air is forced by the pumps into the outer pipe and compressed therein, so as to apply the compressed air to the surface of the liquid in the outer pipe, and thereby assist in forcing it into the suction pipe. With this apparatus, water can be easily raised to any desired height.
This invention has been patented by Mr. Patrick F. Guthrie, of Franklin, N. J.

POLARIZED LIGHT.

A FEW OBJECTS FOR THE POLARISCOPE.
BY GEO. м. Hopkins.
II.

Scientific experimentation, though practiced merely as a pastime, can but elevate the thoughts and bring the mind into new channels, thus promoting knowledge to some degree, even though the student proceed no farther than the observation of effects. But once interested in effects, the inquisitive mind cannot rest satis fied without probing for causes.

So far as effects are concerned, the subject under con sideration is everything that could be desired, and nc great scientific knowledge or high manipulative ski is required to secure splendid results.
In a former article, the writer mentioned a few wa in which light could be polarized and analyzed, an gave hints as to some objects which might be view by polarized light.
A few simple objects easily prepared from mica here shown. The material is of course procurab everywhere, and it requires little more than a glan at the engravings to enable any one to prepare t objects. Doubtless many other forms than those ill trated will suggest themselves to the student

The simplest form is shown in Fig. 1. It consis thin plate of mica bowed into approximately cylindrical form, and secured by its edges to a p glass by means of narrow strips of gummed pape size is immaterial; the glass plate may be $11 / 2$ inches wide by 3 inches long. This object exhibits fine bands of prismatic color when viewed in the polariscope. Two such semi-cylinders, when crossed, exhibit the intricate figure shown in Fig. 2, with all the splendid colors of the spectrum
The object shown in Fig. 3 is formed of a disk of mica having a sector cut out and the radial edses owerlapped, forming a low cone. The overlapping 'dges are best fastened together by small tin clips insorted in holes in the mica and bent downward on opposite sid es. The clips are not noticeable, and are efficient in hglding the edges together. Cement will not answer the purpose, as it adheres to the surface only, and it must be remembered that mica splits almost indefinitely.
The cone thus made has the appearance in the po lariscope of a huge circular crystal of salicike. The colors of the cone may be heightened by momting it on a sheet of mica, as shown in the engraving. The cone is first placed in the polariscope, with he rolarizer and analyzer crossed, and turned untilit appears brightest, when the lower edge is marked. 'The mica sheet is then placed in a similar way in the tolarigcope

and turned and marked. The of $h e$ is then cemfted by its edges to the sheet, the
 ked edges of oth members being arranged in the ame direction.
The Maltese cross shown in 'ig. 4 is revoluble? The first step toward the preparation of this obje' is to
secure a pin head downward on a square of glass with sealing wax or other cement. A small paper tube which will fit the pin loosely is then made, and a little head of sealing wax is formed around the tube near one end. A piece of mica is selected which exhibits fine cфlors in the polariscope, and four equilateral triangles are cut from it, either with their corresponding sides clat upon the same base line, or with one side of each (ht from one side of a square, or they may be cut and 1 ounted haphazard.
i To the apex of the angle designed for attachment to

GABBEY'S AUTOMATIC GRAIN WEIGHING AND

 REGISTERING MACHINE.the paper tube a small drop of sealing wax is applied and with the tube on the pin the first triangle is at tached by holding it in the required position by means of a pair of tweezers, and then fusing the wax on the mica and that on the tube simultaneously by means of a small heated wire, such as a knitting needle.
The other members are placed and secured in a similar way, care being taken to arrange the triangles symmetrically, and at a slight angle with the plane of rotation of the object, as shown in the engraving.
The wheel suown ip-Fig. 5 and the star shown in Fig. 6 are prepared in a similar way. The sections of the wheel are cut from a circular piece of mica, and cemented in place on the paper tube after the fashion of a propeller wheel or wind wheel
Each ray of the star is made of two scalene triangles of mica oppositely arranged with respect to each other, and inclined in opposite directions, the longer and shorter sides of adjacent triangles being fastened at the periphery of the star by a minute drop of sealing wax.
In Fig. 6 beside the star are shown two somewhat similar objects, formed of strips of mica, pivoted together on a small rivet, one object having the pivotin the center of the strips, the other having it at the

MICA CONE.

end, giving the object an appearance similar to that of a folding fan.
Any of these objects may be viewed by means of the
black glass polarizer in connection with either of the
the simple form of Norremberg doubler. These objects are also very satisfactory when projected on the creen.

