The principle underlying petroleum examination is the
determination of the temperature at which the oil take determination of the temperature at which the oil takes
fire or flashes. Heating a sample in a cup over a spirit lamp and applying a burning match or taper to the sur face until the oil flashes, and noting the temperature, i the crudest plan that can be
flash only above 110 deg. F.
(10) C. J. H. writes: There are many houses in Leadville whose ceilings, in lieu of lath and
plaster, are covered with canvas and calcimined. In many cases, leakages of water from the roofs or upper floors upon the canvas have caused fantastic stain to appear, which will not "out by covering with calc self to cover the stains. By mixing with it zinc white the diffculty will be overcome.
(11) S. N. H. asks: 1. How to make an article known as aureoline, for bleaching the hair. A oxide perfumed. See description of its manufacture in Scientific American Supplement, No. 184, albo con sult the article in No. 339. 2. The receipt for a liquid that is used to "show up" microscopes. It resemble a thin flour paste, but when viewed through a small mi-
croscope it reveals innumerable animalcules. A. The substance is tripoli or infusorial earth, sometimes called diatomaceous silica.
(12) W. M. R. asks: 1. How to set common slide valve in a stationary, locomotive, or ma-
rine engine. A. To explain slide valve adjustment for various kinds of engines would take up too much space for the department of Notes and Queries. We recom-
mend to you a book on "The Slide Valve Practicall Explained," by Rose, \$1, or "The Side Valve," by N. P. Burgh, $\$ 2$, and "A Practical Treatise on Valv Gear," by McCord, $\$ 3$, all or any of which we can fur nish. 2. What is the rule for calculating the safe work ing pressure of steam boilers when the material dimen sion of construction is known? A. For cylindrical
boiler shells, divide the tensile strength of the iron by the diameter of the shell in inches. Deduct one-half o quotient for single rivets, or one-third, if dou ble riveted iron in decimals of an inch, and divide this sum by 4 , as a factor for safety in working pressure. Thus for a cy lindrical tubular iboiler of good iron and well stayed heads, 48 inches diameter, say for tensile strength of
48.000 pounds to the square inch, with flve-sixteenths inch shell, double riveted, we have $48,000 \div 48$ inches $=$ 1,000 less one-third $=667 \times 0.625=4168 \div 4=104$ pounds maximum of safety. 3. What is the rule for
calculating pressure of water to the square inch when calculating pressure of water to the square inch when
the height is known? A. Multiply the height in feet by $0 \cdot 433$
(13) C. N. V. C. asks: 1. How to tune up a set of glasses to use as musical instruments? A.
Tones of musical glasses are dependent on the glasses and the amount of water used, this being determined by ear. 2. Where can the juice of the fruit of cajurio tre
he obtained, and at what price? A. There is no suc he obtained, and at what price? A. There is no such
tree known to botanists. 3. Is there any cure fo tree known to botanists. 3. Is there any cure for
drunkenness, such as chloride of gold and other reme dies? A. We have but little faith in cures for drunken-
ness. The taking of medicine will not produce abstinence in an individual. It is a question of will power The so-called double chloride of gold is said to consis

