
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

SIMPLE EXPERIMENTS IN POLARIZED LIGHT.
by geo. m. hopkins.
It is ever a source of pleasure to the student of science to be able to explore an unfamiliar realm by means of commonplace and readily accessible things, which, if not already possessed, may be had almost for the asking.

- There is scarcely a branch of scientific research more prolific in the development of expensive apparatus than that of light, yet there is nothing in the domain of physics capable of being better illustrated by apparatus of the most simple and inexpensive character. The subject of polarized light, as intricate and difficult as it may at first appear, may be illustrated by can but excite the wonder and admiration of one inexperienced in this direction.

SIMPLE FORM OF NORREMBERG DOUBLER.
A small piece of window glass and a black covered book constitute the apparatus for beginning the study of this interesting subject, and with a glass bottle stopper, a glass paper weight, or a piece of mica, the effects of polar ized light may at once be shown.
The book is placed horizontally near a source of light, such as a window or a lamp, so that a broad beam of light will fall obliquely on it, and upon the book is placed the object to be examined, which may be either of those named.
Now, by viewing the reflected image of the object in the piece of window glass, with the glass arranged at the proper angle, it is probable that colors will be seen in the object. If no colors appear, it is due to one of three causes : either the object is incapable of depolar izing the light polarized by reflection from the book cover, or it is too thick or too thin to produce interference phenomena, or the eye of the observer and the glass employed for the analyzer are not in a correct position relative to the object and the polarizer (the book cover).
Theglass, if thoroughly annealed,

ANALYZATION BY BUNDLE OF GLASS PLATES AND VERRE TREMPE.
and fancy goods establishments, armed with Nicol prism, in quest of objects for the polar iscope. As one article after another was placed upon a dark covered book, and examined with the prism, the writer imagined he could vaguely hear such words as Ward's Island, asylum, etc., and at this stage, as a matter of policy the purchases were generally made, for sanity was at once established when the dealer examined the articles for himself with the Nicol, and the price of certain glass objects immediately advanced.

Seeing their own wares by polarized light, for some of the dealers, at least, was a new experience. | will produce no effect on the polarized beam, but most | $\begin{array}{c}\text { The best position for the polarizing plate is near a } \\ \text { thick pieces of glass, such as paper weights, ink stands, }\end{array}$ |
| :--- | :--- |
| window, with the broad light of the clear sky shining | | thick pieces of glass, such as paper weights, ink stands, heavy glass bottle stoppers, and the like, are either upon it.

unannealed or only partly annealed, and are thus under permanent strain, which is readily indicated by their action on polarized light. A plate of mica of suitable thickness exhibits bright colors when examined by polarized light, particularly when the plate is either bowed or inclined.
To render the polariscope thus described more efficient, a plate of glass may be placed on the book, when the superior reflecting surface will at once make itself manifest in the increased brightness of the colors and improved definition of the object. A still greater improvement may be made by blacking one side of each glass with asphaltum varnish or any other convenient black varnish or paint, using in the experiments the unblackened surfaces, as shown in Fig. 1.
The angle which the incident light beam should make with the polarizer or horizontal blackened plate is $35^{\circ} 25^{\prime}$, and the polarized beam should strike the analyzing plate at the same angle, to secure the maximum effects; but it is unnecessary to measure the angles, as they may be easily determined by the appearance of the object.
With the two plates of blackened glass much may be learned wi.th regard to the properties of polarized light. Plates of mica of various thicknesses and forms, inclined at various angles, bowed and turned in their own planes, pieces of quartz, bodies of glass such as those already mentioned, and odd-shaped pieces of unannealed glass such as may be picked up at glass works, are easily secured objects. Brazilian pebble spectacle lenses of ten show gorgeous colors when turned at different angles in the beam of polarized light.
The writer well remembersthesmiles provoked among the storekeepers when he visited various stationery

GLASS STRAINED BY PRESSURE.

GLASS STRAINED BY HEAT.

By turning the analyzing plate on the axis of the light beam, some curious effects may be observed. When the plates are at right angles with each other, the polarized beam will be nearly quenched,* and when they are parallel with each other the reflection of the sky will be quite bright.

The employment of a blackened glass reflector for an analyzer is attended with some difficulty, on account of the necessity of changing the position of the eye for each new position of the analyzer. A bundle of six or eight plates of ordinary glass is more convenient, but not quite as efficient. These plates will be used as shown in Fig. 2, the light passing through them to the eye instead of being reflected. The plates may be turned at any angle without changing the position of the eye.
(Continued on page 6.)

[^0]
Sriuntifir Ammerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year. postape included.. $\mathbf{1} \mathbf{3 0}$
One copy, six months, postage included..........

The Scientific American Supplement

 Scientific American Export Edition.

NEW YORK, SATURDAY, JULY 3, 1886
Contents.

Air, compressed, for llfe-boats.... Atmospheric pressure, experi-	Liquid emptier, Gasca's
mooks and pubiications, new....... 10	Mat, door, st
Boring and facing machine, im-	
ass, to clean	$\begin{aligned} & \text { ssio } \\ & \text { of } \\ & \text { of } \end{aligned}$
Business and personal............ 10	-Music hoid
Carseat, impro	Norremberg doub
Coupler flend. the.	Not
Dynamo No. 161, effi	
	Patents, decisions
Egypt	
Electrotyping solut	Petroleum
gines, stop for, auto	Pneumonia, cau
	Polarization blackened by
Fish drying machin	Polarization dou
Gas industry, illum	Polarized light, experiments in.
Glasss stained by p	Polarized simple*
House bill 4458 .	Public works, contractor
Inventions, engin	Ring on
entions, index	Railroads
ndissol	Sad iron, im
K	Sky, night. Ju
Leaves, preparing, to show starch	St
int......................1,	Tadpoles, p

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 548.
For the Week Ending July 3, 1886.
Price 10 cents. For sale by all newsdealers.

V GEOLOGY.-The Form of the Harth.-Arguments showing the

VII. MISCLTURAL

the illuminating gas industry.

To one who has been familiar with the gas industry of this country for the last twelve years, the changes which have taken place in it are very remarkable. They have affected not only the manufacturing pro cesses, but the business standing. While the technical part has advanced, the business has changed from one of the most conservative industries to one of competition. Twelve years ago, almost all the gas used in the world was made from bituminous coal. From 9,300 to 9,600 cubic feet per ton of 2,240 pounds was considered good practice. From retorts about twenty inches in width, a daily yield varying from 5,500 to 6,000 feet was looked for. At about that period, naphtha gas began to occupy some attention, and a series of many experi ments was inaugurated, and even to-day that series continues. Every few months the subject would come up, and the proposal to put in naphtha works would be received by the companies. As a rule, gas engineers were violently opposed to any departure from the old process with which they had so long a familiarity, and any attempts to introduce naphtha gas were resisted by them most strongly.
In New York city a break was made by the Municiple Gas Co. Under Tessie du Motay's process they be gan making water gas carbureted with naphtha After many and very expensive experiments, processes and failures, they began to supply a large number of consumers, and naphtha gas in New York was a fixed fact. The Mutual and Metropolitan companies also began to use the same substance, and naphtha was Gas Light and while allowing their coal gas furnaces to stand abandoned their use. This company was always considered one of the most conservative, and their adoption of the new process told much in its favor.
Two things have made water gas a success in this country. One is the cheapness of naphtha. Owing to the immense development of the petroleum industry naphtha was becoming a drug on the market, and the oil companies are glad to dispose of it at a nominal price. The other factor is anthracite coal. This fuel is peculiarly suited for the water gas process. Other coals can be used, but cheap naphtha is almost a sine qua non. Everything depends on a supply at low prices. A rise of three or four cents per gallon would be a very serious matter. But for the present, naphtha, it may be assumed, is not about to double in price.
Coal gas engineers werestirred up by this rivalry, and tried to improve their process. Retorts of larger size were used, sometimes as much as 36 inches wide. For many years the idea had prevailed that coal should be distilled at a low red heat. This theory was abandoned, and every effort was made to get as high a heat as possible consistent with the preservation of the retorts. New
furnaces were invented, of the regenerative or gas burnfurnaces were invented, of the regenerative or gas burn ing type. Siemens' furnace was used extensively on the continent of Europe, but in this country simpler modifications of it were more popular. By these mean the yield of gas per ton of coal was brought up to 12,000 cubic feet, and the yield per retort was doubled. This indicates a remarkable revolution, due to the inventors' work of the past fifteen years. To realize what the work has been, the Patent Office Gazette should be consulted, and the number of patents in gas should be noted. The number is very great, the class is one of the most important and largest, and the work is still in progress. The lesson incidentally disclosed is of practical interest. By the labor of patentees, the production of gas at a low price has been made possible and the consumers of New York alone are saved five
millions of dollars per annum. It is a good illustration of the policy of protecting inventors.
This competition with water gas has permanently cheapened coal gas, and the reduction in cost has been favored by the low price of coal. Naphtha is still supplied in limitless quantities, while natural gas has usurped the field throughout the oil regions. How long the petroleum gas industries will last is uncertain. Professor Leslie has announced his belief that sooner or later the decline will come. It is hard to believe that gas can continue to pour out of the earth at many atmospheres of pressure for all time. But the work has been done, gas has been cheapened, and will never again cost as much to make as it has in the past. Even if petroleum should become scarce, the coal gas works are in better condition than ever owing to the stimulus of competition and invention. In this city, after a fierce struggle for supremacy the principal companies formed a pool, and so raised the price of gas. The next move was a permanent consolidation, which brought together five of the old competitors. But as opposition still existed, the price was kept reasonably low. Within a few weeks, the legislature reduced the price still lower. A few days ago a new company applied for a charter, with a still lower limit of price. On the 22d of the present month, the Attorney-General is to consider the pro priety of instituting proceedings for the annulment of the consolidation. The legislative lowering of price means a reduction in receipts for this city of

The contrast between the present time and a period ten or twelve years back is very great. Then, each company in New York had its own district, with only one general competitor. All through the country each company possessed a substantial monopoly. Now, the struggle so familiar here extends everywhere. The smaller cities have opposition companies, and both coal gas and water gas are made in many of them. It seems at present as if enough had been done by the legislature. It has forced gas down to a barely remunerative price. It is now sold at a rate at which none can complain. If the breaking up of the consolidated company is executed, it is doubtful if any change in price will be brought about. The experience of pooling that extended over several years showed the efficacy of such a method of dealing with the subject, and, in the event of the disbanding of the consolidated gas company, would probably be again resorted to.

PHOTOGRAPHIC NOTES.

Potash and Soda Developers.-Before the Society of Amateur Photographers in this city, Mr. H. J. Newton stated that the following formula had yielded him ex cellent negatives. Each solid ounce contains 480 grains :

One ounce of developer is prepared as follows
No. 1................ 1 drachm.
No. 2
drachms
In case a dozen $61 / 2 \times 81 / 2$ plates are to be developed, 10 ounces of the developer can be mixed at a time, which will keep good for a day or two. Oneprate after he other can then be developed with great uniformity in the same solution. If a plate is underexposed, from 3 to 6 drachms of No. 1 should be added. More intensity is gained by the addition of pyro. Overexposure is remedied by the use of a very small quantity of No. 1.
Ripley's Soda Developer.-A formula which produces lear, brilliant negatives has recently been devised by Mr. Geo. H. Ripley, of Brooklyn, N. Y., also a member of the N. Y. Amateur Photographer's Society, and is prepared as follows :

Water (distilled).
No. 1.
Sulphite of soda (crystals)....... 20 fl. ozs.
Dissolve, filter, and add slowly enough sulphuric or nitric acid to make solution slightly acid. Test with blue litmus paper

Pyrogallic acid... 1 oz.
Distilled water, to make the whole measure........ 30 fl. ozs.
No. 2.
Carbonate of soda (crystals)...
20 fl. ozs.
2 ozs.
30 fl. ozs.
Weights given are based upon 480 grains to the unce.
To develop a normally exposed 5×8 plate, take 1 oz . each of No. 1 and No. 2. The developer has the property of remaining remarkably clear, and may be used epeatedly, if properly stored in a stoppered bottle. The directions concerning the manipulation of the developer for obtaining different effects and counterbalancing errors in exposure are as follows :
If the plate is underexposed, or should show too great contrasts, transfer, without washing, to another tray containing solution No. 2. When the detail is well started, return the plate to and finish in the mixed developer.
If the plate is found to be overexposed, add to the mixed developer a few drops of the following solution Water..
mide of ammonium
To obtain soft effects, the quantity of No. 1 should e reduced. For use upon slower plates, such as are employed in the making of transparencies, a special solution is prepared as follows

The developer is formed as follows :
No. 1..
Sulphite and citric acid solution.
$1 / 2 \mathrm{oz}$.

The Cause of Pneumonia.

Referring to our recent editorial on ozone and pneumonia, a subscriber suggests that one cause of the prevalence of the disease is to be found in the almost universal custom of keeping houses, stores, and factories at such a high temperature that the change experienced on passing to the cold atmosphere out doors is more severe than delicate persons can subject themselves to without danger. Overheating and the want of sufficient ventilation are undoubtedly rethe want of sufficient ventil
sponsible for much sickness.

COMPRESSED AIR FOR LIFE BOATS.

To the Editor of the Scientific American:
In your paper of June 5, you print an article from the Engineer, on the means of forcing life boats out through the heavy surf and the rough water which are the necessary concomitants of the very circumstances which make their services of vital importance. The difficulties to be overcome are very forcibly and very correctly set forth, and the writer shows conclusively that the use of steam as a driving power for life boats is not within the range of possibility: The fire could not be maintained, nor could a boiler of any form, even if hung on gimbals, do its work. The violent shocks, to say nothing of the topsy-turvy commotions which the boat is constantly receiving, preclude absolutely the conjoint presence of steam and boiling water in the same reservoir.
If a life boat is to be forced out through the surf in any other way than by means of oars, it must clearly be by some power different from steam. And my present object is to show that such a power we have ready to our hand. It is now coming more and more into use, and for this special service is most admirably adapted it is compressed air. Among several articles written it is compressed air. Amo by me in 1883, hoping to draw attention to the "Storage of Wind Power," was one, in your paper of Dec. 8, relating to its application to small motors. The facts, and the inferences from them, there stated bring us very appositely to the consideration of this matter of the life boats. The motor demanded pust be: 1. Compact.
2. Werffected by position or by shocks. 3. Alway ready. 4. Able to supply the full power of a boat's the full power of a boat's
crew and more, for often crew and more, for often
the strength of the crew is the strength of the crew is
insufficient. 5 . Sure in its insufficient. 5. Sure in its
action, and without risk of failure. 6. Involving as little weight as possible. Every one of these points is perfectly covered by the use of compressed air, as we shall see.
Nos. 1, 2, and 3 we need not consider, for they are manifest. Let us look to the requisite provision for No. 4. I propose to furhish the equivalent of nish the equiralent of twelve men, though no life boat carries such a crew
on our coast. Such an on our coast. Such an
amount of power, equal to two nominal horse power, will never be needed for any continued length of time. It is barely, in driving the boat out through the breakers, that it may be required, and for this a very few minutes must always suffice. After this, her crew are equal to her demand. And as the services of a life boat, in case of wreck, are limited to a wreck, are limited to a
brief period of time, we brief period of time, we
may safely calculate that th may safely calculate that the equivalent of one hor power for four hours is all that we need to provide and keep in store, and we can base our calculations on this amount.
Taking the ordinary tables, and assuming that the pressure on starting is 3,000 pounds, we find that reservoirs holding in the aggregate six square feet will give us all we need, with a surplus. After a service of four hours, we shall have in store a pressure of about 1,000 pounds. This is on the reckoning that we turn on as much as four horse power if required for sudden and brief strain. Thirty-one feet of six inch pipe will afford us the space indicated, and, if made of good steel, need not weigh over 300 pounds, say the weight of two men. But we have saved double that amount of load for the boat, for we have diminished the number of her crew. The services of the crew of a life boat are chiefly to manage the craft and take her to and from the wreck. Not more than two men commonly, and sometimes only one, can give their attention to the life saving work, all theiriskill and strength being otherwise demanded. And as we have the power for propulsion independently supplied, the boat need carry men only in proportion.
Another very important point is this: In shipping the terrible seas which so often come on board in the breakers, the men are caught by them at the greatest disadvantage possible. At the very moment when the crashing sea comes down on their beeds mad backs,
each man's utmost strength must be given to his oar, and he is braced as solidly as the timbers of the boat, and receives the heavy blow without the slightest chance to shield himself. If, on the contrary, we are driving the boat as has been here proposed, the men can be shielded very greatly, and many bad injuries avoided.
As to the mode of applying the power secured in the ase of compressed air, opinions may be various, as was clearly shown in the article mentioned, where some of he difficulties are well stated. But with the power supplied we certainly can find the means of using it. My own preference is decidedly for the method recommended by me in your paper of Jan. 5, 1884, that is, direct pneumatic propulsion. It needs perhaps a large amount of experimental work, but I fully believe that for such service as this of the life boat it affords the most efficient and most economical method available. Of the method of compressing the airand holding it ready for instant service, I say nothing here. In the articles to which reference has been made, I expressed my ideas in brief on that point.
A.