AUTOMATIC GRAIN WEIGHING AND REGISTERING

 MACHINE.This machine is designed especially for attachment to the elevator spouts of grain separators and corn shellers. The case is made in three parts--a large central part and two smaller end ones. In the upper and lower ends of the central part are placed plate valves. The upper valve closes against the sharp beveled edge of a metal strap designed to cut off straws, weeds, and other substances that would prevent the valve from closing tightly. The lower valve closes against the lower edge of a metal strap, the upper parts of which are bent upward and outward and are attached to the inner surface of the end of the central part. The valves are so connected that onc will always be closed when the other is open. Attached to the shaft carrying the upper valve is an arm pivoted to the rear end of a pawl operating numbered wheels (Fig. 3). With this construction, as the valve is lowered to admit grain to the central part of the case, which is designed to contain half a bushel, the pawl is drawn back, and when the valve is raised to stop the inflow of grain, the pawl is pushed forward to make the numbered disks register the amount. At the proper time the numeral $1 / 2$ can be seen through one of the holes in the door covering the register. To the shaft of the lower valve is rigidly attached the acute angle of a triangular arm, whose outer angles are cut off to form seats for a friction roller pivoted to the end of the short arm of a spring attached to the frame.
The long arm of the spring rests against a pivoted eccentric provided with an index finger, which points to a scale marked with the names of the different grains to be cleaned and weighed, and the number of pounds of each to a bushel. The tension of the spring is regulated by adjusting the finger so that the spring vill hold the arm with sufficient force to keep the valve closed until the weight of half a bushel of grain has been received upon it, when it will open to discharge the grain, and the upper valve will close to prevent any grain from entering the middle part of the case while the lower valve is open. The case is suspended from the spout of the elevator (Fig. 1) by spring hooks; the grain can be discharged in bulk into a wagon or into sacks. This invention has been patented by Mr. Robert S. Gabbey, of Rossville, Kansas.

Some ce suggests that trees after transplanting may be kept aîve by burying a rumf a wornots filled with water around the body and over the roots of the tree.

STAR FAN AND CROSSED BARS OF MICA.

The moisture which will percolate through the bottom and sides of the pots will be so gradual that two-gallon ones will hold enough so as not to require refilling for some time, and the roots will be kept moist till such time as they begin to sprout afresh.

A Promise of Better Things.