Ammo

.1 grain.
Comperand tincture of cinchona............ 3 ounces.
Water to make up
4 ounces.
No gold is found in the preparation, and therefore it
name is not even reliable.
(14) C. H.-The continued application of any preparation of lead to the skin is full of danger. It can, beyond question,
(15) J. H. writes: With 5 pounds of pressure (steam), how many feet or inches or what surface does it require to heat one hundred square feet of glass roof and sides of a greenhouse in order to main tain a night heat of 55 to 65 degrees in the house below zero Also the boiler surface neceary, below zero. Also, the boiler surface necessary, etc.
A. One square foot of heating surface to 8 square feet of glass. Wrought iron pipe is the best, for steam. Place along the sides of the house, both below and above the benches, $11 / \mathrm{or} 2$ inch pipe, according to size of house. The boiler should have $\mathbf{1}$ square foot of heating surface to 6 square feet of radiating surface, and should
have the water level in boiler not less than 4 feet below the floor of greenhouse. A horizontal tubular boiler i the best and most reliable. Steam heating for greenthe night as well as day. It is therefore not econo mical for small houses.
(16) H. W. asks for the best remedy to deafen a floor after the floor is laid, but not yet sealed A. Nail furring strips on the sis of the beams 2 or Then cross-fur the beams with strips and lath and plas ter for the ceiling.
(17) A. L. asks: What flux is used with hard solder? A. The usual flux for hard solder is
borax. The common method of preparing it for use borax. The common method of preparing it for us
on small work is to grind it up with water into cream on a slate or porcelain slab, and apply it to th joint and to the solder with a brush.
(18) J. G. S. asks: What can I mix with lead to make it harder to bend, and no harder to mel for small castings in plaster moulds? A. A small per
centage of antimony. Try type metal; it is an alloy o lead and antimony.
(19) W. S. asks if there is any simple from a vest pocket. I have had one watch picke out of my pocket, and don't care to lose another.
A. Various kinds of safety pockets are in use, but probably the best way to prevent the removal of you watch from your pocket would be to wear a stout
auxiliary chain around your neck, and carry it through auxiliary chain around you
the armhole of your vest.
(20) W. M. H. asks: What are the reaons why electric clocks (regulated by a chronometer electric connection with them) are not in more gensuch clocks is constantly increasing. Probably they would come into more general use if it were not for
(21) W. E. S. P. asks: What metal, if ny, held near a permanentmagnet, will strengthen the wagnet? Can it be done in any way other than that its normal condition the telephone? A. No metal in ite normal condition, held near a magnet, will strengthen it, but by winding the magnet with copper current through the conductor, you may increase the rength of your magne
(22) C. W. M. asks: What substance placed between a piece of steel and a magnet will stop the attraction of the steel to the magnet, that is, havng the steel about an inch or so from the magnee
A. large body of iron placed near or in contact with the pole of a magnet will asborb its magnetism; ut no insulator of magnetism has been discovered.
(23) L. G. asks: Which wagon draws the lighter-the one with large wheels or the one with
small wheels? A. The wagon with the larger wheel as the leverage of a large wheel over obstructions reater than that of a emall wheel.
(24) W. L. C. asks: 1. Why would not rapidly revolving disk of soft iron cut stone same as does cold iron rails? A. We think the stone would
apidly wear away the soft iron disk. You could no xpect to get the same effect upon the stone that in realized in the case of iron. 2. How can I harden iron or steel to make teeth for ch cular saw to cut stone? It impossible to keep "borts" flrmly in the saw. A. We do not think you can harden iron or steel so that will answer for the teeth of circular saws for cutrittle to maintain a cutting edge. Probably the best way to make steel extremely hard is to heat it to the equired degree for hardening, and then plunge it into mercury. Care should be taken not to inhale the fumes of the mercury
(25) W. H. H. asks: Will you tell me if the chrome battery is equivalent to two crowfoot batteries, and will they work on a ground connection for a telegraph line, and if so, how are they made up? A. qual to two ce romate battery when arst seifly rum down, so that the fair average would probably be about of a cell of gravity battery For information on bat a cell of gravity battery. For information on bat
(26) W. C. R. writes: In making the dynamo electric machine of the SUPPLEMENT, No. lectric light plant in electrician, connected with the lectric light plant in this city, that the numbers 18 and rmature would increase the intensity, etc. A. The izes of wire given for the dynamo described in SupPLEMENT, No. 161, were for general purposes. of course, if you desire a current of high tension, you
can procure it only by the employment of flner wire. On the other hand, if you desire a current of low tenion, for electro plating and similar purposes, you will 18, and the size of the wire on your field magnet should , and the size of the wire on
(27) J. R. W. asks: How is it that the ticking of the telegraph instrument can be heard over
the telephone wire if the wires of each instrument run the telephone wire if the wires of each instrument run parallel with each other for a short distance? A. The ticking produced in the telephone is caused by the
electrical impulse passing over the telegraph line. It
induction.
(28) C. E. K. asks: Can persons learn hatrument without the aid of any one ? A. We think ou could attain fair proflciency in telegraphy by studying the subject with the aid of a suitable instrument,
but you might fall into habits which could not be easily orrected. Better consult some good operator from me to time during your study and practice.
(29) F. H. F. asks: In what way are the teeth cut in wood saws, hack saws, and gig saws?
A. In the smaller sizes they are generally cut in a milling machine; a number of saws being clamped together o that one row of teeth will be cut through the ws are cut one at a time by means of dies (30) C. A. Y. asks: 1. How large a lam which weighs about ten pounds, and how lar hould the electro-magnet and the wire thereon be: A. If your pendulum is properly constructed, two to hree gravity cells ought to keep it in motion. You will probably require a magnet with cores $3 / 6 \mathrm{inch}$ in diameter and $11 / 3$ linches long. wound with about six or ight layers of No. 24 wire. 2. By what process is the reat heat obtained from the gasoline stoves or ma of ores A. The flame is urged by means of a blowpipe Petroleum burners, on the principle of the atomizer, produce very intense heat. 3 . How close may the flues be placed in a boiler to generate steam with the repend rapiaity for the amount of water? A. This dizends so much on the diameter of the flue, the
so the boiler, and its position, that we are nnable o give you a deflnite reply. However, half the diameterof the
(31) C. D. V. asks (1) how to make a torage battery which will give from 4 to 5 volts, its ness $13 / 8$ inches. A. We do not think a atorage battery can be made to fulfill your conditions. A storage bat tery, to yield a current having an electromotive force of han $4 \times 4 \times 116$ volts, will occupy considerably more spale bichromate cells, which are used to run a 16 candle power incandescent lamp, will last without renewal?
A. We thiuk you will find it impossible to run a 16
candle lamp with 16 Fuller bichromate cells. The Fuller bichromate battery is not: so well adapted to
continued use as the Bunsen bichromate battery. The continued use as the Bunsen bichromate battery. The
Bunsen battery requires renewal once in from 4 to 6
(32) W. G. asks how to make a battery
to be carried in a belt, the two poles of which I wan
a apply to the body by means of conducting cords and disks; one that will last a week or so without re burn the Do not wand a burn the skin. Something that will take the place of
an electric belt. A. To make such a battery as you re
quire, take a plate of zinc and a plate of copper of the same size, and cut 24 sheets of blotting paper about the size of the plates, saturate 12 of the sheets of blot ting paper witha saturated solution of sulpate blottin paper with a weak solution of sulphate of zinc Placethe two packages of blotting paper together, theu
apply the copper plate to the paper saturated with apply the copper plate to the paper saturated with
the sulphate of copper, and the zinc ${ }^{\mathrm{F}}$, atc saturated with sulphate of zinc; now rofter a wire to ach plate and connect the wires with your electrode
The plates, together with the wet paper, may Trapped up in thin wheet rubber, or you may mak a rubber case for inclosing the battery.

