NIGHT SKY-SEPTEMBER aND OCTOBER.*

by richard a. proctor.
Low down between north and northwest we find the seven stars of the Dipper, the Pointers on the right nearly due north. They direct us to the Pole Star. 'I'he Guardians of the Pole, β and γ of the Little Bear (Ursa Minor), lie in a direction from the Pole Star corresponding to that of the minute hand of a clock about 17 minutes before an hour. Between the Pointers and the Pole Star we find the tip of the Dragon's tail, and sweep round the Little Bear with the Dragon's long train of third magnitude stars, till we come, after a bẹnd, to the Dragon's head, with the two bright eyes, α and β (part of the Dragon's nose has been borrowed by Hercules). These two stars are almost exactly midway between the horizon and the point overhead, and nearly northwest. King Cepheus-not a very conspicưus constellation-lies between the point overhead and the Little Bear.
Low down in the northwest we find the head of the Herdsman (Bootes). The Crown (Corona Borealis), which no one can mistake, lies on his left, and close by is the setting head of the Serpent.- Above these three groups we see Hercules-the Kneeler-his head at α, his upraised club by \boldsymbol{r}. Above the head of Hercules we find the Lyre with the bright star Vega; and above that the Swan.
Passing southward, we see the Serpent Holder (Serpentarius or Ophiuchus), beyond whom lies the Serpent's tail, a mostinconvenient arrangement, as the Serpent is divided into two parts. Almostexactly southeast, and low down, are the stars of the Arch er (Sagittarius); while above, in the mid-sk we see the Eagle (Aquila), with the bright Altair. Note the neat little constellation, the Dolphin (Delphinus), close by.
Due south is the Crane (Grus) ; above it the Southern Fish, with the bright star Fomalhaut. Above that the Sea Goat (Capricornus), and on the left of this the Water Bearer (Aquarius); one can recognize his water pitcher, marked by the stars β, γ, and α.
Toward the west, high up, is the Winged Horse (Pegasus) ; he is upside down just now. Below lies the Whale (Cetus), or rather the Sea Monster. I have my own notion about Cetus, regarding him as an icthyosaur (but that is neither here nor there). The star o of this constellation is called Mira; it is a wonderful variable star. The Fishes (Pisces) may be seen between the Whale and Pegasus. Few constellations have suffered more than Pisces by the break-
ing up of star groups. The fis lost in Andromeda and Pegasus.

Note how on therleft of Pise aloft" Andromeda, the Chained Lady (whose head !ies at α), as Milton set Aries doing long since. The Triangle serves only as a saddle. Between Andromeda and her father, Cepheus, we find her mother, Cassio peia, or rather Cassiopeia's Chair. (Of course β, γ and α mark the chair's back,) Perseus, the Rescuer lies below; β is the famous variable Algol. Below him lies the Bull (Taurus), with the Pleiades and the bright Aldebaran. Low down, to the left of the Bull, we find the Charioteer (Auriga), with the bright Capella. And lastly, any one who likes may admire the Camelopard (Camelopardalis), between the Great Bear, Cephus, and the Charioteer.

Williams \& Orton Mfg. Co., Sterling, Ill., write, on the 18th of September, in remitting the payment of a bill for advertisement in Scientific American
"Can't keep up with orders for gas engines. I quiries from Scientific American inundate us.
This sounds well for the demand for gas engines, and also for the Scientific American as an advertising medium.

* For details about the varions constellations, the reader is referid the author's "Easy Star Lese ons," published by Patnam's Sons.

In the map, atars of the first magnitude are cight-pointell: secome magnitude, six-poimed; third magnitude, five-pointed: fourth magnitude (a

Heat of Combustion.
The quantities of heat generated by the combustion in oxygen of one gramme of hydrogen and of carbon are stated to be as follows, the unit employed being, the quantity of heat which is required to raise the tempera ture of one gramme of water from 0 deg. to 1 deg . Centigrade: Hydrogen, 33,881, according to Andrews, and 33,462, according to Favre and Silbermann. Carbonproduct CO_{2}-wood charcoal, 7,900 Andrews, 8,080 Favre and .Silbermann. The percentage composition of a fuel having been ascertained by analysis, its calorific power can, therefore, be determined by calculation Thus, in the case of a fuel consisting only of carbon and hydrogen, if we multiply the amount of carbon and the amount of hydrogen by the respective numbers expressing the calorific power of carbon and of hydrogen, and add the products, the sum represents the relative calorific power of the fuel. When oxygen is present in the fuel, a deduction has to be made; and if we assume that it is the hydrogen which is rendered ineffective by combination with the oxygen, then, as in water, the oxygen is combined with one-eighth of its weight of hydrogen, we have to deduct from the hydrogen of the fuel one-eighth of its weight of oxygen