There are distinct indications of a reaction from the intensity of the labor disturbances. No doubt, this movement toward peace and quietness received its impulse from the murderous riots in Chicago. Reasonable workingmen, who had yielded to excited feelings, saw in those events a plain indication of the direction in which they were drifting, and they shrank from the prospect. Evil not infrequently produces good, and it is probably not an unfortunate thing that the agitation of the laborers so soon culminated in such a manifestation of fiendish outlawry. If we must have sores upon the body politic, the quicker they come to a head and break the better.
It looks now as if the differences between employers and employed would have speedy adjustment, and that matters will settle down in quietness, with a promise of a strong stimulation of business. Commerce of all kinds has been dammed up for several months by the troubles, and the accumulation will sweep swiftly onward as the obstructions are removed. There has been a clear gain to all hands in two directions. First, the sensible men in the labor organizations have more control than they had three months ago. Second, manufacturers are better organized to deal with labor questions, to help each other to resist oppression, and, perhaps, to help wage earners as well as themselves by checking reckless competition.
That there will be any general reduction of the period of labor to eight hours a day appears unlikely. The obstacle to the success of this project is not so much the opposition of employers as the resolute antagonism of the great mass of workingmen. There can be no doubt that these are far too wise not to perceive that the proposed restriction simply involves a plan for depriving them of the privilege of selling to best advantage the only thing they have to sell, namely, their labor. Thi feeling is particularly strong among skilled workmen who are frugal as well as industrious. Many of them would much prefer to an eight hour scheme an arrangement which would secure to them frequent opportunity to earn extra pay for working overtime. It is not too harsh to assert that the bulk of the men it is not too harsh to assert that the bulk of the men the kind of men to whom the two hours thus gained would be more hurtful than profitable. There is no greater nonsense than that contained in the theory that the two hours are wanted by men for the purpose of "improving their minds." Anybody who lives in a manufacturing town is aware that the number of workmen who care to iuprove their minds in any way is very sumblinded. The mn who have such ambition are almost invarialy velterniy
 question should be carried to the polls. This is an assertion the proof of which is difficult, b
fearlessly to our workingmen readers to declare if it is not true.
We may go a little further. The curse of the workingman in this country is the rum traffic. It is this that robshim of most of his wages, and in many cases it is in the taverns that he spends much of his spare time. It may be feared that the two hours proposed to be gained, by reducing the hours of labor, would be spent in the same places, and with them much more of the money earned. It will be remembered that all the Chicago socialists were associated with the beer saloons, either as owners or frequenters, and their places were the haunts and the rallying points of the rioters. Rum sellers wax fat upon strikes and disturbances, and they form the only class that would make a clear money gain by cutting down the hours of labor. These are hard things to say, but they are true, and they ought hard things to say, but they are true, and they ought
to be said. The money squandered in this infernal to be said. The money squandered in this infernal
business last year would have given us good trade and workingmen good wages right along. It is not the tyranny of employers that keeps men poor. It is the rapacity and devilish greed of the liquor dealer. The fact is demonstrable, not only that wages are far higher here than in other countries, but that they are far higher here now than they ever were before, and meantime living is cheaper. The constant tendency, moreover, is to still larger wages. Everything in this country tends to improve the condition and the chances of the laborer. If he falls behind in the race, when he has health and strength, the fault is almost certainly his. No organization can help him if he squanders his money and plays the fool. He will be beaten out of sight by the man who saves his earnings and obeys the requirements of reason and sense.-Teatile Record.

Water Tests.

Testor Hard Soft Water.-Dissolve a small quantity of good ssap in alcohol. Let a few drops fall into a glass of water. If it turns milky, it is hard; if not, it is soft.

Test for Earthy Matters or Alkali.-Take litmus paper dipped in vinegar, and if, on immersion, the paper returns to its true shade, the water does not contain earthy matter or alkali. If a few drops of sirup be added to a water containing an earthy matter, it will turn green.

T'est for Carbonic Acid. -Take equal parts of water
and clear lime water. If combined or free cartonice acid is present, a precipitate is seen, to which, if : few drops of muriatic acid be added, an effervescence ommences.
Test for Magnesia.-Boil the water to a twentietin part of its weight, and then drop a few grains 'pf neutral carbonate of ammonia into a glass of it and a few drops of phosphate of soda. If magnesi be present, it will fall to the bottom.
Test for Iron.-Boil a little nut gall, and add to th, water. If it turns gray or slate, black iron is present
2. Dissolve a little prussiate of potash, and if iron present, it will turn blue.
Testfor Lime.-Into a glass of the water put $t \mathrm{wom}$ dropsof oxalic acid, and blow upon it ; if it gets milkr, lime is present.
I'estfor Acid.-Take a piece of litmus paper. If $/$ turns red, there mu t be acid. If it precipitates adding lime water, it is carbonic acid. If a blue sug. paper is turned red, it i a mineral acid.