INDEX OF INVENTIONS

For which Letters Patent of the

United States were Granted
January 26, 1886,
AND EACH BEARING THAT DATE
[See note at end of list about copies of these patents.]

A erial ship. H. Hunnicut
Air brake, A. J. Winger.....
Alarm. See Burglar alarm.

Animal trap, D. Phililips.
Ax blank, H Hamond.

Axle, car, , wihelm \& Demer
Back band hou

Bag and twine holder, L. L. Edmi
Bag holder, fruit, 1. H. Kizer......
Banjo tail piece, R. H. Benar
Barber's pole, R. F. Walter...........
Bark cutting machine, J. C. Hagert

Battery. See Galvanic battery.
Bed, combination folding, A. T. McCurry.......
Beehive, M. N. Ward......................
Bellows, G. T. Campbell
Benchg, woven, F. Reddawa
Bench. See Wash bench.
Billiard cue tip fastener, H. A. Harmer............
Blasting barrel, measuring rule, and drill hol scraper, combined, J. E. Fehn
Blind slat adjuster, P. Rundquis
Bobbin winder, W. Connolly
Boiler. See Wash boiler.
Boiler purifler and feeder, H. F. Hayden.
Book holder, L. W. Noy es..
Boot or shoe fastening device, G. H. Bliss
Bottle and stopper, J. H. B. Howell
Bottle packing box, E. A. C
Bottle rinser, R. Preston...
Bottle washer, G. P. Goulding. Bottles, stand for holding and sealing, Reynold Box. Weer Bottle
Box. See Bottle packing bo
Bracelet, A. V. Briesen.
Bracelet, A. V. Briesen.
Brake. See Air brake.
Breaky
Breakwater, L. W. Leeds...........
Brush, bottle washing, J. Buchheit
Buckle, C. J. Cooper.................................
Buckle and strap loop, combined, R. W. Jones.
Buckle and strap loop, combined, R. W.
Buckle, waist belt, L. \& H. A. Sanders.....
Buckle, suspender, Chapman \& Dalton.
Buckle, suspender, Chapman \&
Buggy top support, J. J. Finney
Building and sy stem for lay ing electric conduct Building bracket, A. D. Hart.. Burglar alarm. W. Eckersall...
Burglar alarm, G. W. Nelson Burner. See Vapor burner.
Butter, making. W. A. Murray Calipers and dividers, rapidly adjusting nut for

Can. See Liquid can.

Can. See Liquid can.
Car coupling, w, T. C. Merz.
Cowen...
Car coupling, N. W. Hawkens
Car coupling, E. L. Matteson
Car couphng, E. L. Mowel
Car door cleat or fen
son...................................
Car door lock, freight, A. B. Barnard
Car seat arm, J. Denver.
Car seat, reversible, J. Lemman
Car wheel lathe, J. R. Williams
Carbonizing mould, T. A. Edison
Carbureting lamp, J. E. Dend
Carding machines, mot..................