Iron Dissolved by Sugar.
MM. Klein and A. Berg have been studying the

NIGHT SKY-JUNE AND JULY.
by richard a. proctor.
The Great Bear (Ursa Major) is in the mid-heavens toward the northwest, the Pointers not far from the horizontal position. They direct us to the Pole Star (α of the Little Bear, Ursa Minor). The line from this star to the Guardians of the Pole, β and γ, is in about the position of the minute hand of a clock two minutes before an hour. The Dragon (Draco) curls over the Little Bear, curving upward on the east, to where its head, high up in the northeast, is marked by the gleaming eyes, β and γ. Under the Little Bear, the Camelopard has at last come upright.
Low down in the west the Lion (Leo) is setting. The point of the "Sickle in the Lion" is turned to the horizon ; the handle (marked by α and η) is nearly horizontal. Above the Lion's tail is Berenice's Hair (Coma Berenices) ; and between that and the Great Bear's tail our chart shows a solitary star of the Hunting Dogs (Canes Venatici). The Crow (Corvus) is low down in the southwest, the Cup (Crater) beside it, partly set, on the right. Above is Virgo, the Virgin. Still higher in the southwest-in fact, with head close to the point the southwest-in fact, with head close to the point Borealis) near his southern shoulder marking what was once the Herdsman's uplifted arm.
Low down between the south and southwest we find the head and shoulders of the Centaur (Centaurus), who holds the Wolf (Lupus) due south. Above the Wolf are the Scales Libra), and above these the Serpent (Serpens), his head, in the south, stretching toward the Crown. In the mid-sky, toward the southeast, we find the Serpent Bearer (Ophiuchus - one star of the Serpent lies east of him). Below the Serpent Bearer we find the Scor pion (Scorpio), now fully risen, and showing truly scorpionic form. Beside the Scorpion is the Archer Sagittarius), low down in the southeast. To his left we see, low down, two stars marking the head of the Sea Goat (Capricornus), and one belonging to the Water Bearer (Aquarius). Above the Sea Goat flies the Eagle (Aquila), with the bright star Altair and above, near the point overhead, is the kneeling Hercules. Due east, we see part of the Winged Horse (Pegasus); above that, the little Dolphin (Delphinus), and higher, the Swan (Cygnus) and the Lyre (Lyra), with the beautiful bluish-white star Vega.
Lastly, low down, between north and north east, we find the seated Lady (Cassiopeia); and above, somewhat east action of sugars on the corrosion of boilers, and find |wardly, the inconspicuous constellation Cepheus, Cas that sugar in water has an acid reaction on iron, which siopeia's royal husband. dissolves it, with a disengagement of hydrogen. The quantity of iron dissolved increases with the proportion of sugar in the water. The salt of iron formed is the acetate. A neutral decoction of malt also corrodes ron, with disengagement of hydrogen; but glycerine and mannite are without action on the metal. These results are worthy of note in sugar refineries nd places where sugar sometimes finds its way into the boilers by means of the water supplied. The experimenters in question also find that zinc is strongly ttacked by sugar ; copper, tin, lead, and aluminum are not attacked.

There are reasons for believing, says the North western Lumberman, that in the making of stock sizes of sash, doors, and blinds, in the factories of the Northwest, white pine will not much longer be the only material used. Poplar is commonly thought of as the most available substitute, and so it probably will be as long as it remains at anything like its present price, but there are other woods which may receive avor. One prominent Wisconsin manufacturer is now making doors of basswood, treating them to a priming coat of paint and sending them out to his regular customers. They are said to give good satisfac tion in evary respeet, and partioularly in point of priee.

The Polarity of Tadpoles.

The following, says the Centralblatt fur Elektrotech nik, is reported about an interesting experiment of the physiologist Prof. L. Herman. In a flat bowl filled with water, in which a number of 14 days' old frog larvæ (of Rana temporaria) were disporting themselves, were sunk along the narrow side, ready for an experiment, thick zinc wires connected with a battery of 20 little zinc carbon elements. When the current was made, the whole of the little animals fell into a wriggling motion, which soon ceased. But all the larvæ without exception had taken up one position, in which the head was turned to the anode and the tail to the cathode. The animals remained in this position till the current was again broken, when they again fell into the wriggling motion, but now less violently. Repeated experiments proved that the living animals showed a decided polarity, placing themselves along the stream lines of a current with their heads all in one direction, this direction being re ersed when the current was reversed. An explanation of this interesting phenomenon has not hitherto been given.

ALUM gives excellent results when it has been found desimble te clarify muddy or turbid waters,

MUSIC HOLDER.

This music holder is provided with hooked arms for attaching it to the music rack. The upper parts of the arms slide freely in the lower parts, so that they can be drawn out or shoved in to fit the rack to which the holder is to be applied. Between the end blocks of the base is journaled a rod provided with fingers, which are pressed against the leaves of the book or sheet of music by the tension of a coiled spring. In the center of the rod is a thumbpiece, by which the rod may be turned back, so that the fingers will permit

SMITH'S MUSIC HOLDER.

the leaves to be turned. When not in use, the arms are folded along the base, to enable the holder to be put away in small compass. Constructed in this manner, the holder is cheap and practical, and can be applied to any piano.

This invention has been patented by Mr. David E. Smith, of Mount Kisco, N. Y.

Destruction of lloss in Greensward.
In humid soils, moss develops frequently in grass which is not very old, and completely smothers it. La Revue Horticole proposes the following method to get rid of this invading vegetation.
In the month of July, when it is very dry, have the lawn cut at times with a sickle, or with a lawn mower -grass, moss, and everything close to the ground. The sun's rays will in a few days destroy the roots of the mosses, which thrive at the top of the earth. The greensward will suffer very little, but it will be immediately free of all parasitic vegetation. If the necessary care be given, that is, by copious waterings, in a very short time it will become green and thicker than ever. It is not to be forgotten that, in sowing lawns, if powdered lime be cast, the mosses will soon become destroyed.

LIQUID EMPTIER.

The short arm of a siphon secured in one side of the can, as shown in the right hand figure, extends nearly to the bottom, while the long arm extends through the side to receive a rubber tube. A short air tube is inserted in the side of the can, near the top. To fill the can, the side opposite the siphon is placed upon a support, as shown in the left hand figure, when the liquid is poured in through the air tube, the air from the can escaping through the siphon. When filled, both tubes are capped and sealed. To empty the can, a slight air pressure is created by blowing through the

GASCA's LIQUID EMPTIER.
air tube, when the liquid fills the siphon, which continues to work as long as the liquid is supplied or until a partial vacuum is formed in the can by withdrawing part of the air through the air tube. To insure the entire removal of the liquid, the inner end of th siphon is inserted in a cavity in the bottom.
This invention, has been patented by Mr. Jesus Gasca, of Guanajuato, Mexico.

Dr. Gore, F.R.S., the well known authority on elec-tro-deposition, has discovered that an aqueous solution of asparagine is a good medium for electrolytic baths. The solution he used was not quite saturated, and consisted of about 0.88 gramme of crystals of asparagine dissolved in 18 cubic centimeters of distilled water. It was feebly acid to the test paper, and was employed at a temperature of about 70 degrees Cent Some of the liquid was more or less saturated with dif ferent metallic oxides, and the resulting baths electrolyzed by currents from one to six cells of zinc and platinum in dilute sulphuric acid. Good depesits of cadmium were thus obtained, $0 \cdot 23$ gramme of hydrate oxide of cadmium dissolved in 20 cubic centimeters of the solution, using an anode of cadmium and a cathode of copper. Zinc was deposited from 0.28 gramme of zinc oxide in 23 cubic centimeters of solution. Magnesium oxide in 23 cubic centimeters of solution. Magnesium
in a film was also deposited from calcined magnesia with magnesium and copper electrodes; copper was obtained from cupric oxide with copper and platinum electrodes; mercury from red mercurous oxide with platinum electrodes; and silver from oxide of silver with a silver anode and platinum cathode. In the latter case the deposit was good, the bath consisting of $0 \cdot 33$ gramme of silver oxide in 20 cubic centimeters of asparagine solution.

IMPROVED SAD IRON.

This iron is in fact a miniature stove with polished surface, and is used in the same manner and is as convenient as a common flat iron. The heat can be regulated by the dampers at the heel of the iron; when using the iron, these dampers, which also serve as doors through which to introduce the fuel (charcoal), are wide open, and by partly or entirely closing them the heat can be reduced should the iron get too hot. Upon the under side of the handle, which is detachable, is a curved fluting iron corresponding with a fluted piece fixed to the side of the main iron, as shown in the engraving. It will be seen that this simple construction forms a self-heating, fluting, polishing, and smoothing iron.

the multum-in-parvo iron.

This invention has been patented by Mr. H. S. Pease, of Peoria, Ill.

The Railroads of the World.

The Archiv fur Eisenbahnwesen gives statistics of the railroads or the world, prepared for the most part from official sources, making the aggregate length, at the end of $1884,290,750$ miles, of which no less than
62,788 miles have been opened since 1879 . Of this there were in the several grand divisions of the world:

	1884.	1880.	Increase.	P. c.
Europe..	117,694	104,606	13,088	$12 \cdot 5$
Asia	12,757	9,905	2.852	28.8
Africa.	4,075	2,842	1,233	$43 \cdot 4$
America.	148,738	105,766	42,972	$40 \cdot 6$
Australia	7,486	4,844	2,642	54.5

Of the 290,750 miles of railroad in the world, no less than 174,016 , or 60 per cent, are in English speaking countries. The countries which have the greatest mileage in proportion to population, or the smallest number of inhabitants per mile, are Australia (364 people per mile), the United States (460), and Canada (486). Even the Argentine Republic has a smaller population per mile than any European country, namely, 1,000 while in Europe, Sweden, which has fewest, has 1,113 Great Britain and Ireland, 1,870; Germany, 1,983 France, 1,943 ; Belgium, 2,106 ; Austria-Hungary, 2,786. The cost of railroads, as is well known, has been veatest in Great Britain, being there $\$ 205,842$ per mile of roads; for the Belgian state railroads it is $\$ 123,986$ for the French railroads, $\$ 124,642$; for the German state railroads, $\$ 105,204$; for the German private roads, $\$ 71,877$; for the Austro-Hungarian roads, $\$ 104,420$. The cheapest system of Europe is the state railroads of Finland, $\$ 30,102$; the other Russian railroads stand at $\$ 82,244$, against $\$ 63,250$ per mile for the railroads of the United States.
The whole cost of the railroads of the world has been nore than $\$ 24,000,000,000$, which, however, is only about $\$ 24$ per inhabitant. In this country the expenditure has been about $\$ 133$ per inhabitant; in Great Britain, $\$ 107$; in Germany, $\$ 47$; in France, $\$ 57$; in AustriaHungary, $\$ 33$; in Italy, $\$ 19$; in Belgium, $\$ 41$; in Sweden, $\$ 25$; in Spain, $\$ 29$; in Russia, $\$ 14$; in Canada, Swed
$\$ 89$.

SCRAPING KNIFE FOR PAINTERS.

Attached to the scraper is a bag of canvas or other fabric held in an elastic frame composed of spring bows joined by cross pieces and rods that form the upper side pieces of the bag. The rods are made fast to the rear cross piece, but pass loosely through holes made near the ends of the front cross piece, through which they slide when the receptacle is partly closed, as shown in the engraving. The front cross piece is made half tubular, and is slotted for the passage of screws, by which the knife and bag are fastened together. By loosening the screws, the knife can be shifted to stand near the center or near either end. By the use of this

O'NEIL'S SCRAPING KNIFE FOR PAINTERS,

device, which is the invention of Messrs. Charles and Richard O'Neil, of 219 East 46th Street, New York city, all debris removed from a wall in scraping it may be caught in the receptacle; and by shifting the knife its corners may be moved along a moulding or angleand as the receptacle can be opened and closed to anver rom the knife, it will not interfere with the edge of the knife, being shoved with a forward thrust entirely up to a moulding or wall.

Preparing Leaves to Show starch Grains.
The leaf, according to Prof. J. Sachs, must be bleached and made transparent in this way: The fresh leaf is placed in boiling water for ten minutes, then the chlorophyl is extracted with alcohol. This decolorizes the leaf without rupturing the starch cells. Treatment with iodine then makes the starch visible, and the greater or less intensity of the blue color is an apparent indication of the greater or less quantity of starch. Comparative experiments may be made by exposing part of a leaf to sunshine and protecting the other part. In the evening a leaf shows much more starch than in the morning.

IMPROVED CAR SEAT.

This seat is so made that it can be readily reversed without interfering with other seats in the car. The end frames consist of a single casting, shaped as clearly shown in the engraving. The rail is formed on a circular curve, and is grooved longitudinally on opposite sides, and received between grooved rollers supported by the end pieces of the seat frame or by one end piece and plates secured to the wall of the car. The cushions are supported by the curved rails and bars as shown, and act interchangeably as seat and back; the ends of the frame are symmetrical in form, so that they present the same appearance in both positions. The seat is held securely in either position by a spring bolt

WOODMANSEE'S IMPROVED CAR SEAT.
passing through a socket in the upper cross bar of the end piece, as shown in the small cut, and entering one of the notches formed in the curved rail. To reverse the seat, the bolt is withdrawn, when the back can be pushed down in a circular path until it occupies a horizontal position and serves as the seat.
This invention has been patented by Mr. Charles H. Woodmansee, of Norton, Kansas.

aUTOMATIC STOP FOR ENGINES

The engraving represents a device for automatically stopping pumping engines, particularly hot air en gines used for raising water to tanks. To the engine is fitted arPescape pipe provided with a valve, the stem of which has a lever. Connected to this lever is a cord or wire that passes over pulleys and down to a wheel on a shaft journaled in bearings attached to a casing. The shaft is provided with a spring for turning it for winding up the cord to open the valve or other device for stopping the engine. The shaft is turned for wind

ROBERTS' AUTOMATIC STOP FOR ENGINES.
ing up the spring by a crank; it is locked by a pivoted trip lever engaging with a projection on the shaft. In the casing is a weight attached to a cord leading to a float in the tank. The cord is so arranged as to raise the weight when the float descends. As the tank fills the weight descends, trips the lever, when the spring turns the shaft to wind up the cord, thereby opening the valve and allowing the hot air to escape from the engine and cause it to stop. In some cases, instead of attaching the cord to the valve, it may be fastened to the furnace door, which will then be opened by the action of the spring. Where gas is used for fuel, the spring may be made to close the cock in the supply pipe. By thus automatically stopping the engine by the rising of the water in the tank, there is no danger of overflowing, and the engine requires no attention when in operation.
This invention has been patented by Mr. B. J. Rob erts, of 126 East 19th Street, New York city.