THE MINNEAPOLIS INDUSTRIAL EXPOSITION.

The people of the beautiful and enterprising city Minneapolis, Minn., are actively engaged in arrangi. for their grand industrial exposition, which is to opened on the 23d of August next. The financial $c^{\text {s }}$ partment is strong and substantial, showing admirab ${ }^{d}$ management. The stockholders are about 2,500 in nun ber.
The exposition has obtained, by donation of citizens, ${ }^{\text {s }}$, a site of 51 gacres of ground in the heart of the city,

THE-GREAT EXHIBITION BUILDING MINNEAPOLIS.
central and commanding position overlooking the Mississippi River and Falls of St. Anthony. The site alone is worth $\$ 200,000$. Including the value of the ground, the Exposition Association has a capital of $\$ 500,000$, and will open its fine building free from debt.
The exposition building is $336 \times 356 \mathrm{ft}$. in ground dimensions and 80 ft . high. The height to the top of the dome is 144 ft . ; to the top of the main pavilion, 128 ft . ; of smaller pavilions, 112 ft ; and to top of mast of great tower, 260 ft . The tower is $341 / 2 \mathrm{ft}$. square at the base, and has two balcomies, one at a height of 160 ft . and one 200 ft . high. The main entrance is $32 \times 64 \mathrm{ft}$., the size of tower windows $14 \times 80 \mathrm{ft}$., and of other windows $18 \times 30 \mathrm{ft}$.
The floor space amounts to $71 / 2$ acres, which exceeds that of the Chicago Exposition building by 100,000 ft. The walls are of brick and Mankato cream colored stone. The interior will be neatly finished in a fireproof manner, and so arranged that when occasion requires it will form a single auditorium, with accommodations for 40,000 people. A spacious annex will contain the art exhibit. Isaac Hodgson \& Son, of Minneapolis, are the architects of the building.
The exposition ha been organized as a permanent institution. The officers and directors are all prominent citizens and business men of responsiblecharacter. Hon. W. D. Wa hburn is President; S. C. Gale, VicePresident ; H. G. Harrison, Treasurer ; W. G. Byron, Secretary ; Col. L. B. Hibbard, General Manager. The exposition will be open for six weeks, from August 23 to October 3.
Leading among the industries of the city is the manufacture of flour. Minneapolis flour mills have a worldwide reputation. They are 22 in number, and furnish direct employment to $1,400 \mathrm{men}$. The value of buildings and machinery amounts to over $\$ 4,000,000$, and the operation of the business involves the inrestment of about $\$ 8,000,000$. The products for 1885 were worth $\$ 34,000,000$. The mills have an aggregate daily manufacturing capacity of 35,000 barrels of flour.
Second only in importance to the flour industry is the manufacture of lumber. The 21 sawmills last year cut $316,167,166$ feet of lumber, $72,202,550$ lath, and years amounts to over $3,000,000,000$ feet, sufficient material for the construction of houses enough for a city of $1,000,000$ inhabitants. In one day the muills can cut 2,600,000 feet of lumber.