To Clean Woolen Fabrics.
The Leipziger Muster-Zeitung fur Faerberei, which likely to be good authority on such subjects, expresses its views on cleaning woolens as follows :
Opinions on the best methods of cleaning woolens are so infinitely different, and so various and contra dictory are the statements of practical papers on this point, that it appears to me, says the editor, a remunerative and interesting task to examine the matter thoroughly. I tried the various degrees of heat, from the hottest to the coolest temperature, and I emp all the favorite cleaning materials one after the other -soap, borax, ammonia, benzine, and mixtures of these articles. The results were so decided, tha so pinly marked, that the following conclusions must be rearded as definitely establişhed:

1. The liquid used for washing must be as hot as possible.
2. For the removal of greasy dirt, sweat, etc., borax is of so little value that its application would be mere waste. Soap lye alone is better, but the preference must be given to soap lye along with ammonia. This mixture works wonders by quickly dissolving dirt from particular parts of underclothing which are hard to cleanse. It raises and re vives even bright colors, and is altogether excellent.
3. On the other hand, for cleaning white woolen goods there is nothing which even approaches borax. Soap lye and borax, applied boiling hot, gives white woolens a looseness and a dazzling whiteness which they often do not possess when new.
4. If shrinking is to be entirely avoided, the dry ing must be accelerated by repeatedly pressing the woolens between sof t cloths. In no case should woolens be let dry in the sun, as in this case they becomedry and hard. They are hest dried in a moder ate current of air, and in cold weather in a warm place, not too near the stove.
For colored goods there should be prepared a lye of seven quarts of soft water and two ounces of the best soft soap, the quantities being, of course, modified according to judgment and the dirtiness of the articles. The soap is dissolved over the fire, and the lye, properly stirred up, is divided into two vessels, to one of which is added a teaspoonful of ammonia for each quart of lye. The woolens must be entered at a heat which the hand cannot bear, and the fabric must consequently be turned and pressed with smooth wooden stirrers. They are then pressed out as far as possible, and transferred to the

Calculated on the basis of the figures of Favre and Silbermann already given, the evaporation unit for hydrogen is $62 \cdot 658$, and for carbon $14 \cdot 691$.

The Ruby-throated Hummingbird.

 (trochleus colubris.)This, the smallest of our northern feathered beauties, is about three and a half inches long. His plumage is golden green above, golden red about the throat, purple brown on the wings and tail, and white beneath. All these hues have a brilliant metallic luster, which changes with every movement. Although he is small, he is very brave, and has no fear of any larger bird. He has even been known to alight on the hear of an eagle and pull the white feathers out in mouthfuls, while the royal bird goes screaming through the air in unsuccessful attempts to get rid of his small tormentor. The nest is very small, being about an inch and a half in diameter. It is usually placed on the top of a bough, and rarely at the sides of the trunk. The outside is so nicely covered with lichens and bark that it resembles very closely a knob of the tree. The inside is com sed of vegetable down, such as that of the downy thistle. The nesting place varies; sometimes an old apple tree is selected as a place of residence, and then again a low shrub in some garden. The eggs, two in number, are pearly white.-Nat Companion.
second lye, containing no ammonia, and which by this time has become so cool that the articles can be pressed by hand, but no twisting or wringing must take place. They are then pressed between three or four soft dry towels, till the latter no longer become wet.

For white woolens there is added, instead of ammonia, a teaspoonful of powdered borax to each quart of soap lye, and the operation is otherwise conducted exactly as above described. If the second lye is too soapy, it may be diluted with a little hot water.
After two or three lots of woolens have thus been washed, the lye must be heated again-the first lot being put aside to settle, the second being made firstwith the addition of ammonia or borax, as the case may be, and fresh lye made for the second.

International Exhibition in Spain.

An international exhibition, under the auspices of the Spanish goverrinent, will be held at Barcelona, rom September, 1887, until April, 1888. The exhibiion will include all things connected with agriculture, industry, commerce, navigation, electricity, and education. In order to encourage the display of novelties, the government will guarantee the protection of Spain to the exhibitors of intentions capable of being patented, and of drawings, models, and trade marks.