IMPROVED WOODWORKING MACHINE

This machine is designed for the cabinet shop, particularly where power and shop room are limited; it contains no complicated parts, and can with very few attachments and tools be successfully applied to almost every variety of woodwork. The cutter for forming dovetails is held in one end of a shaft mounted in bearings attached to the top of the frame. The cutter projects through an opening in a vertical guide plate so arranged that it can be adjusted out or in, to allow the cutter to make a shallow er or deeper dovetail as may be desired. The feed table moves easily out and in, but has no lateral movement, and can be locked in the desired position. Upon the inner side of the middle part of the bracket supporting the feed table is formed a lug to which is secured a chain passing over a pulley and thence to a treadle hinged to the frame; by operating this treadle, the feed table can be raised to bring the work against the cutter. The timber to be dovetailed is placed with its edge upon the feed table and its side resting against the vertical guide plate, when it is moved forward until the tool has cut a recess to the desired depth. The timber is then drawn back, the feed table is drawn back, the feed table is
lowered through a space equal to the distance between the dovetails, and is again shoved forward against the cutter. To form dovetail tongues, a number of pieces of timber are clamped together side by side, are placed edgewise upon the feed table, with their ends resting against the guide plate, and are moved laterally against the cutter, which forms a dovetailed groove across the ends. The table is then lowered and the opposite sides cut, and so on until the tongues have been finished on all sides.
 once. Every car uncoupled from its neighbor as if bles snow in appearance, and has a temperature about by magic. Some of them remained on the track and 200 degrees Centigrade below the freezing point of others toppled to the floor. He repeated this several times, and each time the mechanism completely demonstrated that the cars immediately become detached from each other. It was the most ingenious device I ever saw. The amount of gearing and mechanism necessary for each car simply made the inabove their present height. The various geological and geographical features of the country were so described as to make the address a condensed report of all that is now known of that part of the East.

Solidified Oxygen.

At the Royal Institution recently, Professor Dewar ex hibited the method he employs for the production of solid oxygen. Last year the Professor gave a lecture on liquid air; but although he and other experimenters had made liquid oxygen in small quantity; yet no one had succeeded in getting oxygen into the solid condition. The successful device employed at the Royal Institution depends upon allowing liquid oxygen to expand into a partial vacuum, when the enormous ab um, when the mous sorption of heat which accompanies the expansion results in the production of
xygen in this condition resembles snow in appearance, and has a temperature about
200 degrees Centigrade below the freezing point of water.
A supply of this material will enable chemists to approach the absolute zero of temperature and to investigate many interesting changes in the physical properties of bodies under the primordial condical properties of bodies under the

To the other end of the shaft is attached an extension to serve as a mandrel to receive a saw or cutter head. This feed table can be raised or lowered, to allow the tool to cut to the desired depth, by means of a hand screw, which is swiveled to a cross bar secured to the frame. By turning the hand screw, the table can be adjusted to permit of the work being placed above or below the cutter or saw, as the character of the work may render most convenient. When used for cutting grooves, a gauge and guide cleat is attached to the table.
By using suitable tools and properly adjusting the parts, this machine can also be used as a boring machine with sliding table; as a double-headed moulding cutter for straight, circular, or other shapes ; as a paneling and rosette cutting machine; and as a dado and routing machine. It is also effective for squaring the heads of turned front legs of sofas and chairs, and it can be easily adapted for cutting "rope or spiral" turning.
This machine is the invention of Mr. John G. Oetzel, whose address is care of Messrs. M. \& H. Schrenkeisen, of 160 to 166 Monroe St., New York city.

The Coupler Fiend.

Since it became known that the Commissioners were interested in saving the lives and limbs of railroad employes by securing the application of automatic couplers, the inventors have forwarded them models of every conceivable kind of mechanical appliances for car coupling. Some of them are decidedly ingenious, others are cumbersome, while a few are constructed upon the principle that freight caß should be locked together as tightly as the jaws of a steel vise Railroad men are agreed that there should be some play in couplings for freight cars, and they pass over models which do not recognize this principle. Some of the couplings are made to be operated by a lever projecting beyond the side of the car. Others seem to be constructedfor operation solely from the tops of cars. One of the simplest of the collection now in the Railroad Commissioners' office was invented by a mechanic employed by the New York Central. Every inventor who forwards his model invariably accom panies it with the modest explanation that "this is the best thing ever yet invented."
"Probably a hundred models have been sent to the Commissioners, perhaps more," said Secretary Hudson. "Many of them are exceedingly ingenious. Some of them are so expensive that they are impracticable. I remember sitting here in the office one day when a chap came in, followed by five associates Each of them had a bundle. The leader just cast one glance at me, and then without a word he undid his bundle, and commenced to lay a miniature railroad track all around the floor and into the Commissioners' private rooms. The fifth man produced a lot of cars, and the last man drew a locomotive out of his package. Then I began to get interested. The leader arranged the track so that it ran up and down heavy grades and around sharp curves. Then he lighted a match, touched it to the locomotive, and away went the miniature train at a great rate of speed. Then he purposely caused an accident to the train,
vention enormously costly, and of course impractica ble. He thought he had fortune by the throat, and I could not convince him to the contrary. I yielded to his solicitations for letters of introduction to two practical railroad men, and away he went. I after ward received notice from these gentlemen that my life would be in danger if I ever sent any more in ventors to them."-Albany Corres. New York Times.

STEEL WIRE DOOR MAT.

The accompanying engraving represents a door mat that is rapidly coming into favor, and is particularly dapted for railway and street car floors, steamboats, offices, stores, residences, etc. It is made of steel wire, with steel frame and steel braces, all perfectly galvan ized. This gives it many decided advantages; it is serviceable, practically indestructible, is self-cleaning,

STEEL WIRE DOOR MAT.

requiring no shaking, and cheap. These mats are manufactured by the Hartman Steel Co. (Limited), of Beaver Falls, Pa., in six standard sizes, varying from 16 by 24 inches to 36 by 48 inches; special sizes and shapes are made when desired.

Ancient Condition of Egypt.

At the recent meeting of the Victoria Institute, Prof. Hull, F.R.S., Director of the Geological Survey of Ire land, delivered the address, in which he gave an ac count of the work, discoveries, and general results of the recent geological and geographical expedition to Arabia and Western Palestine, of which he had charge. Prof. Hull, having sketched the course taken by the scientific expedition (which to a considerable extent took the route ascribed to the Israelites), the physical features of the country, evidences of raised beaches, etc., showed that at one time an arm of the Mediter ranean had occupied the valley of the Nile as far as the first cataract, the level of the land being 200 feet lower than at present (an opinion which had also been arrived at by another of the Institute's members, Sir W. Dawson), and that, at the time of the Exodus, the Red Sea ran up into the Bitter Lakes, and clearly must have formed a barrier to the travelers' progress at that time. He then alluded to the great'changes of elevation in the land eastward of these lakes, mentioning that the waters of the Jordan valley once stood 1,300 feet

SIMPLE EXPERIMENTS IN POLARIZED LIGHT (Continued from first page.)
The most perfect analyzer, however, is the Nicol prism.* A very small one will answer perfectly for this class of experiments, and is not expensive. But to return to our experiments ; when the analyzer and polarizer are crossed and the field is dark, if a few pieces of mica of various thicknesses and shapes are held between the analyzer and the black glass plate, and bowed and inclined at different angles, a great variety of tints will be observed, and if held in one position while the analyzer is turned, another effect will be noticed.
Among the objects which may be examined in this way are the paper weights, stoppers, and other thick, partly annealed pieces of glass, a piece of glass held edgewise in a hand vise or pair of pliers and put under compression, as shown in Fig. 5. A piece of glass held compression, as shown in Fig. 5 . A piece of glass held
edgewise for a moment in a small gas or candle flame, and then placed in the polarized beam, shows the strain by a light figure, like that represented in Fig. 6, or it may assume other forms, according to circumstances. As the glass cools, the figure fades away.
Small glass squares and triangular and diamondshaped plates, about three-quarter inch across, suspended by a fine wire in the flame of a Bunsen burner or alcohol lamp until their corners begin to fuse, and then cooled in air, become permanently strained, and exhibit symmetrical figures formed of dark and light

DOUBLE POLARIZATION WITH SINGLE GLASS PLATE.

spaces, but show little color on account of their thin ness. By superposing several such plates, color effects may be seen.
The beautiful verre trempe, or strained glass blocks, a few examples of which are represented at a, b, c, d, in Fig. 2, are similar in character to what has just been described. They vary in thickness from one-fourth inch to one-half inch, and even thicker. They are expensive objects, but exceedingly beautiful and interesting.
In Fig. 3 is shown a method of polarizing and analyzing with a single bundle of plates. It is, in principle, a Norremberg doubler. The light strikes the under surface bundle of plates at the polarizing angle, and is reflected downward in a polarized state, passing through the object which rests upon the horizontal silvered mirror. It is then reflected back through the object, and passes through the bundle of plates to the eye of the observer; the plates, as before stated, serving to analyze the polarized beam.
A Norremberg doubler, which answers a good purpose, may be made by leaning a clear plate of glass upon the edge of a book, over a piece of ordinary looking glass, and employing a bundle of glass plates as an analyzer, as shown in Fig. 4. Here the polarization is effected as shown in Fig. 4. Here the polarization is effected
by the single plate of glass, and the analyzation by the bundle of plates held in the fingers. Equipped with this instrument, the student of polarized light may proceed a long way with his investigations.
In this intrument the objects to be examined are laid upon the horizontal mirror, and the inclined plate is arranged with reference to the light so that it will reflect the broad light of the sky downward. it will reflect the broad light of the sky downward.
The position of the single plate and bundle of plates may be varied to secure the best effects.
In Fig. 7 is shown an arrangement by which the object and the blackened glass both act simultaneously as polarizer and analyzer. By placing a specimen of verre trempe edgewise on the blackened glass, as shown in the engraving, the light, striking the strained glass at about the polarizing angle, is reflected from the back surface of the glass and partly polarized. The beam thus polarized is reflected downward obliquely, and at the same time depolarized by the strained body of the glass; it is reflected upward to the eye and analyzed by the blackened glass mirror, thus producing an image which is apparently below the surface of the mirror. The image seen in the verve trempe itself is produced by the reverse of what has just been described. The light is polarized and re-
flected by the black glass mirror, and passes through to the back surface of the verre trempe, which reflects
it back through the body of the glass; the glass then it back through the body of the
When the polarizer, analyzer, and object are each movable, different effects will be produced by rotating any of them. As a means of exhibiting complementary colors, nothing can excel the polariscope, as the colors produced in the successive changes resulting from turning the analyzer or polarizer are exactly complementary to each other. Little has been said about theories. The writer's object is to interest the reader in polarized light sufficiently to induce him to study the literature of the subject,

House Bill 4458.

The Patent Bar Association of Chicago have sent to Congress the following petition, which very ably sets forth the serious objections to the above bill, to which we have heretofore called the attention of our readers: Whereas. It is the sense of the "Patent Bar Association," of Chicago, Ill., composed of patent lawyers representing varied and diverse interests dependent upon letters patents for inventions, that the "Townsend " bill (No. 4458), now pending in the House of Representatives, is unconstitutional, inherently and radically wrong in principle, and calculated, if it becomes a law, to work great hardship and injustice to meritorious inventors, in the following particulars, to wit:

First.-In that, by not excepting from the operation of the bill natents heretofore granted, it directly interferes with end takes away rights already vested under said patents.
Second.-In that it deprives inventors of the exclusive rights to their discoveries or inventions, contrary to the provisions of Section 8 of Article 1 of the Constitution of the United States.

Third.-In that its provisions are so vague and ambiguous that it will enormously multiply litigation, and will for several years render it impossible to determine what are the legal rights and remedies of the owners of letters patent.
Fourth.-In that it is "class" legislation as against the products of the brains of inventors, while the exclusive rights of authors are fully protected by the laws of Congress.
Fifth.-In that it takes away the jurisdiction of the Circuit and District Courts of the U. S., in suits for infringement of patents involving lessthan $\$ 200$, without designating any tribunal for the hearinge and adjudicating thereof, thereby depriving patentees having small claims of any remedy, legal or equitable.
Sixth.-In that its provisions are a direct temptation and incitement to fraud as to knowledge or notice of the grant of letters patent for invention, and in permitting an infringing purchaser for use, whose wrong is begun innocently, to continue the same deliberately, after notice during the life of the patent; and,
Seventh.-In that it extends to infringing manufacturers, who are supposed to engage in business deliberately and with their eyes open, the same privileges and exemptions as are extended to innocent purchasers buying in open marke ${ }^{t}$; therefore, be it
Resolved, That this Association respectfully and earnestly petitions Congress not to pass said bill-H. R. 4458.

Resolved, That our Senators and Representatives in Congress are respectfully requested to oppose the passage of said bill. J. M. Thacher, Pesident.

E. S. Eyarts, Secretary.

The Making of Rubber Stamps.
The wording of the desired rubber stamp having been and set up in ordinary type, the same is locked up and placed upon a level support. Around it is put an iron frame, which will determine the shape and size of the matrix.
By means of a soft brush, the type as well as all surrounding parts, that are to be covered by the plaster of Paris, are well oiled.
For the purpose of making the cast, finely ground fresh plaster of Paris is needed; if of long standing, the same will lose its desirable properties. This plaster of Paris, of which a sufficient quantity should at one time be mixed to the consistency of pap, using clear water, is poured over the frame containing the type in a thin layer, so as to barely cover it. With a
stout brush the mixture is driven into all spaces and interstices, until all details are thoroughly covered. After this the remaining pap of plaster of Paris is added until the frame is filled to overflowing. The surface is smoothed down, after the plaster has settled somewhat, and in a short while the matrix in the frame may be removed from the type.
After this it becomes necessary to bake the matrix in an oven for a period of from four to six hours. When thoroughly baked, the matrix should be well brushed with a thin solution of shellac to impart a smooth surface, and at the same time greater strength.

The matrix, at this stage, represents a yellowishwhite block, in which the lettering appears indented,
but in proper place. The indentation corresponds to the height of the letter upon the piece of type or the marks upon a cut, while the remaining parts should be perfectly smooth and free from holes. This ma trix, obtained by a coating from the type or ht, will serve as the mould for the final rubber stamp.
Pieces of caoutchouc are cut to the required size and laid upon the matrix. If pressure is now exerted, the soft mass will adjust itself to fill all the spaces and reproduce the mould invertedly. Indentations become raised matter, and the whole will show as did primarily the type.
But as the caoutchouc has a tendency to return to its previous shape, it becomes necessary to apply the process called vulcanizing. The object is to impart hardness to the rubber, and to prevent its losing the form into which it has been pressed.
To accomplish this, the caoutchouc must be heated to a temperature of from 120 to 130 deg . C. As the substance is ordinarily softened by heat, it is necessary to take some means to prevent it from sticking to the mould. For the purpose soapstone will answer, and the mould, as well as the piece of caoutchouc, should be well brushed or dusted with this substance.
The duration of the heating varies with the thickness of the rubber sheet. As a general thing, from 20 to 30 minutes ought to be sufficient. It may be mentioned here thatspecial apparatus has been constructed for pressing and vulcanizing. The proper vulcanization is of the greatest importance in determining the durability of the stamp.
All that remains to complete the stamps is the mounting of the rubber plate upon a suitable base or handle. This is best done either with zinc or with a solution of caoutchouc in benzine. The surface of the handle, as well as the back part of the stamps, having been covered with such a solution and well pressed together, after drying the entire stamp will be ready for use.Amer. Lith. and Printer.

Compensating Pendulums.