Besides the State University, there are 31 public chool buildings in the city. The University main building was erected about twenty years ago. Sieveral others have since been added, and one structure is now building. Of thecity schoolbuildings, the High School is the finest. It wa built eight years ago, at an expense of $\$ 100,000$. Three school buildings are to be erected this season. The schools have now $14,000 \mathrm{pu}$ pils enrolled, and the school population is rapidly in reasing.
Lake Minnetonka, the leading lake resort of the Northwest, is practically a suburb of Minneapolis, being at a distance of only thirty minutes' ride by rail sad. It is a lake of 15,000 acres, dotted with islands, thit has 200 miles of shore. It is surrounded by heavy rurels, and forms a charming retreat for summer tour sts from all parts of the country. Palatial hotels and sts from all parts of the count
teamers have been provided.
Within the city limits are not less than ten lakes, hrue of which are each nearly a mile in diameter. In ormection with these, a comprehensive system of pub. parks and boulevards is being arranged.
The world-famous Falls of Minnehaha are less than 0 miles from the city limits, and a few miles further low, at the junction of the Mississippi and Minnea rivers, is Fort Snelling, a historic and picturute place. The city territory of Minneapolis has an ; of over 30 square miles, and touches, at one point, limits of the city of St. Paul.
detailed description of the city's many interesting res does not come within the scope of this article, the following statement of the business and imembat record for 1885 will give some idea of the ailing activity and progress : Assessed valuation, 5,3 ; new buildings erected, 3,605 , costing 909 ; realty sales, 9,119 in number and $\$ 22,034,230$ nt ; jobbing trade, $\$ 77,060,700$; manufacturing $\$ 63,625,000$; bushels of wheat received, 32,000 ,eex. railway pa sengers carried, $9,388,017$; banking capital, $\$ 5,500,000$, since increased to $\$ 6,950,000$; public improvements, $\$ 500,000$.
Lipespite a share of the prevalent industrial depression Whised by labor troubles, building improvements in Minfeatrulis are being conducted upon a very exten it scale. During the past six months, fully 2,300 new uilthings have been commenced. On a conservative relfintinty estimate, these will cost $\$ 6,000,000$. Before feclose of the year as many more building improvefotits "vill probably be inaugurated. Such rapid fowth necessitates corresponding activity in the owth necessitates corresponding activity in the
alt y narket. Recorded sales of real estate for the past six months have been about 6,000 in number, involving an aggregate consideration of $\$ 14,500,000$. This a nount will doubtless be more than doubled before the close of the year. These are actual facts that indicate the great vigor of this young metropolis.

old Roman Lead.

Kecently; while the excavation for the new gas holder tan: at the Chester, Eng., gas works were in progress, apig of Roman lead, in excellent preserva tion, las liscovered at a depth of 23 feet below the rrume Itpears on its upper surface the following inscription: $M P$ V ESP AVG V T IMP III.; while on the side is if ribed DE. CEANGI. Its weight is 192 lb. The tradlation of the inscription is that it was a pig of lead, atribute to the Roman power from the pig of lear, atribute to the Roman power from the
tribe in Nuth Wales commonly known as the Ceangi. tribe in Nirth Wales commonly known as the Ceangi.
The inscriptid tells us that it was ca t during the fifth consulate of tie Emperor Vespasian and the third consulate of 'ritus
This syn?hrdizes with our date A. D. 74 ; and consequently $i_{;} \cdot 1,{ }^{*}$ be assumed that the pig of lead has been lying er e it was found some 1,800 years. The
ground whin it was discovered was gravel and ground whin marl, which $\in i d$ ently formed part of the old river bed. Close to it w_{l} fo und a human skull, and another was discovered abit 5 feet away. The skulls and bones of horses andullotks were also met with in or about the same plar. he foreman of the works (Mr. J. Fish) at once tled the attention of the company's engineer (Mr. AW) Stevenson, Assoc. M. Inst. C. E.) to the discoveryand the treasure trove wasplaced in safe keeping. Athlo ground has to be excavated ansafe keeping. Athe ground has to be excavated an-
other three feet, irther discoveries may be expected.

Progre: of the United States.

In "Triumphat Democracy," a recent work by Mr. Andrew Carneje, a Scotchman by birth, and now an American manuscturer, the author gives many interesting facte showg the progress and prosperity of his adopted coustry He states that during last year 74,000 mors of B semer steel were produced in the Unios are man in theat Britain; that more yards of
 vicithe school librar Englitud. Wales, and Scotland; $12,0 G^{000}$ more book $12,00^{000}$ more book an all the public libraries of

debt f the Union ad

 that all the State and city ing t aluation of proferty, do not amount to oneing $t \mid$ the city debt of Manchester, Eng., or to onetenthf the debt of Birupagham.