the geological hall of the american musedm of NATURAL HISTORY.
(Continued from first page.)
The next cases display to us the varied and prolific life of the differentSilurian groups. Here are brought to view the lavish multiplication of species, and the new re-enforcements of animal life extend its domain in all the orders of the invertebrate kingdom. So luxurious and manifold was the development of certain shellincased organisms known as brachiopods, that the Silurian age has been comprehensively designated as the age of brachiopods. These animals possessed the seas and littoral borders of the continents of those days; since then their decline has reduced them to a few species.
Brachiopods were creatures grouped under the mollusca, along with oysters, mussels, and cockles, which secreted a calcareous shell around themselves made up of two valves joining along a hinge line, in some cases interlocked or articulated, in others freely moving over each other with the hinge line reduced or absent, and holding within their fleshy bodies two spiral processes, which were more or less extensible, and which
were once thought to be feet, whence the descriptive were once thought to be feet, whence the descriptive name of brachiopod, from $\beta \rho \alpha \chi 2 \omega v$, an arm, and Tovs, a foot, or arm-footed animals. These delicately constructed and finely fimbriated parts served as breathing organs, and were connected with the pro-
cesses of feeding. The abundance of these animals cesses of feeding. The abundance of these animals
in the Silurian age exceeds all imagination. Look at in the Silurian age exceeds all imagination. Look at
these slabs of rock packed closely with the embedded shells, while in the numerous trays the slean, beautifully ornamented species of Spirifer, Strophomena, Rhynchonella, etc., are exhibited, reproducing that ancient fauna with startling distinctness. But associated with these multitudinous remains of brachiopods are many other forms even more interesting, and only less important from their restricted development.
Here are nests of quaint trilobites grouped together in numbers as they were buried upon the old sea bottom, some, as it were, arrested in their flexuous motion over the inequalities of the beach, and others preserved as they wrapped themselves, in some spasmodic movement of death, head and tail together, in cylindrical bundles. Here are corals torn by the hammer from stony bosses which were once the reefs of palæozoic seas, while long "straight horns "-the shelly incasements of extinct devil fishplants, sponges, and exquisite stone lilies fill other shelves. Here are slabs of sandstone from an ancient seashore pitted with small shells from which lines and tiny ridges sweep, as though just drawn by a retreating wave, photographs in quartz of the gentle action of the primal tides, teaching the lesson of
the unisormity of nature, when to-day we see the same surfaces on any ocean-washed shore.
We rapidly pass by some splendid examples of petrified casts of seaweeds, we take a few hasty glances at the beautiful chain corals, the delicate embroidery of bryozoan remains, animals belonging to the "sea mosses " of present seas, of which our common flustra, so frequently mistaken for a seaweed, is a good example, and then pass into the Devonian age, or the age of fishes. In it we encounter the fossils of those great extinct inhabitants of the ocean which have long formed some of the most interesting relics of ancient life. The fishes of those days were incased in bony plates whose articulating edges united them in an armor of durability and strength, and we can fancy their dark forms shooting through the marine depths like pelagic monitors. In the Devonian age an enlargement of the coral life occurred and the cupshaped corals abounded. These are long or short cornucopiæ formed shells, generally single stems, but frequently grouped in colonies, and displaying upon their upper surface intricate networks of vertical, concentric, and transverse partitions.
The next cases introduce us to the Lower Carboniferous, or the age preparatory to the deposits of our coal beds. The most notable specimens of this period are found among the crinoids, whose sculptured calyces resemble toy boxes from which extend arms tressed with fringes of fimbriæ like a tassel. On our plate two
are shown of different species, entrapped together, as are shown of different species, entrapped together, as they became interlocked and were buried at the bottom of seas rolling over the present site of Crawfordsville, Ind. These crinoids, briefly described, were inverted star fishes provided with a long, flexible stem made up of separate plates, rooting in the mud bottom and swinging to and fro, gathering their nutriment by means of the moving ciliæ along their arms. In this period these singular creatures flourished in enormous numbers, but have since declined, and are now represented by barely more than fifty species. Here also we meet corals, and brachiopods now waning in the dawn of new conditions.
We next enter the domain of the coal measures. Here the vegetable kingdom in its lavish expansion of forms overshadows everything else. Mighty tree ferns, gigantic club mosses, forests of tall sigillaria, and calamites shaded the warm estuarine borders and interiors` of the continent. Their embedded fragments and parts
tinuous oscillations, now rose and now sank below the sea level, and successive sedimentations sealed in the plant beds, whose slow change into coal has yielded our age the source of its mechanical and industrial proWress.
We
We now pass through the Mesozoic and Tertiary cycles, encountering more and more familiar shapes ir the shell remains and the increasing indications of mammalian life, until in the Quaternary we find the implements of those early men who crowned the works implements of those early men who crowned the works
of creation by ushering in that period which some writers have designated as the psychic age, or age of mind.
The survey of this geological and paleontological cabinet has been very brief. It would be possible to linger many hours over the mineral cabinet, or exhaust our admiration over the cases of sea shells. The collection of fossils is unique. It was the famous Hall collection, accpualated during the survey of the State, of which $\Lambda_{\text {bresiz }}$ said, " Whoever gets Hall's collections gets the geological museum of America;" and it has been placed under the charge of one who is more familiar with it than its original owner, and through whose hands every specimen in it has passed. New additions have been made to it, and as it grows the student and the casual visitor will find new material for examination and pleasurable inspection.