At a recent meeting of the Royal Astronomical Society, London, Dr. Leonard Waldo, of Yale College, described an escapement for clocks of precision, with which he had been making experiments. He said there are several obscure sources of error in the rate of clocks, which have not been properly investigated. It is ordinarily assumed that the pendulum swings in a plane; but this is never actually the case. There is always some deviation from the plane, as may be shown by fixing a reflector on to the pendulum rod, and observing a reflected light on the cross wires of a telescope as the pendulum swings. Then there is always some mobility about the support, which, if the pendu lum is heavy, may be a serious cause of error. Then the coefficient of elasticity of the suspension spring is always changing with the temperature. I have found the best results with a very firm and specially built stone arch between two piers, like the piers of a transit instrument, from which to suspend the pendulum. I have had to discard the use of a glass rod and glass jar for mercury, on account of the difficulty of getting a straight uniform rod or an accurate cylinder to contain the mercury; and we have fallen back on the use of a steel jar and steel rod, which, though they are subject to greater expansion, can be accurately turned. I have had to reject altogether zinc and steel gridiron pendulums, on account of their tendency to warp. There is an uncertainty about such pendulums which is totally unexplained. I use a weight of from 45 to 60 pounds of mercury, properly freed from oxide, which is another source of change of rate. The escapement I have used is a modified form of the Denison gravity es capement, which does not want any great amount of power to drive it.
Mr. Buckney said: I should like to make a few remarks on what Dr. Waldo has said, for his experience does not agree with mine. First, as to the mercurial pendulum being better than the zinc and steel compensating pendulum. I much prefer the zinc and steel, especially for large pendulums, for a change of tempera ture does not act immediately ; and with the mercurial pendulum, the rod takes up the new temperature, while only the outside of the mercurial jar is heated, and until the whole of the mercury in the jar is heated the clock will lose. I have made some experiments as to this, and found that a mercurial jar of 2 in . in dimeter, which is the ordinary size used, when exposed to a change of temperature of 30°, takes a whole day to steady itself. A jar of 3 in . in diameter took between two and three days to compensate itself. I do not understand why ; but the increase of temperature took about double the time to show its effect that the cool ing did. With a zinc and steel pendulum the bob can be suspended from its center so as to eliminate all er rors due to the expansion of the bob itself, so that the expansion of a large mass need not be considered.
Mr. Inwards : There seems to me to be another objection to the mercurial pendulum which has not been referred to-the mercury, being liquid, always flops bout to a certain extent, which must be equivalent to so much friction.

Sorrespondence.

The Recent Fire at the Harrison Chemical Works. To the Editor of the Scientific American:
We notice in your issue of the 12 th inst, an item to the effect that during the recent fire at our works a large amount of chemicals were released from the burning building, which entirely destroyed the fire hose, and also that the firemen's lives were constantly endangered because of the chemicals in the neighbor ing buildings. Kindly correct this erroneous state ment.
The building burned, one of a group of buildings devoted to the manufacture of alum, contained nothing but sulphate of alumina, or alum, in solution or in bulk, in either case perfectly harmless. The nearest buildings were acid chambers, which were not injured sufficiently to release any acid, and even if these chambers had been destroyed, the acid could not have come in contact with the hose. The only hose destroyed during the fire was some 150 feet of our own, which was caught by the fire in an exposed position, and burned before it could be removed. The firemen were not exposed to any more danger than at any ordinary fire, as we do not manufacture, either in our alum works or in any of the rest of our factories, any explosive materials; and even had our chambers been destroyed or injured, none of the acid, or chemicals, as you call them, could have come in contact with the fire hose, owing to the peculiar construction of the buildings.
Mr. John R. Cantlin, Chief of the Philadelphia Fire Department, in a letter to us fully confirms our statement, and we beg you will correct your item.

Harrison Bros. \& Co.,
C. Leland Harrison.

Philadelphia, June 17, 1886.

How to Increase the Efficiency of Dynamo No. 161. To the Editor of the Scientific American:
I have just constructed for lecture purposes in this school a dynamo electric machine like that described in the Scientific American Supplement, No. 161, and I have found it possible to increase its efficiency very much by a change in the manner of making the connections, which may be of interest to others who have the same machine.
I connect the brushes with the extremities of the wire passing round the field magnet, thus closing what may be called the inner circuit. I again connect the brushes for the outer circuit. This connection is very effective where the outer circuit has much resistance or is subject to interruption. The greater the resistance in the outer circuit, the stronger the field magnet becomes and the greater the electromotive force of the current. If the outer circuit, is broken, the field magnet, instead of losing its magnetism, becomes stronger, since its coils receive all the current.
Connected as I have described, the machine will decompose water or work a telegraph instrument at a very low speed; and at a high speed will easily raise to a red heat from eight to ten inches of platinum wire, No. 36. It will also run a small are light tinum wire, No. 36 . It will also run
When the resistance of the working circuit is very low, and only then, the connections are best made as described in Supplement, No. 161.
Of course, I am well aware that this application of short circuits is well known to electricians, but doubtless many who have made and are using this little machine do not know of it. C. Fessenden.
P. S.-To change the circuit, as above, it is not necessary to make any change in the construction of the machine. Taking Fig. 3 of description in Supplement, No. 161, join n and v by a straight stout wire, and take the current for outside work from p and v or from p and n.
C. F.

High School, Napanee, Ontario, Can., June 21, 1886.

Peculiarity of Indian Castings.*

The importation of partly manufactured material is at present exercising considerable influence over many of the native arts of Oriental countries and India. The supply of machine made thread has doubled the village handlooms in some districts of Madras, and gold thread from Germany has enabled the brocade weavers to compete with the imitation brocades sent in from Europe. In some handicrafts, however, the supply of European material has produced a contrary effect. Iron and steel, bar and rod, have displaced an ancient industry, and sheet copper and brass have robbed the founder of half of his work. Formerly the only means of producing sheet metal was by the only means of producing sheet metal was by
hammering cast plates, an expensive method only resorted to when thin flat coverings were required for wooden or other objects. For very large vessels, where weight was required to be kept down and strength maintained, hammered sheet was used; but generally
*C. Purdon Clarke, C.I.E., Keeper of the Indian Section, South Ken-
sington Museum, as reported in the London Iron Trade Excchange.
the founder was employed, to save as much as pos sible the labor of forming the furnished castings, which required but little beating out, trimming, and brazing. In the case of a bowl or flat jar with a narrow mouth, the founder would prepare a cast not unlike in shape and thickness that of an ordinary flower pot saucer, from which, by constant hammering, the bulbous sides would be formed, projecting beyond the rim, which would remain of its first diameter and thickness. When finished, such a vessel would be nearly double the size of the first cast, and a remarkable example of the native knowledge of the composition of bronzes and annealing processes.
It is worthy of noting that the chief means of detecting modern from old Persian and Saracenic metal vessels is by examining the brazing joins, which in ancient vessels are rare. When not found, a close examination will show the vessel to be a thin casting, the ornamentation being by inlay or chasing and hammering, which, being done after the cast is made, gives the reverse side the appearance of chased sheet metal. So far as I could ascertain, there are three methods of casting practiced in India. The first by moulds in sand ; the second, moulds in clay not unlike plasterers' piece moulds; the third, clay moulds formed on a wax model, the cire perdu of Europe. The first of these is well known in Europe, but the sec nd is, I believe, now described for the first time.
In preparing the mould, impressions of the various parts of the pattern are taken in clay, and these pieces when nearly dry are, after trimmine stuck neatly together, and kept in place by severv layers
of mud, in which some fiber is mixed. The mould when ready has but one vent, which, placed on the most convenient side, is carried up into a sort of bottle neck. If the object is small, several moulds are attached together, and the vents united by a single short neck of clay, to which a crucible, inclosed in an egg-shaped ball of clay, is attached. The size of this crucible depends upon the exact amount of metal required to fill the mould or moulds; and this quantity being known by experience, the founder places it inbeing known by experien
side before closing it up.
No provision is made for the escape of air from the mould when the metal is poured in. The mould and crucible (now in one piece) is allowed to dry ; and after several coats of clay, tempered with fiber, have also been well baked on by the sun, the furnace is prepared. This is simply a circular chamber about 2 feet 6 inches in diameter, 2 feet in height, with a perforated hearth and no chimney. Half filled with charcoal, a good heat is obtained by the use of several sheepskin bellows from beneath. When ready, as many moulds as the furnace will hold are placed in it, the crucible end of each being embedded in the fire. A cover is placed over, and the fire kept up until upon examination the moulds are found to be red hot. They are then taken, one at a time, and replaced in a reverse position, the crucibles being now above. The metal flows down into a red hot mould, and penetrates the finest portions of the surface without suffering from air or chilling. The fire is allowed to gradually cool, and when the objects are broken out of their clay covering, the metal is soft and malleable.
The third manner of casting (that by the use of a wax pattern which is destroyed in the moulding) is well known, but in one particular case the process has been carried further than would be at first believed, and of this I will now attempt a description.
The object produced is an anklet, a flexible ring about 4 inches in diameter, made from ${ }^{0}$ an endless curb chain. Such curb chain trinkets are common in India, and are generally made from thick silver wire rings interlinked and soldered one by one. In this example the anklet is made of bronze, and consists of a complicated chain of 43 detailed links, the whole being cast by a single operation. The first part of the process is the preparation of a pattern in wax, a delicate work, each link having to pass through four others, and to bear three small knobs or rosettes. These are in two instances but ornaments ; the third, however, serves as a channel for the metal to enter each ring. Then commences the most difficult part of the work, each ring having to be slightly separated, and this is effected by painting in a thin coat of fine clay until there is sufficient to form a partition. Other coats of clay are added until a thickness of about half an inch is attained, when a groove is cut round the upper side of the ring, and deepened until the row of knobs is bared. The wax is then melted out, and the mould attached to a crucible as before described. When cast, and the mould broken away, the chain comes out inflexible, being attached to a rod which runs round where the groove is cut. This is broken off, and the chain is complete.
The president of the society before which the paper was read, in proposing a vote of thanks to $\cdot \mathrm{Mr}$. Clarke for taking so much trouble in obtaining the specimens exhibited, said that they were very extraordinary things, and the subject was well worth consider
together, as they could see. He knew that Mr. Clarke had had the opportunity of seeing a good many metallurgical processes as practiced in India, and he was very muchstruck by one pointmentioned, namely, the very great use made in India of highly heated moulds, and which he considered was a subject deserving of considerable attention.

Petroleum in Egypt.

The recently discovered oil fields in the region of the Red Sea have been carefully examined by Mr. Daley, a Belgian engineer, and promise to be of cunsiderable mportance. The entire peninsula of Gimsah, where the oil has been found, is of volcanic structure, and devoid of the slightest trace of vegetation or fresh water. 'the first oil borings were made at a distance of 400 feet from the sea. At a depth of 156 feet, a copious flow of oil was obtained. It is estimated that 3,200 barrels were discharged in 24 hours, and the flow has since been maintained at the same rate. The petroleum is of a dark greenish color, and limpid. It is mixed with salt water, and discharges carbonic acid gas. By allowing it to stand for some time, the salt water settles to the bottom, and may be drawn off. The surrounding country is quite uninhabited, on account of the absence of drinking water and vegetation. All provisions are supplied from Suez. The climate, however, is healthful, and the otherwise intense heat is moderated by frequent winds.
The Egyptian Government is disposed to do everything necessary for the development of the new industry. Jetties are being constructed, so as to allow vessels to be loaded directly at the wells. It is probable that most of the crude oil will be taken to Cairo for refiuing.

decisions relating to patents.

U. S. Circuit Court.-Northern District of Illinois.
ohio steel barb fence company v. washburn \& moen manueacturing company et al.
Gresham, J.
A court of equity wi l not specifically enforce a contract at the instance of one of the parties who has repeatedly broken it, even if the other party has been guilty of the first breach.
If one party to a contract expects to have it specifically enforced against the other, he must act steadily in good faith, by observing its terms, whether the ther party violates his covenants or not.
When a party to a contract has not kept his covenants, but excuses himself on the ground that the other party was guilty of the first breach, whatever remedy there is is at law.

U. S. Circuit Court.-District of Indiana.

hudnut v. Lafayette hominy mills et al.

patent hominy mills.

In a suit on reissued letters patent No. 10,057, of March 7, 1882, to Theodore Hudnut, it was shown that one of the alleged infringing machines was made in accordance with an earlier patent, and therefore held that such machine was not an infringement.
It is not competent for a patentee, by a reissue of his patent, procured after a delay of more than ten years, to so enlarge the scope of his invention as to cover devices patented in the mean while, which were not embraced in the original.

Maryland Court of Appeals.

SCHWARZENBACH v. odorless exchvating apparaRitchie, J.
Money paid for a license to use a patented invention on representations made in good faith that the patent is valid cannot be recovered back, although the patent turns out to be void.
In such a case, the general principle applies that where a party with full knowledge, actual or imputed, of the facts, there being no duress, fraud, or extortion, voluntarily pays money upon a demand, though not enforceable against him, he cannot recover it back.
A licensee who has paid, or agreed to pay, an annuity in consideration of a license to use a patent privilege which he has had the benefit of, cannot recover back the money or avoid its payment, if not already paid, on the ground that the patent is void.

A Fish Drying Machine Wanted.

A Florida correspondent writes that a demand now exists among the water farms and fisheries on the Gulf coast for a convenient and inexpensive machine for drying fish so that they may be shipped to distant markets, in the same manner that the fruits of the South are now distributed in dried form over large areas of less fertile country. He suggests that some of the readers of the Scientific American may turn their inventive genius in this direction. According to the De Funiak Springs (Florida) Signal, a premium will be offered for the best machine for

IMPROVED BORING AND FACING MACHINE. We illustrate a novel boring and facing machine constructed by Messrs. George Waller \& Co., of Southwark, London, as given in Engineering. It was designed more particularly for the manufacture of gas exhausters, but it is also applicable to a wide range of work. The head slides upon two vertical pillars, and can be raised and lowered by a screw operated by a hand wheel. Upon the face of this slide there is mounted a cross-slide, carrying two vertical spindles, one within the other, and each driven separately. Theinner spin dle is actuated by the cone pulley shown to the left, and is provided with a feed motion after the manner of a drill. The outer spindle carries a large face-plate at its lower end, and on this is a ring of bevel teeth into which a pinion on a horizontal shaft gears. The faceplate carries a tool-box provided with a tappet motion for effecting the feed. The apparatus is shown in the view boring a flywheel and facing up the periphery at the same time, and it is evident that there is a great variety of jobs in which it will prove of great service

The Electricity of the Lightning Flash,
When F'ranklin made his celebrated experiment with the kite, he demonstrated not only that the flash of lightning was simply an electrical discharge, but also its identity with the high tension electric spark produced by a frictional machine. The existence of electricity in the atmosphere appears to be the result of manifold causes. It is apparently a reservoir which receives the energy dissipated by the various processes of nature. The evaporation of water impregnates the atmosphere with minute vapor particles charged with the electric fluid. These currents of warm, moist air being lighter than the cold, dry air are constantly ascending from are constantly ascending from the earth, and particularly during the middle and after portions of the day. As these currents rise in succession, the moist air ascends higher and higher in the atmosphere, and, losing heat, is no longer able to retain the moisture with which it is charged.
Condensation then takes place, and a cloud is formed which increases in volume as long as the currents continue to ascend. These cloud masses are each charged with electricities of different tension the usually differing tension, and usually differing also from that of the earth. The ten dency to restore the disturbed electrical equilibrium causes a discharge between the two clouds, or the cloud and the

The entire danger from lightning is when the discharge is between the earth and the cloud. While this discharge is beyond man's control, it is within his power to direct such an electric current so that it shall be harmless. He cannot avert it, but he can, by providing a suitable conductor, prevent in many cases the actual flash, by substituting a silent discharge, or transfer the current through a channel which will be uninjured by its passage. This is the mission of the so-called "lightning rod." There are a number of instances on record where the principle of the lightning rod has been carried out accidentally, with disastrous results, owing to the nature of the conductor. One

The resistance offered by the bodies of the persons completins the circuit was too great, however, for their safety. It often happens that the rods are so carelessly adjusted and maintained that they are inefficient for the protection of the building so equipped. But the value of a properly constructed rod is proved by the experi ence of the British navy, where no loss has occurred since the adoption of a lightning conductor. The ships are probably struck as often as formerly, but in the bsence of an electric explosion, no damage is done.
The best form of conductor is one which offers the east possible resistance to the passage of the current. Prof. Hughes, who has given the subject careful study, states as the result of his experiments that a solid rod of iron is a very bad form, because of the self-induction in such a conductor. A ribbon form is considered very good, but should be wider if made of iron than in case of copper, in order to afford equal conductivity. He also recommends iron conductors made of numerous stranded wires.

