

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, postageincluded.
One copy, six months, postage include
Clubs.-One extra copy of The Scientific Amhrican will be supplied same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT With ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The scientric
Combined Rates.-The Scientricic American and Supplement Will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired. The safest way to remit is by draft, postal order, express money order, or registered letter.

Scientific American Export Edition.

The Scientific American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred arge quarto pages, profusely illustrated, embracing: (1.) Most of the plate and pages of the four preceding weekly issues of the ScIentific Amerrmercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely dis
nouncements published in this edition at a very moderate cost. The Scientific American Export Edition has a large gu culation in all commercial places throughout the world. Address MUNN CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, FEBRUARY 6, 1886.

Contents.	
(Illustrated articles are marked with an asterisk.)	
Car Bulders Association 89	
Drawings made upon a photo- ${ }_{\text {craphic }}$	
Explosinn, ${ }_{\text {Church, }}^{\text {boiler }}$ Waynest, Ind... ${ }^{\text {Mary }}$	
Firing without tame in coal mines 81	
Gas engine, Otto, the. Honey extiactor, Treadwèirs*… 84	
Inventions, aspricultural.......... 9_{00}	
Inventions, engineering............ 90 91Inventions, index of........... 90Inventions, miscellaneous........ 90	

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

 NO. 527For the Week Ending February 6, 1886. Price 10 cents. For sale by all newsdealers.
 1. ENGINEERING AND MECHANICS. - Sir Wm. Thomson's Mari-

v. Eitbcricicirre Erc.-Telephony at the Philaadphia Exhi-

 segure and arbage remorid ieli

STOPPAGE OF THE CLEVELAND WATER TUNNEL BY ICE SPICULES.

The system of running tunnels out to some distance under the surface of the water in our Western lakes, to gain a supply of pure water for cities on the shores thereof, has, in the main, proved highly successful. The single defect yet unsurmounted is the liability of these tunnels to become clogged with ice in cold weather, and thus cut off the water supply.
To the citizens of Cleveland, in whose memories the recollection of the great fires of sister cities is yet fresh and vivid, it must have been a starling announcement on the morning of January 14 that the water supply was entirely cut off by ice accumulation in the tunnel between the lake crib and the pumping station; that the principal industries of the city must be suspended, and its valuable property left, at least temporarily, to the mercy of circumstances should fires break out.

There ought never again to be a recurrence of such a danger and inconvenience to any town from the cause, we shall proceed to point out; but first let us consider briefly the causes of the stoppage.
These are to be sought in well-ascertained principles of ice formation, under the condition that the application of the cold to the liquid to be frozen is made to the upper surface.
When a mass of still water having a temperature above $4^{\circ} \mathrm{C}$., or $39^{\circ} \mathrm{F}$., is exposed to a superimposed mass of air colder than the water, two surface actions for the removal of heat from the liquid unite their forces, to wit, convection and radiation.
The latter of these modes of heat change acts constantly, summer and winter, without any dependence upon the temperature of the air, except in so far as temperature affects the amount of water vapor held suspended in air. Air not being a radiating body, its action upon the upper surface of water can only effect heat change by convection, and this action will not be set up when either the air or the water is perfectly at rest, and the temperature of the air is higher than that of the water. The reason for this will be obvious when we reflect that the action called convection consists in the interchange of place of fluid molecules which are hotter with those that are colder; and that the colder molecules of water descend at all temperatures above that known as the temperature of maximum density, while the colder molecules of air descend, whon froe to move, at all temperatures yet known as naturally or artificially produced. It follows that ! when the upper surface of a still mass of water is in
contact with a mass of superincumbent air, the warmer stratum of the water will be uppermost, and the colder stratum of the air will be that resting upon the water -a condition under which the motion needed for the action of convection is impossible.

But if the air be colder than the water, the lower stratum of air molecules derives heat from the upper stratum of water molecules; the former rises and the latter falls, and the action of convection at once begins.

This action continues (always provided there is no stirring of the mass by exterior forces) till the water reaches $4^{\circ} \mathrm{C}$., or $39 \frac{1}{5}^{\circ} \mathrm{F}$., when a remarkable change takes place. The water molecules now expand, and their specific gravity becomes less; they now cease to descend, and begin to rise.

A stratum of water, having the temperature of $4^{\circ} \mathrm{C}$., now forms at the upper surface of the water mass, and there remains. By contact with the colder air, this stratum quickly reaches the freezing point, and congeals into a film of ice. The action of convection between the air and the yet liquid water under the frozen film now wholly ceases, and all further transfer of heat from the liquid to the air must be by conduction through the ice. The action of convection between the air and the upper surface of the sheet of ice and transfer of heat from the water to the lower surface of the sheet of ice continue so long as any part of the water remains unfrozen; and not until the ice, after freezing, has cooled down to the temperature of the air will the heat transfer wholly cease. Radiation greatly assists the process. This is nature's method of ${ }^{6}$ 6 manufacturing ice.