Reclaiming Lands in Florida.

The Disston Land and Improvement Company is doing some marvelous work in Florida, in redeeming thousands of acres of land which are now under water. Already immense tracts have been thus made available, and it has been demonstrated that there is no better land in the State than that thus reclaimed. The company operates under a law of the State which allows it one-half of the land rendered available, and expects to reap a rich harvest before it finishes the improvements contemplated. The South Florida Railroad, from Sanford to Tampa, crosses the State on a dividing ridge, and from this ridge, looking south, there is a continual, but gradual, depression in the land to the southern extremity of the State. The land to the south of this ridge is different from that on its north, in that it is not at all undulating, but spreads out in a vast plain, gradually inclined toward the north. The Disston Company is utilizing this work of nature. Lake Kissimmee is in the midst of a series of lakes, and its northern point just touches the South Florida Railroad at Kissimmee City. This lake is a very long and narrow one, reaching toward Lake Okeechobee, with which it has of lakes. Thed by canaling the intervening series connected to it by canals, giving a continual outlet to Okeechobee. Thus the areas of these lakes are lessened by the immense flow which finds its way to Okeechobee and from thence to the Gulf on one side, and to the Atlantic on the other, canals reaching from the immense lake to these two great bodies of water on each side. By this canaling pro-
cess the level of Lake Kissimmee has been lowered six feet and that of the lakes surrounding it proportionately. In this manner the Disston Company proposes to reclaim thousands of acres of land, one-half of which will go to the State, and the other half to the company. The land which is thus made useful is not only that immediately surrounding these lakes, bottoms. Since these lakes have been connected, it is now an easy matter to start by boat in Lake ${ }^{i}$ Kissimmee, in the center of lower Florida, and proceed by water through Lake Okeechobee to either the
Atlantic or the Gulf. It is said that Georgia's great swamp, the Okefinokee, can be easily reclaimed. This immense morass, forming a distinct basin much lower than the surrounding country, is, at its lowest point, within but a few miles of the St. Mary's River, the level of which is below that of the swamp. These two connected by canal, the great Okefinokee is
drained, and a magnificent area of land is ready for the plow. It is only a question of time.-Atlanta (Ga.) Constitution.

Legal Fog.

It was of a case in the United States District Court t Albany, many years ago. A patent right suit was brought on before Judge Nelson. William H. Seward
was counsel on one side. In summing up he occupied a whole day. Peter Cagger came in while he was talking, and after listening an hour turned to a learned lawyer and inquired: "What is 'Bill' Seward talking about?" The counsel on the other side made a long speech, and the judge charged the jury. After the jury had been out about two hours, they came in court and the foreman said: "Your Honor, the jury would like to ask a question." "You can proceed." "Well,
your Honor, we would like to know what this suit is your Honor, we would ?"-N. J. Law Journal.

For a cheappreparation to dip wrought iron articles in to prevent rusting (after being milled), use hot soda

Gorrespondence.

A Cow with Five Legs.
To the Editor of the Scientific American:
This creature was about two years old, and not higher than three feet. Her fifth leg was on her left shoulder, about a foot long, and looked like the other legs, except that it was cloven into three toes instead of two. The hoofs of this fifth foot were very long, as the animal could not use the leg. The other parts of the cow were perfect, and she seemed to enjoy good health.
The owner was an Armenian peasant near this town, who has brought it here, thinking that he would be able to get some money by exhibiting the animal.
A. G. Seklemian.

Ezroom, Armenia, Turkey, February 23, 1886.

How Far Light Penetrates Deep Sea Depths.

To the Editor of the Scientific American

This subject, referred to by one of your correspondents in your issue of March 20, has been carefully investigated by Messrs. Fol and Sarosin, of the Society of Physics and Natural History of Geneva, Switzerland. Without giving all the details, it was found land. Without giving all the details, it was found ciently to affect very sensitive photographic plates at depths of 170 meters (558 feet), and at that depth "the light, at mid-day, was about as strong as that of a clear moonless night." Similar experiments carried on in the Mediterranean led to the following conclusions: "In the month of March, in the middle of the day and in bright sunlight, the last glimmer of light comes at 400 meters (1,300 feet) below the surface." comes at 400 meters (1,300 feet) below the sur-
feport of these investigations appeared in the Photographic Times of July 10 and October 9 , 1885.