Morrhuol, the Active Principle of Cod Liver Oil.
Dr. Lafarge, of Paris, has separated from cod liver oil a substance containing all the active ingredients of the oil except the fat. This substance he calls morrhuol. It contains twelve times as much iodine, bromine, and phos phorus as the original.oil, but these elements exist in a state of combination difficult to destroy. The quantity of morrhuol obtainable varies, according to the quality of he oil, from $11 / 2$ to 6 per cent When cod liver oil is perived the morrhuol, it no longer possesses the properties which make it so valuable, and acts simply as a fatty substance. In order to cover the disagreeable taste of the morrhuol, it is best given in capsules containing five grains of the extract, cor responding to a drachm and a hal of the crude oil Two of these cap sules a day in young children, or four daily in older children, have, Dr. Lafarge says, proved of great service in his hands. It also re lieves the cough of phthisis.-Medi cal Record.

To Clean Brass.

Make a mixture of one part com mon nitric acid and one-half part sulphuric acid in a stone jar, having also a pail of fresh water and a

the resistance of the air is dependent upon distance and humidity, it usually happens that the overcharged cloud discharges into one of less tension and in comparative proximity. Of the many thunder storms occurring every summer, and the frequent flashes of lightning with which they are accompanied, there are probably comparatively very few discharges which ever. reach the earth at all. The interchange in the large majority of cases is between two clouds or between two bodies of air of opposite tension. The damage done by lightning would be much in excess of its present total were this not the case. From the passage of the spark from cloud to cloud we need no protection, for the earth is entirely without the circuit.
notable case, probably familiar to some of our readers, occurred many years ago in Brittany, where the church
bells were rung at the approach of a storm, in order to warn the people. In several of these churches during the course of the storm, the towers were struck while the bells were still ringing, and the unfortunate persons who had hold of the ropes were either killed or severely injured. Other churches, the bells of which were silent, escaped harm. An explanation of the in cident is found in the fact that the large mass of metal of the bells, being in imperfect connection with the ground through the hempen rope and the bell tollers, offered a better conductor for the passage of the elec tricity than the surrounding alt.
water, and finally rubbed with saw dust. This immediately changes them to a brilliant color. If the brass has become greasy, it is first dipped in a strong solution of potash and soda in warm water; this cuts the grease so that the acid has free power to act.

Cast iron pulleys may be lagged with leather without the use of rivets, by first brushing over the surface with acetic acid, which will quickly rust it and gives a rough surface; then attach the leather to the face of the pulley with cement composed of one pound of fish glue and one-half pound of common glue.

TRIPLE CALLA LILY.

We illustrate in the cut a remarkable example of a triple spathed Calla æthiopica. The specimen is in the possession of Mr. A. T. F. Lampe, florist, of Jersey City. It measures eleven inches from tip to tip of the pposite spathes, and six inches across the face in the opposite direction. Although generally spoken of as opposite direction. Although generally spoken of as
the flower of the calla lily, the white spathe is only a the flower of the calla lily, the white spathe is only a
slightly modified leaf, and has no relation to any individual blossom. The thick pillar or spadix in the axis is covered with a thick mass of small antheriferous flowers. These are the real blossoms, and the white leaf or spathe that sweeps around the base of the spadix or flower stalk recalls by its shape the green leaves that grow on the regular leaf stalks. The well known Indian turnip and various other plants exhibit this same peculiarity in their way of blossoming. As its name denotes, the C. æthiopica was a native of South Africa It was introduced into England in 1731. We learn from Mr. Lampe that fifteen years have passed since he saw a triple calla, and that this is the finest one that ever met his observation. The double are not so rare as the triple ones, but either kind can only be called a freak of nature. In all probability, the same plant will never again show the same phenomenon. Out of several thousand flowers that have bloomed in his greenhouses this season, this is the only one of the double or triple variety. There is no way of propagating them.

EXPERIMENTS IN ATMOSPHERIC PRESSURE AND CONDENSATION OF STEAM.

by t. o'conor sloane, phid.
Since the earliest days of science, the phenomena of atmospheric pressure and different illustrations of the gravity of the air have formed one of the most interesting of the experimental departments of natural philosophy.
While various phenomena connected therewith were known from the earliest days, one of the glories of modern times is the assigning to these facts their true cause. Up to the days of Galileo, the expression of the cause was contained in the words, "nature abhors a vacuum." Inspired by this brilliant man, who was his master in science, Torricelli investigated the subject, and invented the barometer. At about the same period, Pascal, in France, not knowing fully any of the details of Torricelli's work, also investi gated the subject of atmospheric pressure, which investigation was one of the classic works of his life. He reasoned out that the barometric column was sustained by the absolute weight of the air pressing upon the mercury outside the tube.
He caused a barometer accordingly to be carried to the top of the Puy de Dome, the principal peak of the Auvergne, situated near the village of ClermontFerrand. His brother-in-law Perrier did this for him, watching eagerly the height of the barometric column as he ascended. He found that it fell continually as a greater height was reached, until it was depressed several inches at the summit. This was in exact accordance with Pascal's prediction. In Perrier's words, the result "ravished us with admiration."
Otto von Guericke, the famous burgomaster of Magdeburg, won his title to fame by his experiments in pneumatics. Adjoining the wall of his house he erected a water barometer, whose long tube reached well $u p$ to the eaves. On the upper surface of the water within the tube he floated the image of a little

experiment in atmospheric pressure.

man, which rose and fell with the barometric column, prognosticating to some extent by his movements the coming weather.
From this experiment it would seem that Von Guericke did things on a large scale.
His other work carries out this idea. He made Magdeburg hemispheres so large that the force of eight horses applied to one of them could not pull them apart. He constructed a cylinder and piston of such
dimensions that a large number of his fellow burgomasters pulling simultaneously were unable to raise the piston against the atmospheric pressure. All his experiments he could not have carried out without an air pump, and he has come down to posterity with augmented honor as the inventor of this instrument. Torricelli, Pascal, and Von Guericke did all the fundamental work in pneumatics, and what has been

rriple calla lily

since done has been the carrying out of their work to its legitimate conclusion.
In the cut is represented a modification of an old experiment, but which departs sufficiently from it to possess an interest of its own. The original experiment is familiar to many of our readers. A tumbler or wineglass is partly or entirely filled with water, a piece of writing paper is placed over its mouth, is pressed against it tightly by the palm of the hand, and the whole inverted. On withdrawing the hand, the paper remains attached to the glass, and the water does not escape, being upheld by atmospheric pressure.
If the glass was only partly filled with water, the success of the experiment is due to the flexibility of the paper. The paper is pressed into the glass a little by the hand, and when the hand is removed, gives way or bulges out a little.

The effect of this is to permit the rarefaction or ex pansion of the air contained in the glass above the water; thus, in the usual phrase, etymologically incorrect, but very convenient, a partial vacuum is created, and the paper upheld.
In the modified experiment, an inflexible substance, a plate of glass, is substituted for the paper. To per form the experiment with this, the glass must be com pletely or very nearly completely filled. The presence of any considerable amount of air in it would cause it to fail, as the glass plate could not bulge out-under the pressure of the water. A wineglass or tumbler with very even edge is placed on a level table, filled almost to overflowing with water, and a flat glass plate, by sliding or otherwise, is placed over its mouth, so as to exclude every bubble of air. If this be inverted, the glass plate being held in place while so doing, it will remain attached to the vessel on withdrawal of the hand, but in a state of extremely unstable equilibrium. The plate can hardly be said to be in contact with the edge of the tumbler, a thin film of water intervening, so that on the least inclination the plate slides off. To make it more secure, four pieces of cork may be attached by sealing wax to the surface of the glass that comes next to the tumbler, which prevents this sliding. It is a beautiful illustration of the low expansibility of water.
A small amount of water may be placed in the tum bler, and a little more than an equal volume of alcohol may be mixed with it. A lighted match may now be held within the vessel for a few moments, or until the vapor of alcohol catches fire. After it has got quite warm, a plain piece of glass is placed upon it and it is inverted as before. If this is properly performed, the plate of glass will adhere strongly to the tumbler under the effects of the partial vaeuum.

In the other cut, the production of a steam vacuum is illustrated. A small amount of water is brought into a state of ebullition, and maintained so for a few owl containing more than inverted quickly into a
open neck reaching well down to the bottom of the vessel. For a moment nothing happens; but as the steam begins to condense, water rises rapidly into the flask, filling it completely, sometimes with such vio lence as to break it.
This experiment may be performed with an Italian wine bottle from which the straw cover has been removed. It is an historical experiment, and was per formed with one of these identical bottles by Capt. Savery, one of the early inventors of the steam engine The account of the experiment may be found in vol. ii. of Experimental Philosophy, by Dr. Desaguliers, published in London in the year 1734.

Contractors Estimating on Public Works.

The great discrepancy in the bids of contractors for engineering and other public works seems quite a mystery to the uninitiated in such matters, and one we will not attempt to explain. The Building Trades Journal seems also unable to explain the reason for the wide difference in the proposals.
Our readers, it says, have doubtless observed the strange discrepancies that existed between the bids on government building work published in these columns every month, and it has given rise to the suspicion that such estimates are a matter of pure guesswork. Private bids are often astonishing in their character, but the difference between them is generally confined to the limits of the percentage which is supposed to represent the margin or profit after the cost of labor and material has been deducted.
With government work there seems to be some unknown quantity not appearing in the clearly drawn specifications which creates a large additional per centage of doubt whether there will be any profit in the work.
As notable examples of the " close margins" which are supposed to be the result of open competition, we select a few figures from contracts awarded since January 1, which ought to provoke some discussion : For stone work and setting for Louisville, Ky., court house, under advertisement dated November 25,1886 : lowest bid, $\$ 86,521$; highest, $\$ 291,745$, or 233 per cent higher.
For iron work for Erie, Pa., court house, advertisement of February 24 : lowest bid, $\$ 5,818$; highest $\$ 10,817$, or 86 per cent higher.
For plastering Pensacola, Fla., court house, advertisement of April 1, 1886 : lowest bid, $\$ 3,243$; highest bid, $\$ 18,521$, or 475 per cent higher.
For approaches to Dubuque, Ia., court house, ad vertisement of December 3: lowest bid, $\$ 549$; highest, $\$ 1,119$, or 106 per cent higher.
For plastering Toledo, Ohio, court house, adver tisement dated November 21 : lowest bid, $\$ 5,120$ highest, $\$ 10,000$, or 96 per cent higher.
For plaster models for court house at Lynchburg, Va., ad vertisement of December 10 : lowest bid, $\$ 78$; highest, $\$ 1,059$, or 1,260 per cent higher.
For iron beams for Brooklyn post office, advertisement of December 5 : lowest bid, $\$ 1,850$; highest, $\$ 3,110$, or 70 per cent higher.
For lathing and plastering Oxford, Miss., court house, advertisement dated January 7: lowest bid $\$ 1,775$; highest, $\$ 4,443$, or 150 per cent higher
For iron beams for Pittsburg, Pa., court house, advertisement of January 15 : lowest bid, $\$ 2,360$; highest, $\$ 4,617$, or nearly 100 per cent higher.

EXPERIMENT in CONDENSATION of steam.
It would be natural to suppose that the difference in cost of transportation of materials from the various points of supply to the scene of operations would be some excuse for a variance in estimates, but it can hardly seem to account for more than one-fourth, at the most, of the difference of from 75 to 475 per cent between the lowest and highest ideas of the alue of the work.
Will some one enlighten us upon the subject?

ENGINEERING INVENTIONS.

A station indicator for cars has been patented by Mr. William W. Currie, of Smith's Falls,
Ontario, Canada. In a box having a drums and rollers operated by a coiled spring, to draw
 sengers, the machine being easily started by a conduct r or brakenan.
A car coupling has been patented by Mr. George J. Ferguson, of Greenville, Texas. Com
bined with a vertical channel intersecting the link throat, and a hooked projection, is an inverted U -shap ed coupling, having a hook on its rear side, and a lift arm for raising and sustaining the coupling device, with
other novel features, designed to furnish a positive automatic coupling for coupling to furnish a positive auto matic. c.
then.

MISCELLANEOUS INVENTIONS.

A lamp burner has been patented by Mr. Charles E. Tucker, of Salida, Col. The lamp chimney is made to rocecve an inter nal auxiliary cone, and
holes are made in the sides of this cone near its base, in order to concentrate upon the flame the air drawn into the burner.
$\underset{\text { ented by Mr. Nicholas A. Wierman, of Aspers, pa }}{\text { An egr }}$ It ented by Mr. Nicholas A. Wierman, of Aspers, Pa. I
is so made that a large number of eggs may be turned partly over by drawing out the bottoms of several seriee
of comparments in which the eggs are arranged, there of compartments in which the eggs are arranged, the
by promoting the keeping of eggs for a long period.
A roller gate hinge has been patented by Mr. George N. Crichton, of Parsons, Kansas. I consists of a bar or plate having a central socket, and
provided with a laterally projecting pin near eachend grooved rollers on the pins, and a bolt having an upright arm fitting in the socket of the bar or plate.
A wagon axle has been patented by Mr. John Lucksinger, of Beaufort, Mo. The skeins and cap nut are so made that the axle may be oiled without removing the wheel, and the device is calculated to take
up the wear of the skein, so the wheel may always be made to run true upon the axle and prevent chocking. An automatic check for music boxes has been patented by Mr. Charles E. Juillerat, of New
York city. Combined with the cylinder and comb of a musical box is a wheel on the cylinder, a cam wheel, pro jecting teeth, a pawl and lug, etc., to check the cylinder
when the flier cylinder gets out of order or is removed.
A process of and apparatus for coating paper and other fabrics has been patented by Mr. Ed
ward G. Sparks, of Brooklyn, N. Y. It consists in ward G. Sparks, of Brooklyn, N. Y. It consists in
drawing the web of material through a bath of melted having an adjustable slit through which the web passes,
A pen and pencil holder has been p ented by Mr. Frederick P. Peiter, of Norwalk, Conn It consists of a ring with a diagonal cross piece, on the
ends of which loops are formed for receiving the pencil, whereby a pen or pencil may be held on the pencil, fingers, so as to be very handy for use and out of the way when not in use.
A holder for photographic paper negatives has been patented by Mr. Erastus B. Barker, of tached folding or hinged frame, capable of being enter tached folding or hinged frame, capable of being enter
ed within the ordinary plate holder of a camera, and serving to hold the sensitized paper in position behind the lenses, for taking the photographic picture.
A culm bar has been patented by Mr. Silas M. Hess, of Bloomsburg, Pa. It consists of parallel bars united by cross pieces and slotted sections, each projection at the other end, and with bottom lugs fitting between the parallel bars, so that the culm may be per ectly burned, without loss.
A carpet stretcher has been patented by Mr. Enos B. Willix, of Dows, Iowa. It consists of two jaws connected by a hinge joint at their outer or
front edges, with ribbed meeting faces and adjustably front edges, with ribbed meeting faces and adjustably
connected levers, with other novel features, the device connected levers, with other novel features, the device
being designed to subject the carpet to a high strain being designed to subject the carpet to
without injuring the texture of the fabric.
A sled brake has been patented by Mr. Samuel H . Anderson, of Maddensville, Pa. The brake is operated by means of a lever, by operating which the
ends of U-shaped dogs are projected to engage with the road way in such manner as to check the advance of the sled, and also to hold it from running back when stopped on an up grade.
A gate has been patented by Mr. William Mason, of Puyallup, Wash. Ter. It is a sliding
gate, with locking latches at its opposite ends, and slid ing bais or rods on the top of the gate, an operating
cord extending at opposite sides of the gate and concord extending at opposite sides of the gate and connected to the sliding bars, so that a quick pull on eithe
of its handles will unlatch and open or close the gate.
A bicycle shoe has been patented by Mr. Thomas J. Strickland, of Randolph, Mass. The
invention consists in a shoe with a buckskin sole, and invention consists in a shoe with a buckskin sole, and
in a canvas shoe having the bottom parts of its upper made of leather, the shoe being so made as to be very
flexible throughout, and so that it cannot slip on the flexib
A slag cart has been patented by Mr. August Werner, of Lead ville, Col. In the bottom of
the bowl or ladle receiving the smelted metal, such the bowl or ladle receiving the smelted metal, such
bowl being suitably mounted in a frame on wheels, is a removable nozzle, so that a longer orshorter nozzle may
be used as desired, to facilitate the separating of the matte from the slag.
A funnel has been patented by Mr. Harmannus Van Kammen, of Grandville, Mich. It is a is a screw-threaded nipple receiving a tube, a yielding valve seat being between the tube and nipple, and a
ball valve communicating by a rod with a valve-closing ball valve communicating by a rod with a valv
spring attached to the handle of the measure,