The upper film of ice, when it first begins to form on a still mass of water, will be found, when critically examined, to be a curious network of crystals, very slightly cohering at their angles or points. The slightest motion of the liquid breaks these connections, and sets the crystals free to move in obedience to any current that may be generated in the liquid. Now, if the liquid be kept constantly stirred, each stratum of crystals as it forms will be carried down ward, the temperature of the water will be reduced throughout its mass to the freezing point, and just as meal sprinkled on the surface of water can be stirred into the mass, so the continuously forming ice crystals commingle with the liquid portions, and the mass becomes (to use a common phrase) "mushy." Everywhere and anywhere where any obstruction to motion exists, the crystals, pausing in their course, immediately cohere to form ice
last large, granular, milky-looking masses of ice result. It hardly needs to be added that the conditions of ice formation on the Lakes must sometimes conform to what we have described.
Whenever the temperature of maximum density has been attained at their surfaces, and the action of winds and waves, assisted by a current into the mouths of the tunnels of the water supplies, becomes sufficiently intense to produce the " mushy" condition, the tunnels are sure to become obstructed, either partially or wholly. Strainers at the mouths of the tunnels, no matter how they may be constructed or arranged, cannot meet the difficulty; if fine enough to prevent the passage of the ice spicules, they inevitably become clogged.
It is evident that, if the mean temperature of the water entering the mouth of the tunnel be kept even a fraction of a degree above the freezing point, and if the ice particles be also melted as they enter, or just before they enter, no ice obstruction could even form in any part of the tunnels, these being by their ituation protected from freezing.
We will briefly calculate the amount of heat required to effect this for a million of gallons, assuming 10 per cent as the proportion of ice in the water at the instant of inflow, which is probably considerably too high. For simplicity, we will consider the specific gravity of ice to be the same as that of the water, and the weight of a gallon of water to be eight pounds.
We shall then need to heat 900,000 gallons of water one-quarter of one degree, and melt 100,000 gallons of ice.
We shall need for the entire work $900,000 \times 8+4=$ 800,$000 ; 100,000 \times 142.4 \times 8=113,920,000$.
Total (heat units) $=115,720,000$.
Dividing this total by 966.5 , the heat obtainable from one pound of steam, we get 119,710 pounds of steam required. With a boiler of good type, well housed, we can get a steam product of 10 pounds per pound of coal consumed, hence we have 11,971 pounds of coal required for the work, or, in round numbers, say $51 / 2$ tons. At $\$ 5$ per ton this would cost $\$ 27.50$, or $23 / 4$ cents per each 1,000 gallons delivered.
Contrast this slight expense with the loss per hour to the city of Cleveland from the stoppage of her manifold industries, the risks entailed upon insured pro perty and insurance writers, and the untold inconvenience and suffering in families.
The steam could be conveyed to and discharged into the water entering the fouth of atunnel by insulated pipes from boilers located at the crib. The necessity for its use being for only a few days each winter, the steam could be supplied from the boilers of tugboats.

AMERICAN PRECIOUS STONES.