Utica, N. Y., March 22, 1886.

Collision at Sea.

To the Editor of the Scientific American
The late sinking of the magnificent ocean steamhip Oregon, and the ill-fated vessel that collided with her, again brings to public notice that dreadful disaster, collision at sea. In most cases, the difficulty has been that neither navigator knew exactly what course the other intended taking.
Now, one will notice, the large majority of collisions occur between steamers and sailing vessels at night, and in most cases the sailing vessel is in the wrong. The latter has the "right of way," and if it kept on its course, all would be well. But at night, on the water, positions and distances are very decep tive. The navigator of the sailing vessel sees the red, white, and green lights of a steamer; they become apidly brighter, and he makes out the great, dark monstercoming directly down upon him. He knows he has the right of way, but thinks if he keepson a collision will be inevitable, so suddenly changes his course; perhaps at the same moment the wheelsman of the steamer is changing his, and the next instant that which both aimed to avert is brought about, and usually with dire results. If either had known just what the other intended doing, the vessel would have kept on her course, and the steamer have gotten out of her way. Now, what is needed is some rapid way of communicating between two approaching vessels, what course one, at least, intends to take, and not have to wait for a vessel going at the rate of twenty miles an hour to "hide one of her lights" before the ther vessel can know she intends changing her course. There is plenty of inventive genius in this country to invent a way to transmit such knowledge, if our inventors would turn their attention in this much needed and worthy direction. As the pilots on steamers can judge what direction a sailing vessel is coming better than the navigator of the lattercan the steamer's intended course, I would suggest that all steamers carry an additional white headlight on their bow, furnished with movable red and green screens, that can be quickly drawn in front of the light (thereby changing the white to a red or green light) by wires changing the white to a red or green light
The wheelsman of a steamer, seeing a sailing vessel near, can decide on which side he should pass; if to "starboard," he can quickly draw the green screen in front of the light, thereby notifying the sailing vessel that she is to pass to the "starboard" side; or if the wheelsman considers the "port" the proper side to pass, he could draw the red screen, then the navigator on the sailing vessel could quickly know on which side the steamer intended to pass.
Of course, this idea is but a suggestion; but if it causes thinking men to take hold of such an important subject as lessening one of the greatest perils of the deep, it will have done its work; and I know no better way of reaching such thinking minds than through the interesting and highly prized Scientific Ameri AN.
Upper Falls, Md., March 29, 1886.

Encaustic or inlaid tiles consist of three distinct parts-the body, the inlaid pattern, and the back. The body is composed of ordinary fireclay, similar to that used for the diaper tiles, and is worked up into a plastic mass, which is moulded in iron moulds under a screw press. These moulds have raised patterns, which produce an indented or intaglio pattern upon the surface of the tile. The tiles thus formed are allowed to become dry, and the indented pattern is filled up by pouring over the surface of the tile a thick milk or slip composed of the white clays of Dorset and Devon, so much used in making earthenware, to which is added some pigment if colored patterns are to be introduced. Sometimes, where polychromatic pattern are desired, different colored slips are used, and poured into the parts of the pattern intended for each
When partially dry, the surface is scraped even, until the face of the original tile or buff colored clay makes its appearance, when the indented pattern alone will be filled with the will be filled with the
finer stained clays. If the tile thus prepared were fired, the body would contract more than the pattern, and the tile would be bent, and perhaps the latter fractured. It is hence necessary to apply a coating of the same fireclay used for the pattern to the back, to counteract this difference of contractibility; and as this clay, when hard burned, would not adhere well to the cement employed in laying them down, the back is pierced by a number of holes by means of projections in the mould, into which the soft cement is able to penetrate and form a solid bond.
The Alhambra tiles are formed upon the same principle as the ordinary encaustic tiles, with this difference, that in the former fusible in the former fusible pigments are used in-
stead of colored clay stead of colored clay
slips. This is the technical difference; but it must be confessed that there is a beauty of design and a harmony of color in the true Alhambra tiles which are still more characteristic of them, and which it is extremely difficult to equal. The majolica tiles are not so much distinguished by form as by the colored glazes with which they are covered; thus we may covered; thus we indented or plain have indented or plain
tesserm covered with a monochrome glaze, or
large tiles with foliated
or arabesque indented patterns glazed, but not filled up, with different colored enamels. The great peculiarity of majolica colors is their softness and depth, which is the result of the soft enamel pigments emwhich is the result of the soft enamel pigments em-
ployed. The Dutch tiles are true earthenware.-Prof. ployed. The Dutch tiles a
Sullivan, in The Architect.