A truss has been patented by Mr. John R. Jones, of Emporia, Kansas. The body spring made of flat spring metal, carries pad arms which may be adjusted with clamps to be set at any point in a circle deused with equal facility for either direct, oblique, or

A velocipede has been patented by Mr David G. Biggs, of Louisville, Ky. This invention
relates principally to a novel arrangement of the crank relates principally to a novel arrangement of the crank
shaft and connections, whereby all the force or power shaft and connections, whereby all the force or powe exerted by the rider is utilized in driving the machine,
and the movement is such as to decrease "wabbling "of the machine.
A door hanger has been patented by Mr. Le Grand Terry, of North Elmira, N. Y. This invention covers a novel construction and arrangement of parts to adapt a hanger for sliding doors to be adjusta-
ble to doors of different thicknesses, and to permit the door to be swung outward without derailing the hanger or its main wheel.
A nut lock has been patented by Mr. Louis Unger, of San Antonio, Texas. The nut has in
its rearface a non-circular recess, whose walls are serIts rear face a non-Circular recess, whose walls are ser-
rated, and from this recess notches extend to the side of Thed and for locking washer having its edge formed to
the nut,
fit those of the recess so that when it is in such recess fit those of the recess, so that
it will be held from turning.
A metallic ceiling has been patented by Mr. John D. Ottiwell, of New York city. Sheet meto the beams or to furring strips, and the mouldings are made to receive and hold the edges of the panels, avoid-
ing the necessity of nailing them, and facilitating the ing the necessity of nailing the
work of putting up the ceiling.

A sash fastener has been patented by Mr. George N. Clemson, of
spring-acted latch pivoted to $\mathrm{n}, \mathrm{N} . \mathrm{Y}$. It is spring-acted latch pivoted to
nib projecting beyond the ed tal plate, with a nib projecting beyond the edge, a roller carried by the
latch projecting beyond the edge of the nib, to carry latch projecting beyond the edge of the nib, to carry
the latch past the rail of the upper sash, and a catch for A horse collar has been patented by Messrs. William L. Bailey, Leonard T. and Lenis D . Knight, of Calvert, Texas. It is made principally of what is known as " moss yarn," with its strands or fiber sure in a mould or press, making an easy fitting and selfadjusting collar for farm and other use.
A knockdown crate has been patented by Mr. Charles P. Lewis, of Sweet Springs, W. Va. The end and side piecesare dovetailed together wha squar the box when set up, on the removal of which the bo can bex readily folded for shipping, it being adapted for carrying fruit or goods of various kinds.
An automatic check for music boxes has been patented by Mr. Alfred Sueur, of New York city. when the latter is rotated too fast a ratchet wheel is made to force a pawl into locking engagement and stop
the mechanism, thus preventing the breaking of the pins the mechanism, thus preve.
aud the teeth of the comb.
A circular-saw dresser has been patented by Mr. Hyman D. Wolcott, of Wrights's. Pa. It consists of a pair of beveled and circular files, mounted in a
frame secured to the guiding arms of a saw jointer, arframe secured to the guiding arms of a saw jointer, ar-
tanged to be adjusted to or from the saw and held in yielding connection therewith, and is an improvement
on a former patented invention of the same inventor. A snap hook has been patented by Mr. George R. B. Swanton, of New York city (the Bancroft
House). It has a chambered shank, in which is fitted an obliquely sliding bolt, and a spring for projecting the bolt and retaining it in a projected position in the bow
of the hook, making a simple and secure hook for use in connection with gate fastening chains, parts of harin connec
ness, etc.
A churn has been patented by Messrs. Daniel Lines and Charles T. Long, of Milano, Texas The hody of the churn is of stone or earthenware, and
preferably square in form, and it has dashers worked in opposite directions by rotating a handle connected with bevel driving gear, the construction being simple with eeveeldriving gear, the construction being simple
and effive, and the churn easily kept thoroughly
cleand
An exhibiting device has been patent a by Mr. Joseph P. Wilson, of Centralia, Kan. A clock train, with dial face and hand showing on the front of a case, is arranged to disengage detent mechanism, while e second train drives a a arrier shaft carrying radi-
ally projecting arms, with various other novel features, ally projecting arms, with various other novel features,
constituting an improved device for exhibiting adver constituting an improved de
tisements, photographs, etc.
A drier intended especially for drying Lobacco has been patented by Messrs. Gilmer and Chas. N. Meriwether, of Guthrie, Ky. This invention consists
of a specially devised sheet metal screen arranged to be suspended above an open fire, to protect tobacco from
A drier, more especially adapted for
white lead and other pigments, has been patented by white lead and other pigments, has been patented by
Mr. Arthur Buel, of New York city. Drying belts or aprons are employed, on which the pigmenis are depo small lumps or balls, which can be handled without waste, the belts being arranged in vertical series and the mate
being dried.
A fruit drier has been patented by Mr William S. Plummer, of San Jose, cal. The heat con ductors are constructed in a manner intended to form a
vacuum above the trays, to draw the heated air u vacuum above the trays, to draw the heated air up
through them, thus expediting the evaporation of the juices, and preventing any dampening by the vapor on a former patented invention of the same inventor.
A fishing reel has been patented by Mr.
open work finish, or in the form of braces embedded in
the rubber before vulcanizing, with the plate recessed on their inner faces in common with tha rubber to receive the rotating spool heads, making a cheap,

A fifth wheel has been patented by Mr Joseph V. Alexander, of Taylor's Chapel, Tenn. This inventuon affords an improvement in ball and socket carriages to the bolsters, the socket having end open ings or slots and the balla radial slot extending through tal form, adapting it to fit in and fill the slot.
An automatic dumping and discharg ing apparatus has been patented by Mr. John T. Evans, of Adamsville, Utah Ter. Combined with a supporting
frame is a pivoted and counterbalanced dumping cage frame in a pivoted and counterbalanced dumping cage,
having one end open and the other curved upwardly, an entry for guiding a bucket into the cage, and a stop fo arresting the cage when tilted, to facilitate discharging ore, coal, etc., on cable railways.
A flour bolt has been patented by Mr Kennedy Dougan, of Calwood, Mo. Within a cylindri. ing pivots, conveyer wings being mounted on the piv ots, and the adjacent surfaces of the wings and reel hav ing projections and recesses ot hold the wings in posi.
ion, the design being to simplify construction, eessen tion, the design being to simplify construction, lessen cost, and economize space.
A windmill has been patented by Mr. David B. Wood, of Sibley, Iowa. According to this invention, the floats are arranged in sets and carried by a
hollow vertical shaft that is supported in a properly hollow vertical shaft that is supported in a properly constructed tower, the construction being such as to
make a cheap, efficient, and durable form of windmill, he fan arrangement also being applicable to ordinar
orms of wind mill.
An apparatus for facilitating the multi plication of numbers has been patented by Mr. Jules V
Charpantier, of New Orleans, La. This invention covers improvements on a former patented invention of he same inventor, intended to improve the construction figures of several sheets, or reading from one row figures of one sheet when another should be considered.
A wagon bolster has been patented by Mr. John M. McNees, of West Liberty, Pa. It has at its opposite ends sockets itted to reave thons on the socket, and the tenon having an edge notch, the fastening bolt entering such edge notch to secure the standard
the bolster being especially adapted for bob sleighs in he lumber regions.
A tailor's measure has been patented by Mr. Anton Schad, of Louisville, Ky. It is a leather belt about an inch wide and fifty inches long, laid off in stel band, set a little distance from the plane of the belt, apon which is adjusted a sliding back measure and sliding arms, the measure being intended to facili-
An instrument for measuring powders has been patented by Mr. Joseph J. Stevens, of Coales. burg, Mo. It consists of a tube on which is a graduated scale, a piston in the tabe being adjustable to regulate
the quantity of powder and the powder being then readily forced out by the piston, the device being inreadily forced out by the piston, the device being in-
tended to facilitate the exact and rapid measuring of roper doses in medical practice.
A folding box has been patented by Mr. Jonah R. Cole, of New York city. The bottom is made
in one piece with the end and side pieces the surplus material at the corners being folded and lapped, and eyelets inserted, through which is passed a draw string or tape entirely around the box, so that by drawing upon the ends of the string the box may bedrawn to olded position, and so tied.
A car starter has been patented by Messrs. Charles L. N. T. Hansen and Christian N.
Fischer, of Plainfield, N. J. The invention consists of an endless chain and pulleys attached to the drivin shafts, a clutching device operating on the chain and against springs, there being a brake and a device for
throwing the clutch in and out of gear with the chain, hrowing the clutch in and out of gear with the chain,
the device accumulating power at the will of the opethe device accumulating power
rator while the car is in motion.
A bottle stopper forms the subject of two patents issued to Mr. Charles L. Morehouse, of
Brooklyn, N. Y. The bottle head has an inner angular groove and triangular rabbet, and a rubber packing
ring has a flange to fit in the groove and against the rab bet, while there is a hard rubber or other ball valve fit ting against the bottom bevel of the packing ring, with other novel features, the devices making a simple and for use on bottles for receiving plain and effervescent liquids.

NEW BOOKS AND PUBLICATIONS.

Modern Steam Engines. By
Rose, M.E. Philadeliphia:
Henry Rose,
Carey Baird \& Co., 1886 .
Though guite elementary in its character, and written almost entirely from the workshop point of view
rather than the theoretical, Mr. Rose's latest volume covers almost the whole ground of steam engine con-
struction. It is written in a plain straightforward style struction. It is written in a plain, straightforward style
that will commend it highly to those who search for information in its most available form. It is intended for beginners in the study of the steam engine, no less than for more advanced students, since care has been
taken to omit nothing that is essential to a thorough understanding of the subject. Particular attention has been given to the varions kinds of slide valve motions, depend argely upon these differences.. Each subject
has been treated so as to be conplete in itseif and has been treated so as to be complete in itseif, and
while this has necessitated repetition in several instances, it makes the work much more valuable for
reference. Nor is the repetition a disadvantage for
cannot be learned too thoroughly. In addition to the consideration of the steam engine as a general motor, and its construction for particular classes of service,
some little sese is devoted to its application to some little spaee is devoted to its application to
pumps, drills, air compressors, and other mechanisms pumps, drills, air compressors, and other mectanisms
driven by the direct use of steam. The velume is one driven by the direct use of steam. The volume is one
that can be cordially recommended, even in the face of thelarge competition to which all such works are now

PBusiness and Personal.

a line for forch Insertion under this head is one Dollar aline for each insertion; about eight words to a line.
Advertisements must be received at pubbication ofice as early as Thursday morning to appear in next issue. Greene, Tweed \& Co., Railroad and Manufacturers' Suppl Tunneling Under the Hudson River. Giving full particulars of the prosecution of the work thus far. With
working drawings, in 27 handsome plates, showing all details. By S. D. V. Burr. \$2.50. For sale by Munn \& Co., 361 Broadway, New York.
Emery and Corundum in quantity to suit. Walrus and
 Machinery, Tools, and Supplies of all kinds. Prices on application. Estimates furnished. C. L. Jackson \&
Co., successors to Jackson \& Tyler, No. 54 German St., Baltimore, Md.

That dire disease, whose ruthless powe
withers Beauty's transient flower,"
Withers Beauty's transient flower,"
found lurking around the citadel
sguise of a ming an in the For colds or coughis, weak or sore lungs, sore throats, sonchitis, asthma, and all diseases that lead to conGolden Medical Discovery."
Empire Gum Core, Soap Stone, Rubber, and all kinds Moneyless Inventors ! Capital furnished for procurnce confidential. Address "Patent," care W.H.Ohler 18 Locust St., Portland, Me.
Wanted-Propositions from builders of ice machines, to erect
Tenn.
Send to the Railroad Gazette, 73 Broadway, New York, for a catalogue of Locomotive, Track, and other ailroad books.
Emery Wheels of unusually superior quality for wet
inding. The Tanite Co., Stroudsburg, Monroe Co., Pa. A Catcchism on the Locomotive. By M. N. Forney. n receipt of the price by Munn \& Co., 661 Broadway. ew York
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pum

Nickel Plating.-Sole manufacturers cast nickel anLes, pure nickel salts, polishing compositions, etc. $\$ 100$
Litte Wonder." A perfect Electro Plating Machine. ole manufacturers of the new Dip Lacquer Kristaline .., Newark, N. J. and 92 and 94 Liberty St. New Yerk Send for catalogue of Scientific Books for sale by The Knowles Steam Pump Works, 44 Washington t., Boston, and 93 Liberty St., New York, have just is-
ued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and
uplex, steam and power type. This catalogue will be duplex, steam and power type. Thi
mailed free of charge on application.
Machinery for Light Manufactiring, on hand and
built, to order. E. E. Garvin \& Co., 139 Center St., N. Y. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Iron Planer, Lathe, Drill, and other machine tools of If an invention has not been patented in the United States for more than one year, it may still bepatentedin
Canada. Cost for Canadian patent. \$40. Various other foreign patents may also be obtained. For instructions
address Munn \& Co., Scientific American patent agency, 361 Broadway, New York.
Grimshaw.-Steam Engine Catechism.-A series of
horoughly Practical Questions and Answers arranged oas to give to a Young Engineer just the information required to ft him for properly running an engine. By
Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by Munn \& Co., 3f1 Broadway, N. Y.
Hercules Lacing and Superior Leather Belting made Nystrom's Mechanics.-A pocket book of mechanics d engineering, containing a memorandum of facts and
onnection of practice and theory, by J . W. Nystrom. C.E., 18th edition, revised and greatly enlarged, plates.
12mo, roan tuck. Price, $\$ 3.50$. For sale by Munn \& Co.,

Billings' Double-acting Ratchet Drills. Drop Forgings kinds. Billings \& Spencer Co., Hartford, Conn.
Curtis Pressure Regulator and Steam Trap. See p. 142 New Portable \& Stationary Centering Chucks for rapid entering. Price list free. Cushman Chuck Co., Hartford,

The Improved Hydraulic Jacks, Punches, and Tube Friction Clutch Pull Veneer Machines, with latost improvements. Farre dry. \& Mach. Co., Ansonia, Conn. Send for circular. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 350 . Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 350.
Astronomical Telescopes, from $6^{\prime \prime}$ to largest size. ObA servatory
land, 0 .
Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical, or scien ENTIFIC AMFRICAN SUPPLEMENT sent to them free entific Amprican Supplement sent to them free
The Supplement contains lengthy articles embracing the whole range of engineering, mechanics, and physical
nolange. Addrons Munn \& Co., Publishers, New Xork.