The recent volume on "The Mineral Resources of the United States," published by the Government, contains an interesting paper by Mr. George F. Kunz on the history and production of gem stones in America. For a country so otherwise richly endowed with mineral wealth as the United States, her product of precious stones is surprisingly small. The total value of gems mined in this country during 1884 amounted to but $\$ 82,975$. Almost two-thirds of this sum was for minerals valuable only as cabinet specimens, and therefore not strictly to be classed under the head of gems. In addition, the value of the gold quartz withheld from reduction for use in jewelry and as specimens is calculated to be $\$ 140,000$.
Though in point of quantity and value among the most insignificant of the entire list, the diamond, as the stone of all stones, naturally receives the first consideration. Probably the largest one ever found in this country is the Manchester diamond, which was unearthed by a laborer at Manchester, Va., about the middle of the century. The gem was not recognized at first, and by way of experiment was placed in an iron furnace at Richmond. After remaining at a red heat for two hours and twenty minutes, it was found to be unimpaired and brighter than before. When recognized, it was valued at $\$ 4,000$. It passed through a number of hands, being cut at an expense of $\$ 1,500$, and at one time $\$ 6,000$ was loaned on it. The original weight was $233 / 4$ carats. This was reduced by cutting to $11 \frac{1}{1} \frac{1}{6}$ carats. As the stone is offcolor, and imperfect, it is not worth to-day more than from $\$ 300$ to $\$ 400$. The gold regions of North Carolina have produced a number of small diamonds. Among the first discovered was a fine octohedron rom Brindletown Creek, valued at $\$ 100$. A number of stones, improperly classed as diamonds, proved on examination to be quartz pebbles or zircons. Another stone, of fine white color, found in a South Carolina placer claim, has a reputed value of $\$ 400$.
Some of the finest American diamonds come from California, though their size is generally quite small. Professor Whitney states that the stone is found in fifteen or twenty different localities, the largest that has come under his notice having been discovered at French Corral. It weighed $71 / 4$ carats. The most prolific locality has been at Cherokee Flats, Butte County, where the hydraulic operations have dis-
closed a number of diamonds of all colors, white, yel-
low, straw, and rose. They are found with zircons, platinum, iridium, and other associates of the diamond. They are also found in connection with itacolumite, that peculiar flexible sandstone which is likewise native to North Carolina. So far as known, $\$ 500$ is the highest price ever paid for any California diamond in the rough. Large numbers, however, have been sold for from $\$ 10$ to $\$ 50$, and not a few have brought as much as $\$ 100$. Among the sapphire gems, a number of excellent specimens have been found, particularly in North Carolina. Probably one of the finest known specimens of emerald green sapphire was found at Jenks Mine, in Franklin County. It is the transparent part of a corundum crystal, 4 by 2 by $11 / 2$ inches. It would probably furnish gems to the amount of 100 carats. Being very rare, its value is over $\$ 1,000$. Fine specimens of chrysoberyl and spinel have been found in various localities in New England, New York, and the Southern States. The Platte Mountains, in Colorado, have afforded the best crystals of topaz. One of these weighs 125 carats, and is as fine a gem of any kind as America has ever produced. The crystals gathered from this one locality, during a period of fourteen months, have sold for nearly a thousand dollars. Emeralds, beryls, and some of the less commonly known minerals, such as zircon, tourmaline, and staurolite, have been found in small quantities, but have not proved of much importance as gems. In garnets, however, America has produced stones comparable with the best products of Africa and the East. Thoughsmallerthan those found in the diamond mines of the Cape of Good Hope, the garnets of the Colorado River plateau are unsurpassed in color and clearness. The Cape garnets retain their dark color by artificial light, but in the American nothing but the clear blood color is visible. As a mineral they are found all over the United States, wher ever the older formations are exposed, but it is only occasionally that they are sufficiently transparent to rank as gems.
It is in the group of silicates that we find the largest value among Amer. ican gem minerals. In transparent quartz, particularly fine crystals have been found in New York. The purple variety, the well known amethyst, is quite common in New Engquite common in New England, one specimen found
near Cheshire, Conn., near Cheshire, Conn.,
being almost equal in color being almost equal in color
to the much praised Si to the much praised Si-
berian gems. Several southern localities likewise afford excellent specimens. The most remarkable native amethyst is that. recently deposited in the National Museum by Dr. Lucas. It is a turtle-shaped prehistoric cutting, which measures $23 / 4$ inches in length, 2 inches in width, and $11 / 2$ inches in thickness. The whole stone is transparent and without a flaw. Smoky quartz has returned the largest revenue of any of the gem stones, amounting, in 1884, to $\$ 10,000$. The finest specimens are those from Bear Creek, Colorado, where finely developed crystals, from an inch to over four feet in length, have been found. In many of the specimens, included minerals, such as rutile, asbestos, and gothite, add much to their beauty and value. Quartz crystals containing fluid cavities with moving bubbles are of particular interest, and have been found in a number of localities. There are in addition a large number of less valuable stones, whose beauty still attracts admiration. The beautiful green variety of feldspar known as Amazon stone, which has been found in fine crystals at Pike's Peak, is much prized as cabinet specimens. The numerous varieties of silicified wood have afforded as pretty specimens as can be found the world over. Numbers of minerals also, which have but a nominal value in themselves, are made up into attractive articles. Anthracite is carved and turned into a variety of pretty trinkets, of which $\$ 2,500$ to $\$ 3,000$ worth are sold annually. Pipestone, from those red pipestone quarries in Minnesota which are so well known to readers of "Hiawatha"
as having afforded the material of the famous peace pipe smoked by Gitche-Manitou, the Mighty, is still used for the same purpose, only that the pipes sell for $\$ 1$ to $\$ 20$ apiece, according to the carving, and circulate strictly among mortals.
There are many inducements for a systematic search for precious stones. Though we produced but $\$ 28,650$ worth of gems proper, we imported during the same year diamonds and other precious stones to the amount of over $\$ 9,000,000$. A more intimate know ledge of American resources will probably, in time, somewhat reduce this undesirable proportion between the native and imported gems.

Historical Electrical Apparatus.

