allows water at pressure to flow in above the top ram, which forces down the plunger block. Attached to this are 64 phosphor-bronze hexagonal plungers; these enter the bushes, which they fit with great accuracy. At the same time that the top ram is brought down the bottom ram are caused to ascend. To the latter is attached the plunger block, E , to which are attached 64 hexagonal plungers, that also correspond to and accuhexagonal plungers, that also correspond to and accu-
rately fit the bushes in the bush block. In this way rately fit the bushes in the bush block. In this way
the charges of powder contained in the bushes are the charges of powder contained in the
pressed between the plungers. Under ordinary conditions of atmosphere, the pressure is kept on for about ten to twenty seconds, the time varying with the different descriptions of powder.
The top plungers are then lifted, and the lower plungers are raised to eject the prisms from the bushes. The prisms are pushed off, clear of the press, on to a wooden-tray, to be removed by an attendant. The bottom ram is lowered again into its first position, and the charger is run into the press again ready for the next operation. In this way each machine will make 64 p machine will make 64 proms every two
minutes. It is necessary, however, that each prism should have a hole through its center in a line with its axis.
These holes are formed in the following manner : The bottom plungers haveholes bored through, which are of the same dimeter as the holes required in the prisms. This allows a number of phosphor-bronze rods, one to each prism, to pass through the plungers and then through the powder in each bush. These rods stand nearly level with the top of the bush block, and are firmly held by the plate, H, so that the prisons are pressed with these rods in the middle. When the prisms are ejected from the bushes, they are stripped from the rods. It is indispensable that all the prisons produced should be of exactly one size, and should contain precisely similar quantities of powder. Their uniformity is tested by means of immersing them in a bath of mercury, the readings being taken off on a very accurately marked scale. In working the machines, a separate valve is used for each operation, and an ingenious automatic arrangement has been devised to prevent the attendant turning a wrong valve, so as to bring down the top ram when the charger is in the machine. There is also a safety trangement to perevent damage to the machine should a pipe burst.
We have referred to the necessity that exists for producing all the prisms of a definite and uniform size and specific gravity, in other words, that there should be exactly the same amount of gunpowder, compressed to the same degree, in each specimen. It is this point that has principally engrossed the atmention of the makers of the apparatus, and the result is a beautifully accurate piece of mechanism. It has only been by the greatest care in finishing to gauge and in the adjustment of parts that the success undoubtedly achieved by this machinery has been attained. The tests of powder, such as this, now required by the War Office are of the most severe description, as may be gathered from the following details, which represent some of the principal points in the official specification of tests.
Size of Prisms. -The prisms to be of the following dimensions : height, $24 \cdot 8 \pm 0.2$ millimeter ; diameter (over sides) $34 \cdot 7$ millimeters ± 0.2 millimeter. The hole to be 10 malimeters in diameter. The prisms to be gauged as follows: 219 prisms should fit easily in a metal frame 705 millimeters long, 352 millimeters wide, and $25 \cdot 3$ millimeters high, and should offer no resistance to a straight edge drawn over the top of the frame.
Density.-The absolute density of the finished powder must not be less than 1.80 .
Moisture. - The finished powder inust not contain more than 22 per cent nor less than 1.7 per cent.
Velocity.-A charge of 295 lb . of powder in the 12 in . beeech-loading gun (of a gravimetric density of $\left(\frac{33 \cdot 2}{0.835}\right)$ shall give a mean muzzle velocity for the five rounds of not less than $1,900 \mathrm{ft}$. per second nor more than 1,940
ft . per second, to a proof cylinder having a total weight of 714 lb . The mean of the deviations of the muzzle velocities of the several rounds, from the mean velocity of the five rounds, shall not exceed 10 ft .
Pressure.-The mean pressure indicated on firing, as above, by the compression of copper cylinders, adjusted in crusher gauges, is not to be greater in any one round than $161 / 2$ tons on the square inch, and the mean of all the pressures shall not exceed 16 tons.
These very stringent tests are perhaps the best com.

THE WATER BUCK.