(1) F. H. S. asks : In the dynamo decribed in Supplem rnt, No. 161 , the wire of the armature is, as F understand errule of the commutator; do they touch both sections of the ferrule? A. The terminals are attached each to one section of the commutator
How are they fustened-by soldering, or just laii in? A. Soldering with resin flux is best. 3. Is it fit snug with a smooth surface, and touch the commutator springs? A. The wires do not touch the commu-
tator springs; they need no flattening. 4. What tator springs; they need no flattening. 4. What
weight of 12 cotton-covered wire would it take on the magnets for one twice the size and one four times
the size of the one described? A. 20 pounds and 80 pounds, about. 5. If the machine is left in a damp place, the magnets and armature will be apt to rust; how should it be trated to prevent this? A. They
will not rust much if of cast iron. Varnishing will prevent it. 6. In making a U -shaped electro magnet, what is the best wire to nse for one 3 or 4 inches long,
and would there be much difference if one was wound and would there be much difference if one was wound
with 12 and another with 36 using the same battery power? A. It all depends on your battery, live resist ance. etc.
to No . 20 .
(2) H. G. asks : How murh will the expansion of a brass bird cage spring composed of abou ing needle and subject to 100 and to 50 degrees of heat ber And will the expansion run in the wire if 6 feet in length will expand lineally obt part of its
length, or 0.074 inch, from 32° to 132° Fah.; from 152° length, or 0.074 inch, from 32° to 132° Fah.; from 152°
Fah. to 182° Fah., 0.037 inch, about. The wire will
(3) Commander of the Electra asks where he can reecive instructions in naval architecture
and yacht or ship designing. A. Best with some company sucti as the Harland \& Hollingsworth Manufac turing Cornpany, of Wilmington, Del., or by obtaining 2. Has any eleestric pumping machinery ever been in 2. Has any electric pumping machinery ever been in
vented? If so, when and where is it procurable? A. Address Edison Eliectric Company, 65 Fifth Avenue, New York. 3. What is the address of Professor Tuck the inventor of a submarine torpedo system? A. The
Tuck toppedo is owned, we believe, by the Submarine Torpedo Company, 20 West 23a Street, New York city.
Theinventor Josiah H. L. Tuck, is a resident of San The inventor Jos
Francisco, Cal.
(4) C. O. writes: 1. Will you please tel me how I can increase my weight? I am over 6 feet
tall, and weigh but 150 pounds. Would like to increase it about 25 pounds. A. It will depend upon your constitution whether such increase would be possible. If you of dyspepsial or other disease, you can probably gain in of dyspepsia or other disease, you can probabily
weight by proper attention to your diet. Milk, taken just before retiring, and slowly sipped in order to permit a thorough mixing with the gastric juices, will be very
fattening. The late Dr. Ellerslie Wallace, Dean of Jefferson Medical College, Philadelphia, once recommended one of his broken down students to eat plenty
of butter during the summer vacation. In the fall a stout, hearty man presented himself before the Doctor So great was the change in his appearance, that he
had to introduce himself as the invalid student of the previous spring. He had spent the summer athis home in Virginia, and had eaten three pounds of butter a week. It will be unnecessary to add that such a diet must be accompanied by plenty of exercise in the open air, or it would be apt to produce other disorders of the system. 2. Could you tell me from what books
I could best learn the principles of political economy? I could best learn the principles of political economy?
A. We would recommend Johr Stuart Mill's "PrinciA. We would recommend Johr Stuart Mill's "Princi.
ples of Political Economy" (8.500 ; "Money and the
Mechanism "Physics and Politics," by Walter Bagehot (\$1.50); and long list of others. The subject is a big one
(5) C. C. F. desires a receipt for ink to renew a Keystone rubber stamp pad one year in use.
A. All inks used on this class of pad are made from aniline colors dissolved in glycerine and thickened with gelatine. When they need renewal, the addition of a little glycerine and alcohol may soften and revivify them, but when exhausted they are intended to be
(6) R. L. P. asks: What will dissolve gold chloride? I have about eight or twelve grains
dissolved in HCl and HNO_{3}; then I precipitated with hydrogen sulphide, and tried to dissolve the precipitate in a half ounce of cyanide of potassium, with no result. I heated the mixture. What is the trouble? A. Before passing hydrogen sulphide through the gold solution, you had the chloride in solution, and you shoula have added the cyanide to it. You have pre-
cipitated sulphide of gold. Dissolve it in nitric and cipitated sulphide of gold.
hydrochloric acids as before.
(7) T. B. asks: 1. How many candle

161 supply with electricity? A. Five to ten candles.
2 What horse power is required to run it? 2. What horse power is required to run it? A. About
one-sixth horse power. 3. How many cells of the Daniell battery, 4 inches diameter and 6 inches high, would supply a four candle lamp? A. Twenty to thirty sult our advertising columns.
(8) J. A. M. asks the best thing to clean and bright as possible. A. Often wipe down with oil and lampilack. A little plumbago makes the good ap. (9) m : e durable.
(9) W. H. B. desires a reliable cement for fastening metal to glass-one that will resist th action of water and acids, especially acetic acid. Finely powdered litharge, fine dry white sand, and
plaster of Paris, each 3 parts by measure, finely pulverlaster of Paris, each 3 parts by measure, finely pulve
ized resin 1 part. Mix and make into a paste with boiled linseed oil, to which a little drier has been added and let it stand four or five hours before using. After fifteen hours' standing, it loses strengre. using. Ahter cemert
is said to have long been sucessfully used in the Zooogical Gardens, London.
(10) R. S. D. asks : 1. What chemicals are used in Robert's permanganate battery? Give formula. A. Permanganate of potash, bichromate o
potash, and an alkali chloride. It is described in potash, and an alkaii chloride. It is described in
United States patents numbers 311,852, , 311,853, an 317,206 , which we can send you for 25 cents each. 2. Can cast iron that is a little hard, but not so hard but that it can be-readily worked, be softened by annealing so as to be as good for electrical purposes as though it was
cast very soft? Will it injure a finished piece if it is covered with air-slaked lime and heated to a white tend to improve it especially if you heated it hou tend to improve it, especially if you heated it ho
enough to start with. 3 . Why is as to curve around a telephone bell? A. The curved magnet or magnets polarize the armature, so that the intermittent currents passed through the electro-mag nets cause it to vibrate. 4. Can you furnish work ing drawings of a larger dynamo of a different style
from the one in Supplem Ent, No. 161? A. We hope
soon to publish an article on such a dynamo.
(11) W. C., Jr., asks : 1. What is the safe working pressure of a boiler 60 inches diameter by 14 feet long, made of wroughtiron 3 3inch thick, and one of the shects exposed to the fire having scalea off $1 /$ of on inch
thickness for a space of 12 inches diameter, longitudi nal seams double riveted? I carry 90 pounds pressure the boilers are eight years old. Number of tubes 51 , Sinch. A. If the blister is not disposed to run steam pressure. Half inch is very heavy iron for a 60 in shell; $\mathrm{a} 1 / \mathrm{in}$. blister still leaves the iron as thick as mos boilers are made of that size. All that is necessary to do is to watch the blister, as it may still spread and become deeper. 2. The best method of preserving this boiler when we donot run but four months in a year.
Would you advise me to put lye in the boiler to take Would you advise me to put lye in the boiler to take
scales from tubes while idle? Would it be a good plan scales from tubes while idle? Would it be a good plan
to use $1 / 2$ ounce crude rock oil in boiler while running to revent scale? A. Lay up your boiler full of water th ing discharges the air, when it can be shut tight to kee out air. A little carbonate of sods, say 1 pound, putin when the boiler is filled to lie up, will help loosen the scale during the season of lying up. So small a quan tity of crude oil will do no harm, and may facilitate the loosening of the scale. The boiler should be cleaned often when oil is used, as it is apt to gather scale and
dirt and form an oil cake, which is dangerous when dirt and form an oil cake, which is dangerous when
lodged on a fire sheet. 3. Is not plumbago used with lodged on a fire sheet. 3. Is not plumbago used with
piston packing? A. Plumbago is good on piston pack pisto
ing.
(12) C. R. R.-The plan of connecting a battery of 5 boilers with a cross steam dome riveted all your trouble. The unequal expansion and contraction strains the necks, and sets the weakest points to will only be a temporary contrivance; besides, we cannot see how you could insert the cement without
taking the joint apart, which would require a disturbtaking the joint apart, which would require a disturb-
ance of all the other joints. We cannot recommend any other plan than riveting and calking, or to change the method of connection for the whole battery, so as
to make it elastic enough to meet the requirements of to make it elastic enough to meet the requirements of
expansion. Iron pip.e connections arranged to take up displacement by
ferableto the do
(13) J. H. asks Ives. I have ground them together with flour emery and oil, but cannot do good work; it leaves the emery used should be very fine and the work finished with ground pumice stone. If the valve sats ars badly cut, emery should not be used at all, only the fine pumice.
(14) T. C. J. asks: What kind of a pyhe highest graduated pyrometer that I have seen is 1.500 ? A. There are no pyrometers made for so hig temperature. The Wedgewood pyrometers, made of clay, registered to $0,500^{\circ}$, but were not reliable. The
were in use in England. Pyrometers of platinum rod inclosed in a plumbago tube are probably the most cliable up to 3,000
(15) C. W. C. desires (1) a recipe for stain to imitate mahogany on white birch wood, that will not raise the grain of the wood. A. A dark ma-
hogany stain is made as follows: Boil half a pound of hogany stain is made as follows: Boil half a pound of madder and 2 ounces of logwood chips in 1 gallon of deter, and brush well over the wood while hot; whe dry, go over the whole with pearlash solution,
drachms to the quart. 2 . Can you five recipe for making the acid stain? A. In the acid stain you take ni tric acid, and dilute with 10 parts of water, and wash the wood with it. 3. Are there any books which give full directions for imitating the different woods? A We would recommend for your purpose Spon's Work shop Receipts (sec
postpaid, for 82.00 . postpaid, for 82.00 .
(16) A. R. sends samples of tin and sheet ron finished in colors and figured, and asks how th ffected much in that book edges, and then varnished. The process re quires considerable experience and ingenuity in its art shment
(17) J. R. asks: Is there any preparation that will effectually take out ink from paper
without discoloring it? A. A solution of oxalic acia, citric acid, and tartaric acid is attended with the least isk, and may be applied upon the paper
of damage. Chloride of lime is also used.
(18) W. M. S. asks : In a photographic lens, where the ground glass? A. The rays from the ob-
mage on the mage on the ground glass? A. The rays from the ob
ject cross at the optical axis of the lens between the optical axis that the diaphragms ar piane of the
(19) W. H. P. desires a receipt for citrate magnesia. A. The citrate of magnesia sold in
drug stores is made as follows: Calcined magnesia (magnesium oxide) 11/4 pounds (or carbonate, 2 pounds), powdered tartaric acid $11 / 2$ pounds, bicarbonate of sodium 1 pound; dry each article by a gentle heat, hen mix them; pass the mixixture through a fine siev in a warm dry room, and keep it in well corked botlies. A few drops of essence of lemon and 3 pounds o
fnely powdered sugar are generally added to Inely powdered sugar are generally added to th
above quantity. This makes it more agreeable. small quantity of the bicarbonate of soda is added in powder immediately before corking.
(20) C. N. V. C. asks: 1. In what way and to what extent are cigarettes injurious to smokers, specially to. inhalers? A. The injury done by ci garettes sisuch greater than that from the use of cigars.
The difference is caused apparently by the fact that the smoke of the cigars is not allowed to enter the lungs, while that from the cigarettes is inhaled, reach ing of course a greatly more extended as well a more vital part of the mucous membrane. 2. A
remedy for pimples on the face, also for blackheads. remedy for pimples on the face, also for blackheads.
A. See article on Face Worms in SuPPLEM ERT, 542 , of A. See article on Face Worms in suppremerr, 542 ,
May 22. 3 . What is the value of suiphur as a cosmetic wash? A. The value is almost absolutely nothing.
(21) A. E. S. asks : 1. How can I make ne of those batteries that workmen use in the streets for buastin? Al that 1 see of the macline is a box,two ou have seen is probably some form of induction lectric machine or dynan See Suppraver Nos. 70, 161, 278. 279, 282. 2. Is Atlas powder anothe name for dynamite? A. It is a brand of dynamite.

TO INVENTORS.

An experience of forty years, and the preparation of nore than one hundred thousand applications for paents at home and abroad, enable us to understand the
aws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. In
addition to tour facilities for preparing rrawings and addition to our facilities for preparing drawings and that his case will be filed in the Patent office without
delay. Every application, in which the fees have been paid, is sent usually to the Patent Office the same day paia, ,
the papers are signed at our office, or receeived by mail often hear from other sources. A synopsis of the pa tent laws of the United States and all foreign countries
may be had on application, and persons contemplating may be had on application, and persons contemplating
he securing of patents, either at home or abroad, are inthe securing of patents, either at home or abroad, are in
vited to write to this office for prices, which are low, in for conducting the business. Address MUNN \& Co.
office ScIENTIIC A AERICAN, 361 Broad way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the
United States were Granted
June 15, 1886,
AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

Bolt heading machine. C. T. Parry.................. 348,843
Boneblack in sugar refineries, apparatus for dry-
 Boot or shoe, F. F. W. Wool. 1 bury.
Boot or shoe jack, H. T. Morse Boots or shoes, sole for turned. L. E. Moore.................34; 34828 Bottle stopper, , C. L. Morehouse.............343646, Shut-off box. Telegraph box.
Bracket. See Sink bracket. Brake. See Locomotive and car brake. Wagon
brake brake.
Bridle, L. E. Jandrue...............
Broom and too holae
Buckle, A. Shenifle.
Suckle, A. Shenfield...343,735
Buildings, machine for making ridges and valless
for. L. D. Cortright.............................. 343
Bung, o. w. Eisenhart.................... 43
43
Burglars, safety device for lentrances against. H.
H. Denick.....................
urner. See Lamp burner.

Surnishing hollow articles, machine for, w. E

butter worker and mould, D. B. Woodward
Sutton, F.I. Myers.......
Buton, lacing, F. M.
Button setting instrument, C. H. Eggleston
Buttons to fabric or leather, stitching shank,
Buttons to fabric or other material, machine
stiching, H. H. Cummings et
Calculator, tabular.
Cande, s. Clarke.
Car brake and starter, w. Montzonery.
Car coupling, G.J. Fergus
Car coupling, C. E. Fritts.
Car coupling, C. E. Fritts....
Car coupling, H. H . Johnston
Car coupling, G. Keesy....
Car coupling, J. C. Mowry
ar coupling, F. H. Stanford
Car starter, H. Kells.....
Car, stock, B. F. Holmes
cra, stock, J. Jeppesen...................
ars, station indicator for, w. Currie.
ara, sample, E. Drakenfeld
Carpet streteher, A. Dann.
arpet stretcher, A. Dann.
Carpet sweeper, w. J. Dre
Carrier. See Egg carrier.
Cart, slag, A. Werner............................ 346,833
crtridge loading case w. Murphy
Cartriage loading case, w. H. Murppy.............33, 33,36
cartride loading machine, G. J. Foster......... 343,706
Case. See
Case. See Cartridge loading case. Thermomete
case. Watch case.
case. Watch case.
Caster furniture,
. Pederson.

