be the craft's capacity for any great length of time. If she had a normal speed of fifteen or sixteen knots, which could be driven up by forced draught for even an hour or less to 20 knots, she would fulfill all the conditions necessary to success. For, under the lower rate of speed, she could overhaul almost any cruising fleet, or even any single cruiser, when making an ordinary service passage from one port to another. Then, not until the two craft were so close to each other as to recognize each other as enemies would the 20 knot speed be called for. It is not likely that a combat between an ironclad and a ligtor would cen ernse a dynamite shell or two in her heavy antagonist and finish her, or else she would be sunk by the ironclad's heavy fire
As regards the battery to be given to the dynamite gun cruiser, it is natimal tiat so untried an experiment should produce a good deal of divergence of opinion. In its favor it is said that the acknowledged success of the gun on shore can undoulutedly be repeated at sea. Its accuracy, lightness, and inexpensiveness, coupled with the terrific effect of its projectile charged with dynamite, are all cited as advantages which make such a gun especially desirable for a nation like ours, which does not wish to spend large sums on heavy ironclads and expensive guns. Assuming, therefore, that a cruiser can be built, having high normal speed and the capability of increase for short periods to a unique speed ; that she can carry all the air compressing machinery, etc., for her dynamite guns, without depriving her of coal carrying capacity; that she can work
her guns as effectively at sea as they have been worked her guns as effectively at sea as they have been worked
on land; that the long tubes will not be so affected by the constant tremor and vibration of a screw steamer at sea as to be thrown out of line or "buckled "-as
suming these things, there is good reason to expect good results from this cruiser when built.
But it is urged that the experiment is not beginning right ; that the conditions in the proposed experimental cruiser are not at all likely to be the same as they would be in a war ship intended for service cruising. In the first place, there is certainly an awkward uncertainty as to the position the two guns will occupy. It in lenatt: (possibly even 80 ft may be requisite), the guns cannot be mounted in broadside on a craft having
 only a certain fore and aft style of mounting can be
used, and that the guns can be fixed oniy in a limited used, and that the guns can be fixed oniy in a limited
arc on each side of the bow and stern. Granting four points on each side of the keel forward and aft, each gun would cover eight points only, leaving sixteen points in which the vessel could not fire at an enemy at all. Clearly such a limitation of her fighting powers would detract seriously from her efficiency, and it ought not to be permitted if it can be avoided.
There is one experiment that has not yet apparently occurred to the constructor of the so-called dynamite gun, or at least nothing has been done about it practically. If a very high elevation were given to it-say even 60°-the projectiles, instead of striking at a low angle, would fall perhaps a littlemore nearly vertical than they went up, and would strike the enemy's decks instead of the broadside plating. Inasmuch as the decks are always more vulnerable than the broadside, the effect of the dynaınite shell exploding thereon would be more damaging to the ship struck than it would be if the shell exploded against the broadside.
Such an unusual elevation would permit the guns to Such an unusual eled even from the broadside of a narrow craft like the proposed cruiser, while they could equally be fired at low elevations from the bow and stern. Of course such a use of the guns would be practicable only at such close quarters as to expose the craft to machine gun fire, and the game might not be worth the candle; but it would seem to be nearly the only way of utilizing these exceptionally long guns in ships of narrow beam. In narrow channels defended on each side, like the Narrows. this method of using the dynamit guas might be very effective. They could be sunk deep
guns and crews working them would be absolutely safe against the fire of a hostile fleet, while at the same time they could rain down shells upon the channel. Extremely accurate shooting could be secured with the compressed air guns, the effect of the wind being the only element of uncertainty $;-$ and twenty-five or thirty of these inexpensive guns, properly placed, ought to be ufficient to close any narrow channel against a hostile suffict.

The government may have adopted plans which will make the experiments on board this proposed cruiser conclusive; and while it seems at present as though he would be far from determining satisfactorily the practicability of using the dynamite-throwing gun at sea, it is well, in view of the importance of the issues at stake, to have the trial made.

TORPEDOES VS. RAMS.

The United States ship Tennessee, the largest in the ervice, and at present the flagship of the North Atantic squadron, met with a mishap at the Brooklyn Nary Yard on the 14th inst. A steam cutter of small dimensions bumped against her port bow and opened a hole nearly three feet long. It is thirty years since the Tennessee was launched. While she is one of the most comfortable vessels afloat, it is said she has long outgrown her usefulness for war.
The ease with which the hull of our best war ship may be penetrated presents a striking contrast to that of some of the old iron hulks of the British navy. For example, they lately tried at Portsmouth an experiment to see how lig a hole they could knock in the aff of the inonalad Resolazte by exuloding a first-etaiss orpedo under her bottom.
A 16 in . Whitehead, charged with 93 pounds of guncotton, was lashed to a boom and laid in contact with the port side, amidships. It was about 8 ft . under the surface, and close to the bilge keel. The conditions were entirely in favor of the torpedo, and it was expected that the destruction of the vessel would be both sudden and complete. The result, however, fell very far short of the anticipation. The ship was slightly inelined by the force of the explosion, and then listed a little in the opposite direction. Beyond this and the upheaval of the water, there was nothing to be seen by the spectators. Investigation showed that the bilge keel had been shaken off to the extent of 30 ft ., and the plating below much indented. Between the bilge keel and the armor belt the skin plating was forced in beween the frames, and three or four strakes had parted n the middle for a length of 8 ft . some of the butts had been opened, so that gashes 2 in . or 3 in . wide appeared at the junction. Internally, skylights were broken and the coal blown about, but only one compartment was penetrated. The exact amount of damage cannot yet be determined, but it is evident that the ship was not disabled, and could fight her guns perfectly well.

WORK AND HABITS

If the Knights of Labor can infuse in the mass of the organization the same ideas of personal habits as are voluntarily acted on by the managers, they will do much to improve the status of workingmen, whether laborers or mechanics. There already has been much improvement in this respect, the change being attributable to more intelligent estimates of the value of good habitwan those which prevailed a generation ago. It was considered not unusual for a generation ago. It was considered not unusual for a to be a free liver in the coarser meaning of the term ; indeed, the union of loose habits and the reputation for competence to do a good job appeared to be natural and expected. "Blue Mondays"were.common, the best workmen not putting in an appearance until Tuesday, requiring a day to get over the weekly debauch. Such men appeared to consider that their skill as mechanics entitled them to a license that was njurious to themselves and harmful to the employer's terests.
But the employers tire of these practices, and the dissipated workman cannot so readily assume on his skill as an excuse for his bad habits; the old notion of the union of drunkenness and duty, of immorality and ability, of high pay and low habits, is exploded. One of the most competent and efficient foundry foremen the writer ever knew lost his place in the establishment where he managed nearly fifty men, and his caste in the community, by his persistent practice of intem perate drinking. Said the manager, shortly after his dismissal : "I hardly know how to fill his place. There are nọt half a dozen men in the country who are his equals in the mixing of irons, the tempering of sand, and the carefulness of general management. I never lost a casting under him of the value of ten dollars. But I needed hin six days in the week, and I paid for his coolness, his judginent, and his full capacity. I do not require my men to become total abstainers, although some might benefit by that nethod; but I do want their intelligent work."
It may be a necessity that employs unreliable skill and presumptive talent, but employers will apply a