Carpet sweeper, Bissell \&
Carrier. See Hay carrier.
ley, Jr................ breakdown guns, J. Dee
Case. See Ticket case
Castings, manufacturing flanked, J. Sullivan...
Chair. See Folding chair.
Check rein hook. J A. Gorly
Check rower and corn plancer, J. W. Buffington..............
Chuck, G. A. Barnes.....
Churn, cream testing, Andrews \& Burnap
Clamping bracket, T. Thorn.
Clipper, hair, P. E. Beaudet
Clock, electric. J. E. Cores
Clock, electric. J. E. Carey.
Clocks, electro-magnetic d
F. Sweet.................
Clothes drier, R. F. Redick.
Clothes racts, E. G. Hurd...
 Coffiee or tea pot. Gronemey er \& Polster................ 835,070
Coffee roaster, T. B. . Burpee............... 33,422
Coffin, G. Reynolds. .
C. Comb. See Curry comb.
or and stretcher, folding canvas, S. F. Seely...... 344,986
Cotton gin, Livingston \& McBride................... 334,875
Cotton opener and lapper, J. C. Potter........... 335,089
Coupling. See Car coutpling. Draught coupling.
Thill coupling.
ow tail fetter, B. . s. Slinn.
Cultivator, spring, W. W. J. Browne............................ 3s5, 35,
cutter. See Tube cutter.
Cutting double pile fabrics, mechanism for, \mathbf{c}.
Garratt .. s.
Dental engine, J. O. Scott................................... 344,
Detector. See Gas leak detector.
Ditching machine, J. L. Senteney.................. 344.903
Door closer, automatic, D. T. Winter.......... 334,834
Draught coupling. W. W. Waterberry94,9y3
D34,874
Draught equalizer, J. M. Langston..........
Drier. See Clothes drier. Grain drier. Lumber
drier.
Drill attachment. H. s. Spratiey................... 334.817
Drill for

 Dyeing apparatus, ${ }^{\prime}$ Connell \& Wee
Eaves trough support, W. R. Wilcox Edger, zang, Vail \& Sollida
Electric furnace and operating the same, A. H.
Cowles... 335,058
Electric furnace for metallurgic operations, E.
H.\& A. H. Cowles.................................. 335,059
Electric lighting sy stem, H. M. Doubleday...... 335,080

Electric machines, commutator for dynamo, \mathbf{N}. ${ }^{335,008}$
Tesla..
Electrical circuit....................................... apparatus for automatically
testing, G. F. Milliken
Electrical distribution, sy stem of, F. J. S.......... 33,90
3prague. 335,045
Electrical distribution, sy stem of, F. . . . Sprague...........35,
Electrical distribution, system of, S. s. Wheeler.
Elevator. See Water elevator.
Elevator valves, controlling, R. . S. Smith........... 334,907
Embroidering machine. F. Schnelle........... 335,094
Embroidering machine. F. Schnelle.................
Engine. See Dental engine. Rotary engine.

Fry ing pan, T. O. Inman............................. 334,
Gauge. See Micrometer gauge.
Galvanic battery, F. L. Lathrop..................... ss4.28
Galvanic body wear. . . Mayer................. 34,88
Gas motor engines, slide and passage for, N. A. ${ }^{334,880}$
Gas pressure reg.. 3343,733
Gas supply sy stems, stop valve for, E. C. Merrill..
Gate. See Farm gate. Railway gate. Railway
Gate, D. Giles... 33 ,
Glass, manufacture of articles made from tough-
ened, F. B. A. R. De la Bantie............... 34,754
Gold and silver ores, desulphurizing, J. H. Math-

334,961
344,987
334,081
Grater, vegetable, P. Blum
334,755
Halter trimming, E. Deming... 334
Hame, H. A. Hughes.......
Hammers, die and bie block for forge, J. H.
 10,080
34,900
334,993
334888
Harness holdback attachment. C. R. Mille
Hay carrier, F. A. White.
Hay fork, J. Ney.........
Hay press, H. F. Blank.......................

Hitching deviec, W. G. Mauk.........
Hitching device, W. H. Vaughn...

Boer. See Bar holder. Bag and twine holder.
Book holder. Ribbon holder. . Rope holder.
Hook. See Check rein hook. Dry boairdhook. Hoop pole sawing machine, E. Powell... Hoop pole sawing machine, E. Powell.............. 336,090
Hoop spitting machine, H. Weitzel............................354,000
Hose, A. T. Holt.................... Hose nozzle, J. O’Donnell....................................... 334,800
Indicator. See Station indicator. Injector, A. S. Eberman............................... 334,852
Insulating electric cables, R. A. Denison......... 334,850 Iron. See Soldering iron.
Jars. adjustable bail and cover holder for, M.

 Ladder step. H. Ayres............. Lamp, miler, , L. L. Calkins....
Land roller, E. W. Knowles