Ceiling, metallic, J...................................... 34,
Cellar or window screen, I. Brooke.................. 343

Centrifugal machine, A. Waldabur.................
Chair. See Piano and oftlee chair. Revoving
chair. Reclining chair. Railwayswitch chair.
Chair, H H. McElroy..................... 34,965
Cain
Chimneys, thimble for. C. F. Green..................... $34.3,652$
Chopper. Se 3 Vegetable chopper
Churn, J. M. Davis...
Churn, Lines \& Long.34,627

Clasp. See Spring clasp.
Clock, J. H. Eastman
Clock movement, electric. P.
Closet. See Water closet.
Clothes wringer, C. K. Stinson

Copy holder, A. O. Hall....
Copy holder, H. H. Wheele
Corn shock compressor, A. C. Hedden
Cornet, C. G. Conn...........
Cotton gin, Wheeler \& Hall
343,629
.343 .96
$.343,947$

Couping. See Car coupling. Thill coupling
Tire coupling

Cultivator, E. E. Whipple.................................. 343,93
and rule cutter. Tube cutter.
cuttery attaching handes to
Cutlery, attaching handles to, J. Leiter
Dental plate, A. Robinson..
Dental engine attachment, S
Die, R. Butterworth.................................
Disinfecting water closets, etc., apparatus for,
J. Mitchell.....................
Disintegrator and strainer, J.
Ditching machine, J. M. Smith

Ditching machine, J. M. Smith
Door check
Door hanger, L. Terry......
Door or blind, H. H. Field.
Door or safe lock, M. F. Brow
Door, screen, J. N. Lilygren....................
Draught equalizer. Devereaux \& Murphy
Draught equalizer. Devereaux \& Murphy.....
Draw bar pin and fastener, C. C. T. Willson..
Drawers, support and frame for, A. T. Moore
Draw bar pin and fastener, C. C. T. Willson........ 343,653
Drawers, support and frame for, A. I. Moore..... 343,744
Dress form, J. D. Richardson................. 343,729
Drier. See Fruit drier.
Drier, A. Buel.....
Drier, M. Hecking
Drier. G. \& C. N. Meriw
Drill. See Grain drill.
Drills, feed mechanism for, M. Sch warzler...

Dyeing cotton tiber, o. Bielschowski.

Electric cable, S. F. Shelbourne
Electric energy, distribution of, G.\& A. Pfaum-
kuche... 343,603
Electric machine, dynamo, S. H. Tacy..........
Electric machine, dynamo, S. H. Tacy..
Electro-magnetic motors, governor f
343,930
343,886
Briush...............................
Elevator. Se Water elevator
Engine. See Hydraulic engine. Gas engine.
Traction engine
Envelope blanks, mechanism for creasing, F. H.
Richards

343,665

 343,665343,967
34,845
343,563 343,593
343 343,593
34,809
343,613 343,613
343,605
34,779
3 343,779
34,807
343,794 343,970
343,812 13,941

 \begin{tabular}{l}
3.948

3,566

3,567

\hline

3,567

3,596

\hline
\end{tabular} 43,806

34,707
43,712 343,712
3433638
343,722
343,740 572
\qquad

 944 565 343,627 aid . | $3,8,755$ |
| :--- |
| 3,746 |

 \mathfrak{c} | 740 |
| :--- |
| 80 |
| 85 | 11

				Pfovertisement
cinciso			Transom lifter,	
m moiler, 1:H. Whit				
Fenee, eleetric, D. . . Wilson.....................33,39				
Fence machine, E. C. Prillips..................... 3 3,h,w4	Ores furmee for rosting and chloridizing L. M			
	Ores. reducing refractory silver and gold bearing.			
Priornor fompound and			Truse T.R.	CET THE BEST AND CH
same, A. G. Georre -...e	Oven or			
	ove		Tube	
${ }^{33,821}$		${ }_{\text {213,233 }}$	Tus, traee E.	
	Paper box, w. T. Tyylor	cisk	Umbrelli	
	Paper. machine for waterpra	3138.861		
	Paper	${ }^{36,74}$		
		${ }^{343,78}$		
reatey......................... 313				,
${ }_{\text {Fun }}$		${ }^{313,5055}$	Vehieles, spring lip for, J. H. Wiestrer........... 313,579	
(Gauge. See Ring gauge.				隹
Garment holier and stoeking supporter		S92		SEBASTIAN, MAY \& CO'S
cise			Vermin ext	
338.75		(10,736		
			${ }_{\text {valca }}^{\text {Wagoo }}$	
Gas generato, ammoniacal, P.J. McMahon....... $313,5,5$	${ }^{\text {Plant }}$			
		${ }^{343,350}$		
(
	viee bet	33, 57		
	Pum	27		
				Landt street, n. \mathbf{y}.
313,591		331.82		
			Griain R. . S. Gabb	
cois	${ }_{\text {Ra }}^{\text {Ra, }}$	${ }_{\text {cisesi }}$	Wheel. See fith wh	
		32		STAMPED METAL GOODS,
313,838				
Gun,	$\xrightarrow{\text { Rake. See Hay rake }}$ Ratene wrench,			
			${ }_{\text {Wrin }}^{\text {Wre }}$	
				yndersv (aleably mors y
Hay raak, horse, F. Bentel.	Ring			
	${ }_{\substack{\text { Ring } \\ \text { Rivet }}}$		Far	
硅				
Heein		${ }^{\text {cis }}$	Kait	
	Roofng plates for builidins, machine for making,			Ma
Holier. See rioom				
coin	Safety pin G. W. MeGill.......................		trade ma	
		${ }^{33,366}$ 31,50	Acoraions, J. F. Kalbe.......................... 13,389	
85			Alloys ana metas wese for	
cish,			Calf skins, Patzosks \& Co......................... 13,420	
		${ }_{\substack{33 \\ 3373787}}$		
${ }^{313,502}$	sall			
	kins.		Four	
	Seal met			
	Seal press			
343,97			Cateries, fleterer Manutaturing company.... 13,412	
	s			
			Lime Kirr. Wertzel \&	
Lanters,	ma		Liquars, compound.	
	ing m		at,	
Lateh and lock, combinea, G. A. Davies........... 31,983	Shoe, Dunn \& Cain................................34	34, 43,573	Mineral waters, effervescent drinks, ginger ale,	
	Stoe nailing machine, Mccrum \& Bruce............ 4 ,			
Lifter.	Ste		Musical instruments, wind and string, A. Poll 12300	
		4,6,63	H. C. Meyer.................................13,49	
See Door		${ }_{\text {che }}^{43,6,644} 8$		Special Machines for Car Work, and the latest impioverid
Locometive and car brake, J.				
	Spin			
	Squib holders, device for ma			
Mechanical movement, L. W. Morse.................. 343,672 Mechanical movement, F. H. Richards............ $343,85^{7}$	Stamp, ha			Mie. Co., Greenfiel
Medicated benzoic sulphide compound, C. Fahl-	Stear			
Meter. See Water meter				
Milling machine, C. H. Phillips. 343, 343.565			rnaces, and ranges, Fuller \& Warre	
xing, sifting, and cleaning machine, J. \& J. A. Baker .	Sve.		moking and chewing, Spaulding \& Mer	
Mopping and serubuing deviee , T. W. Wiliams.......33,338	34			
			${ }_{\text {A Print }}$	
Mowne mathes	T			
Multipivicatioet of				
net	${ }^{313}$	13.353		
Musisaal be				maco sxistem
			diors for any of th	

APPLICATIONS,
 adares Prof.w. fi gratha,

CASARNBRB
CAS ENCINE
nnsines and Pumps Combined.
Williams \& Orton Mg. Co..

MODERN BRONZE ALLOYS.-A PA

aligrap青

FOREIGN PATENTS.
Their Cost Reduced.
 Vulcanized Rubber Fabrics

RUBBER BELTING, PACKING, AND HOSE, Mats and Matting, and Stair Treads, \&o BIOTOIIETMRIS, OAR SPRINGS.

HOEING HORSES.-ABSTRACT OF

Transmission of Power.

WIRE ROPE Frenton Iron Co. PRESERVATION OF TIMBER,-RE-

DRAWING $\underset{\substack{\text { Illustrated } \\ \text { sentalog } \\ \text { sen } \\ \text { on application t }}}{\text { and }}$ INSTRUMENTS.

Steam catamaran may bar

RAILWAY AND STEAM FITTERS' SUPPLIES Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&C.
JOHN S. URQUHART, 46 Cortlandt St,

ADDRESS OF PROF. T. H. HUXLEY

ICE \& REFRIGERATING

PIPE COVERINGS
Absolutely Fire Proof. BRAIDED PICKING, MILL BOARD, SHEATHING, CEMENT, FIBRE AND SPECIALIIES

For BOILERS and STEAM PIPES FOR ${ }_{\text {prevents }}$ AN Swating and Freezing.

: New Catalogue of Valuable Papers

THERAPEUTICAL EFFECT OF THE

POLISHING FELTS ALfrimd monge,

122 East 13th Street,
PTTTMETS. Order from our "Special List." the John t. NOXE MFG CO.

TESTS OF CEMENT.-REPORT OF

THECOPYING PAD.-HOW TO MAKE and how to uase with an engraving. Practical directions
how to propar thite elatine pad ais also the aninine ink

NEWSPAPER FILE

MUNN \& CO.

MICRO-ORGANISMS OF POTABLE

WORSSHOP REEEPTS.

震 Send for our complete Catalogue of books, free to
tion the ordering singlev
Sent postpaid by MUNN \&t CO., $\mathbf{3 6 1}$ Broadwav,
New York, on receipt of price
CHOLERA.--ABSTRACT OF A PAPER

SWIMMING.-DESCRIPTION OFTHE

- $\quad \begin{gathered}\text { Cash or Deed Botese, } 13\end{gathered}$, sizes. Best Tin

DRY AIR REFRIGERATING MACHINE.

The Waterhoose Electric Mfg. Co., Hariford, Conn. essential elements of plants.

 Thousands in satisfactory every-

 CURE Fir DEAF
 NT M Met CATARRH. The GreatGerman

 WEAK, UNDEVELOPED PARTS

$2 \mathfrak{f d v e r t i s e m e n t s . ~}$

To Business Men.

 The value of the Scientiric American as an adver-tising medium cannot be overestimated. lts circulation is many times greater than that of any similar journal
now published. It goes into all the States and ries, and is read in all the principal libraries and readin rooms of the world. A business man wants something paper. He wants circulation. This he has when h h advertises in the Scientific American. And do no some other paper for the Scientific American, whe selecting a list of publications in which you decide it it for the reason that the agent gets a larger commissio from the papers having a small circulation than is allow
ed on the SCIENTIFIC AMERICAN. dress MUNN \& CO., Publishers,

361 Broadway, New York

Samples and descriptive Price List free by mail. E. W. JOENS M'FG CO., 87 MAIDEN LANE, N. \bar{z}

WIRE ROPE

dding's sons. Manufactu

STEAM ENGINES.
Hredging Machinery
FTour, pinder, Slaterand
Bine Water Wheels. LIGHTNING RODS.-DESCRIPTION OF of the arrangement adopted by Mr. Melsens for pro
tecting the Brussels Hotel de
ville against lightning SUPPLWMENT, No. SRES Price 10 cen
this office and from all newsdealers.

PATENTS.

cation of the Scientific American, continue to examine inprove
In this line of business they have had forty one years preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& Co. also attend to the preparation of Caveats, Copyrights or Books, Labels, Reissues, Assignments. and Reports on Intringements of Patents. All business intrusted to

A pamphlet sent free of charge, on application, con aining full information about Patents and how to proDesigns, Patents, Appeals, Reissues, Infringements, signments, Rejected Cases, Hints on the Sale of A

We also send, free of charge, a Synopsis of Foreign Pa ent Laws, showing the cost and method of securin MIUNN \& CO., Solicitors of Patents, 361 Broadway, New York. BRANCH OFFICES.-No. 622 and 624 F Street,

ETHE BRIDGEPORT WOOD FINISHING CO
 NEW York business Off:ce, 96 -98 MADEN LaNE.MANUFACTURE BREINIGS LITHOGEN @HLIGATE PAINT LITHOGEN PRIMER, WOOD STAINS Rider Hot Air Pumping Engine For City or Conntry Pesidences,
 Sayer \& CO., 37 Dey St, New York.
ec

FXPERIMENTA
Sendiocricmalas. C.E.J.Jones\&Bro. . clicilinatitio.
 GAS FNGINFS

ECONOMIC MOTOR CO.

HOISTING ENGINES
LIDGERWOOD MANUFACTURING CO., 96 LIBERTY STREET, NEW YORK

Use the Jenkins stand ard packing in the wors joint you have, and if, after following directions, it is
What we claim, WE WILI REFUND THE MONEY. Our "Trade Mark" is stamped on every sheet. N
genuine unless so stamped. Send for Price List. J以INIKINS BROS. 71 John Street. N. Y. 79 Kilby Street,
 LOVEGROVE \& CO . pailidilipula, pa.
ENGINES
BOILERS.
Most relia
Reasonable prices.

Bibb's Celebrated Original BALTIMORE BALTIMORE FIRE-PLACE HEATERS, To warm upper and lower rooms.

HYDRAULIC FLANGED HEADS,
 OF IRON or STEEL, FOR BOILER AND TANK MAKERS. Unequaled for Strength and Uniformity THE DICKSON MANUFACTURING $C O$.
 BCRAMNTOIN, PA.
 57 Oliver Street, Boston. 112 Liberty Street, New Yoik

NOVELTY ELECTRIC CO. Manuacturers of Metal and Wood Push Buttons,
Burglar Alarm Springs, Bells, Gas Lighting Supplies, Cc .

95 MILK ST., BOSTON, MASS

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

RRESTMU

Scrintific Anmerican

The Most Popular Scientific Paper in the World. Only $\$ 3.00$ a Year, including Postage. Weekly
This widely circulated and splendidly illustrated mpen pas use wing. Every number contins six original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufactures, hemistry, Electricity Telegraphy. Photography, ArchiAll Classes of lReaders find in the Scientific american a popular resume of the best scientific information of the day; and it is the aim of the publishers to present it in an attractive form, avolding as much as this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in very community where it circulates.
Terms of Subscription.-One copy of the scienTIFIC AMERICAN will be sent for one year-52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars by the publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-One extria copy of the ScIENTIFIC AMERTN will be supplied gratis for every club of five subscribers The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., pay-

MIUNVN \& CO. 361 Broadway New York. TEXE
Scientific American Supplement. This is a separate and distinct publication from
THi Scientific American, but is uniform therewith in size, every number containing sixteen large pages.
The Scientific American Supplement is published eekly, and includes a very wide range of contents. It all the prinzipal departments of Science and the UsefulArts, embracing Biology, Geclogy, Mineralogy, Natural History Geography, A rchæology, Astronomy, neering, Steam and Railway Engineering, Mining, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh nd valuable information pertaining to these and allied engravings.
The most important Ensincering Works, Mechanisms. and described in the SUPPIEMENT.
Price for the SUPPIEMENT for the United States and Canada. $\$ 5.00$ a year, or one copy of the Scientific AMERICAN and one copy of the SUPPLEMLENT, both mailed
or one year for $\$ 7.00$. Address and remit by postal MUNN \& Co., 361 Broadway, N. Y., Publishers Scientific ameitcan.
he Postal Union, the Sciers.-Under the facilities of by post direct from New York, with regularity, to subritish colonies to Eran. India. A ustralia, and all other Lussia, and all other European States Jam, Germany, Mexico, and all States of Central and South America. when sent to foreign countries, Canada excepted, Por both ScIENTIFIC AMERICAN and SUPPLEMENT for
one
one ne year. This includes pcstage, which we pay. Remit

PRINHING INKES,

[^0]: * With black glass reflectors employed as
 polarizer and analyzer, the extinction of the polarizer and analyzer, the extinction of the
 light is not quite complete, even when they are light is not quite complete, even when they are See paper on "Polarized Light" in Supplement 538.