Guthrie's Telephone.

A contribution to the telephone controversy comes from Leesburg, Ohio, where it is reported that Mr. J. T. Guthrie experimented on the transmission of speech by electricity long before Bell received his now famous telephone patent of 1876. It is stated that Mr. Guthrie has now perfected a new form of telephone quite different from any previous device. A patent has recently been granted to him for a telephone which is operated by a direct instead of an induced current of electricity, as in other telephones. This instrument is notaffected by the weather. The intensity of the current is regulated by a turn of the key. It is cheap, and applicable to any telegraph wire. The ticking of a watch is dis-
tinct over a three mile circuit, and speech is stated to be possible over a distance of a thousand miles. It is shortly to be given an extended test.

FURNITURE AND DECORATIONS OF A LIBRARY.

Spring and summer are the seasons of the year usu ally selected for remodeling and decorating our dwell ings, and it is believed that illustrations of the interior of houses which are decorated with taste and furnished in harmony with the painting will be acceptable to a great many of our readers. Our engraving this week represents a library, in which it will be observed that nice harmony prevails in the decorations, mantel piece,
and furniture. The excellent illustration sets forth and furniture. The excellent illustration sets forth

tion that might be added would be superfluous

Safety Devices for Rifle Ranges.

Experiments were lately made at Wormwood Scrubs with Mr. Morris' firing screens, which are designed to enable marksmen to practice even in populous neighborhoods. The invention is based upon the idea of
stopping. "wide" bullets soon after they leave the rifle and this is accomplished by making the rifleman fire through an aperture in a small screen from a narrow platiorm inclined to suit men of different stature. Some twenty feet from this screen is a second, in which is an embrasure opening into a short gallery fitted with iron plates or curtains inside which stop the erring bullets. Beyond this is a third screen, with an aperture in it about six feet square, so that the marksman at the firing point looks through these screens, and sees very little except the target at which he is to shoot. The experiments proved successful.

Slate for Roofing and School Slates.

In Northampton County, Pa., in the neighborhood of Easton, the industry of cutting out slate for roofing, as well as the school slates which one becomes acquainted with so early in life, seems to be steadily growing; other quarries are also worked for this purpose in Vermont and on the Pacific slope, and suitable slates are likewise to be found in many parts of the country, but nowhere else has the industry shown such steady growth as in the section named.
The requisite kind of argillaceous or clay slate is found among the metamorphic rocks, passing into mica slate, and splits with ease into large smooth plates, of a uniform hardness, a dull luster, and in plates, of a uniform hardness, a dull luster, and in
color a blackish gray, bluish black, bluish or deddish brown, purplish or greenish. When fresh from the quarry, it splits even more easily than pine timber. The slate pine timber. The slate
is removed from the is removed from the which are landed on trucks a nd shoved along a track to shanties where the splitters split them as if they were wood, and with far more accuracy. They are cut into sizes for roofing purposes with great expedition and dexterity Those of fine quality are used for school slates. It is interesting to watch the work in oneof theshanties. The splitter, with his mallet and broad steel chisel, sits on a block, and, taking a slab of slate between his legs, drives in his chisel a little way at one end. He moves it a little with firm, gentle pressure, and you can see the split begin to start as straight as a die. He repeats the operation at the other end. Then he drives his chisel in the middle and easily pries the slab in halves. The split pieces are split and split again until they are of the required thickness. As fast as they are split, a man who stands by the split ter takes the slates and runs them through the dressing machine. This is a castironform set on five legs, with a steel extension piece or arm about four feet long. Suspended over this is a steel knife, which is at tached to a spiral steel spring and worked by the foot of the dresser A gauge board guides his eye, and he puts his slate against it, presses his foot on the treadle, and down comes the knife, cutting the edge clean and straight. He makes the four edges straight and lays the slate in piles according to size. Just as fast as his foot can work, a good dresser keeps his ma chine going. The splitter and dresser work together, and are paid according to the quantity they turn out Diamond saws are also used. They have a reciprocating motion, and make 140 strokes per minute. They cut only one way, however, and are lifted by a cam for the return stroke, a constant stream of water clearing the diamond teeth of the accumulated slate dust. The planers are similar to those used for planing iron, and the polishing bed is a disk of cast iron fourteen feet in diameter, making thirty revolutions per minute

Noiseless Anvils. If it is desirable to set up an anvil so that its use will make the least possible noise, set the anvil on a block of lead, or make a putty ledge around the anvil upon the wooden block, $1 / 2 \mathrm{in}$. clear all round, 1 in. high. Raise the anvil clear of the block $1 / 2$ in., by any means available, pour in the lead until it rises above the bottom of the anvil; or set the anvil on a good bed of sand held in a box.