In a lecture delivered before the Franklin Institute, Philadelphia, Mr. C. J. Kintner, chief examiner of the Department of Electricity, in the United States Patent Office, spoke of a number of notable pieces of electrical apparatus in the possession of the office, and of the wonderful increase in the growth of the business

In the map, stars of the first magnitude are eight-pointed: second magnitude, six-pointed; third magnitude, five-pointed; fourth magnitude (a few). four-pointed; fifth magnitude (very few), three-pointed, counting the points only as shown in the solid outline, without the inter-

Prior to the year 1881, electrical apparatus was onl| \mid Hunting Dogs occupy the sub-department under the general classification of Hair and the Great Bear. philosophical instruments. In that year, it was made into a separate class. Since then, the number of inventions has multiplied so rapidly that during the past year the electrical department was given nine classes in place of one. The greatest epoch in the history of the art was in 1876. Before that time, there had been but 1,973 patents taken out for electrical inventions. Since then there have been 8,000 new patents. It was in 1833 that the first patent in this department was granted to D. Harrington, a Philadelphian, for an invention meant to cure disease by an application of electricity. Two more patents were granted to the same inventor for similar devices, but these three were the only electrical patents granted before the regular establishment of the Patent Office, in 1836. Among the most famous of the models in the possession of the Government, Mr. Kintner mentioned Morse's telegraph instrument, which, he stated, was, like all that inventor's models, a marvel of good workmanship and performance. Bell's telephone, the Brush electric light, and many other devices not so well known to the general public, make up a list of inventions upon which large industrial operations have been based and to which our present progress is largely attributable.

The surplus of the Ætna Insurance Company is now over $\$ 3.200,000$, which is larger than the capital of any other fire insurance company.

NIGHT SKY-JANUARY AND FEBRUARY.

by richard a. proctor.
The Great Bear (Ursa Major), with its Dipper and Pointers, occupies the northeasterly mid-heaven. A line from the Pole Star (and of the Little Bear, Ursa Minor) to the Guardians, β and γ, lies in the position of the minute hand of a clock 18 minutes after an hour. The Camelopard (Cameloptrdus) is above. The Dragon (Draco), whose head is below the horizon, curves round the Little Bear to between the Guardians and the Pointers. In the northwest, fairly high up, we find Cassiopeia, the Seated Lady, and on her-right, lower down, the inconspicuous constellation Cepheus. Andromeda, the Chained Lady, is on Cassiopeia's left. The Great Nebula will be noticed in the map-it is faintly visible to the naked eye. Above Andromeda is Perseus, the Rescuing Knight, and above him the Charioteer (Auriga), nearly overhead. On the left of Andromeda is Avies, the Ram, the small constellation, the Triangle, lying between them.
Toward the southwest, the Whale (Cetus) is beginning to set. The River (Eridanus) occupies the lower part of the southwesterly sky, and extends also to the midheavens in that direction. The Dove (Columba) is nearly due south, and at its best-which is not saying much. Above is the Hare (Lepus), on which Orion treads. The giant now presents his noblest aspect -prince of all the constellations, as he is. He faces the Bull (Taurus), known by the Pleiads and the bright Aldebaran.

Close by the poor Hare, on the left, leaps Canis Major, the Greater Dog, with the bright Sirius, which "bickers into green and emerald." The stern of the star ship Argo is nearing the south.
Very high in the southeast we find the Twins (Gemini), with the twin stars, Castor and Pollux (a and β); and below them the and β); and below them the
Little Dog (Canis Minor). Little Dog (Canis Minor).
The Sea Serpent (Hydra) is rearing its tall neck above the eastern horizon (by south), as if aiming either for the Little Dog or for the Crab (Cancer), now high up in the east, with its pretty Beehive cluster showing well in clear weather. The Lion (Leo) is due east, the Sickle (marked by the stars α, η, $\boldsymbol{\gamma}, \mu$, and ε) being easily recognized.
Queen Berenice's Hair (Coma Berenices, not Berenicis, as often ignorantly given) is in the northeast. It used to mark the tip of the real Lion's tail, just as the stars of the Crab marked his head. The

Cement for Cast Iron.

A correspondent of the English Mechanic says that he used the following recipe with the greatest success for the cementing of iron railing tops, iron gratings to stoves, etc., and with such effect as to resist the blows of a sledge hammer: Take equal parts of sulphur and white lead, with about a sixth of borax; incorporate the three so as to form one homogeneous mass. When going to apply it, wet it with strong sulphuric acid and place a thin layer of it between the two pieces of iron, which should then be pressed together. In five daysit will be perfectly dry, all traces of the cement having vanished, and the iron will have the appearance of having been welded together.

The American Exhibition in London.
The Executive Council of the American Exhibition Company have announced that the time for the opening of the exhibition has been postponed a year, and that May, 1887, has been chosen as a more favorable time. This change has been made because the Colonial and Indian Exhibition will be held next spring in London, and it is naturally thought that the simultaneous occurrence of the two exhibitions would interfere with the success of the American enterprise. Minister Phelps, Consul-General Waller, and other prominent Americaus have advised the postponement.