1 making explosives has made within the last few years It is not so very long since-well, within the memory of living powder makers-that gunpowder was gunpowder, without any very striking difference for whatever purpose it might be required. The "velocity" tests show a wonderful departure from those simple times; and although the restrictions laid down in this respect may seem unnecessarily severe, and even arbitrary at first glance, on further inquiry we believe there will be found to be sound reason at the bottom of them, and it is only by their strict observance that the accurate practice necessary in modern warfare can be insured. We are glad to learn, therefore, that Messes.
Curtis \& Harvey, as English makers, have in the insured. We are glad to learn, therefore, that Messes.
Curtis \& Harvey, as English makers, have in the
 govewder that has passed the fulfilled thetexts inaction, and the fullest extent, and that British guns can in future be fired with British powder.-Engineeving.

Referring to baseball, which seems to rage like an epidemic this season, has induced the suggestion that the average man in a large city must have an easy time, plenty of means, and limited hours of employ ment, when 8,000 can devote three afternoons each week to watching eighteen full-grown men toss a ball around a field.

The hair of the species of water buck inhabiting astern Africa is very long and coarse, while that of the one found in central Africa, the sing sing, is remarkbly soft, and highly prized by the natives as being so In fact, the hair on the neck of the specimen now at Central Park is long enough to produce quite a mane. The name kring-gat, given to this species by the Dutch, has reference to the white ring about the rump. Its range is extensive, from eastern, through central, Africa up to Abyssinia, where it is called the menedihet.
It is said to climb well in spite of its rather heavy build, and at times herds of from a dozen or less up to build, and at times herds of from a dozen or less up to
twenty may be seen speeding, like goats, up the steep sides of the rocky hills of the country. They are, however, never found far from the water, offering in this respect a curious contrast to many species of African antelopes who inhabit the treeless wilderness of the arid plateaus, and never see water. Baker says the flesh is scarcely fit to eat, but that the natives greedily swallow the hot blood of the male buck when its throat is cut.
One curious habit is attributed to these allied species which is worth mention. It is said by De Kirk that the antelopes are generally found feeding in small herds. In the heat of the day it rests in the long grass, and may be approached within fifty yards before starting. Should the female have young unable to run far, upon its shoulder, and presses it to the ground, after which it never moves until almost trodden upon and is expected to main in the same spot until the return of the mother.

The specimen at Central Park has not yet developed its horns to the greatest size, an is still young. It bears confinement
The collection of animals at Central Park has re cently been enriched by the addition of the water buck Kobus ellipsiprymnus). This specimen, the first that as been brought to this country, is associated in a roup of water-loving antelopes with the leche (K ache), the pookoo (K. vardoni), and the nsunnu (K. ucotis). The horns of these closely allied African species are of good size, only present in the males, transversely wrinkled, curved forward and a little inward at the tips.
The water buck and the sing sing ante lopes are much alike, the latter wanting a white elliptical patch which is found near the base of the tail in the former At the shoulders they stand four feet six inches, and the pale horns are two and a half feet long. The body color is a brownish gray, with lighter marking about the eyes and neck.
These animals frequent the lakes and marshes of eastern Africa. They are excellent swimmers, and probably have just the same habit as the moose, of walking upon the bottom of a pool or stream with little else than their nostrils protruded above the surface. The water antelope, says Mr. Drummond, is an extremely fine animal, and so plentiful that there are probably more of them shot than of any other of the large antelopes. The large ringed horns which in the males crown the brow bear a strong resemblance to those of the reed buck (reitbok), while the habits and general appearance of both species are almost identical. Both frequent thickets and reedy places near the water, and are principally found in pairs or in small groups. astern Africa is very long and coarse, while that of the

\qquad
 1 dy domestication. The comparawell, and suggests easy domestication. The comparalively poor quality of its flesh and the coarseness of its hairy coat would, however, render it useless for any economic purpose.
It seems somewhat strange that Africa should have developed such an extraordinary variety and number of species of antelopes, when the great western contrnent can produce but a single species (the pronghorn), but no more singular, perhaps, than that no species of bear is found in the former country.

