sfientifir gmerixat.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. ․ beach.

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, oneyear, postageincluded..Clubs, On Clubs.-One extra copy of THE SCIENTIFIC Amprican will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN $\&$ Co., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, \$5. W) a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country
Cill be sent for one year, postage free, on recican and SUPPLEMENT mapers to one address or different addreesses as desired.
The safest way to remit is
The safest way t
registered letter.
Address MUNN \&
Scientific American Export Edition.
The Scientific American Export Edition is a large and splendid periodical, issued once a month. Each number containg about one hundred
arge altarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific Ameriand pages of ithe spour preceding weekly issues of the SCIENTIFIC AMERI-
Cagravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses, Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The SCIENTIFIC AMERICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN
\& CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, APRIL $10,1886$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 536
For the Week Ending April 10, 1886.
Price 10 cents. For sale by all newsdealers.
Engineering.-The Mersey Tunnel-With full description Long Distance Transportation of Natural Gas. - Pumping gas. Natural flow.-By T. P. Roberts..
The Use of Torpedoes in War.-A lecture delivered before the Royal U. S. Institution by Commander E. P. Gallwey, R. N.With full page of illustrations.
Estrade's High Speed Locomotive and Cars. - 3 figures.
Apparatus for utilizing the Force of Waves. -1 figure............. 8
Sibley College Lectures.-The Riddle of the Sphinx, the Coming Problem for the Engineer.-By J. C. BAYıLS.......................... 8557
II. TECHNOLOG Y.-Isochromatic Negatives from Paintings, with or without Yellow Sc
Pueumatic Tubes.
 mplements.-Measuring felled and standing timber.-Marking the rees.-The dimengion book.-To calculate contents
iII. Physics, electricity, etc.-New Analogies between Elec tric Phenomena and Hydrodynamic Effects-Imitations of the Electric shadows on Nobill's colored rings, etc.-24 tigures........... 8563
v. Horticulture, etc.-A Garden at Falmouth-Plants which flourish on the Cornish coast... 880 Design bỳ A.v. Wielemans... 8561 VI. NATURAL HISTORY.-The Tarantula.-Effect of its bite.-Its nabits
VII. MEDICINE, ETC.-Asiatic Cholera-Report of the English Com-
mission ..
VIII. Miscellanneous.-Missouri CrematorylAssociation...
the tehoantepec ship railway.
Seldom has any public enterprise received such gross misrepresentation at the hands of the press as has been the portion of Captain Eads' proposed ship railway across the Isthmus of Tehuantepec. Every effort to make what is, in itself, an honorable proposition seem odious appears to have The enterprise is one which is open to thorough inspection, and therefore an ignorance of the subject is the more unpardonable in those who assume the position of critics. In many of the statements made there is such an evident absence of truthfulness that one is forced to believe the error is not unintentional. It is asserted in more than one quarter that no survey of the route has ever been made by the present company, when, in truth, the greater part of the $\$ 350,000$ already expended has been for a complete hydrographical and topographical survey of the isthmus from ocean to ocean; that the United States is appealed to as a last resort, when, in point of fact, it is the first government approached; that the ship railway is pronounced impracticable by the acknowledged experts of the world, whereas the very opposite is the case. The Canadian Government has just subsidized a ship railway to be built from the Bay of Fundy to the Gulf of St. Lawrence, under the direction of Sir John Fowler, one of the ablest engineers of our times. It is further asserted by Captain Eads' opponents that the capitalists of Europe and America have refused to have anything to do with the project, when they have had no such opportunity, for their aid has not yet been solicited. But of all these misstate ments, probably the most flagrant is that the United States is asked to give $\$ 37,500,000$ to aid in building the ship railway. By no misinterpretation of the English language can such a conclusion be reached. The bill now before Congress provides distinctly that the government shall not pay a single dollar until the railway is completed, until it has passed a satisfactory official examination, and has successfully carried a vessel of specified tonnage from ocean to ocean.
These conditions could not be stated more plainly nor could a more severe test of the company's good faith be demanded. When this great work has been accomplished, the Government is only asked to guarantee that, for a period of fifteen years, two-thirds of the net annual revenue of the railway shall be $\$ 2,500,000$. By no reasonable possibility could the Government be liable for the entire guarantee. As the net revenue is taken
at one-half the gross receipts, the total liability of the Government, at the most unfavorable estimate, would not exceed $\$ 7,500,000$, and that in equal payments over a period of fifteen years. But even if the entire sum guaranteed were to be drawn from the public treasury, the country, it seems to us, would find the investment highly profitable. Those who so vigorously denounce the enterprise as an attempted raid upon the national revenues do not seem to recall the fact that Congress is each year asked to pay out immense sums of money for the improvement of some insignificant stream or obscure harbor, even the location of which is scarcely known to the majority of the members, and that not only does Congress accede to the request, but duplicates the appropriations when the resultsshow the work to have been a benefit, however local and restricted. In the case of the Tehuantepec ship railway, no direct support is asked. The guarantee for which Congress would be reponsible, if the bill passes, would only be a contingency. Every indication points to the financial success of such a road, and it is highly improbable that any money would ever be drawn from the public treasury. But the guarantee is desirable, in order that the seventy-five millions necessary for the construction of the road may be raised on the most favorable terms.
It seems incredible that, under these circumstances, the Government should hesitate to become the patron of an engineering work of such undoubted importance. The advantages of having an interoceanic communication under American control ; of being able, in times of war, to have the squadrons of the Atlantic and Pa cific co-operate without doubling Cape Horn; of enjoying, in times of peace, the reduced tolls accorded to American shipping, and all the impetus to that industry which such a discrimination means-these seem to us of sufficient value to warrant the assumption of a
much graver responsibility than Captain Eads has demanded, and to make what he has asked seem abso lutely insignificant.
Much of this violent opposition to the enterprise appears to be due to the adherents of the Nicaraguan Canal, an enterprise which, if the history of the Pana ma scheme teaches anything, would involve the Gov ernment in an expenditure which would be calculated by the hundred millions.
One other charge is brought against the Tehuante pec enterprise, which is alike insulting to those interested in its success and discreditable to those making the assertion. The statement has been made, and is reiterated in a large portion of the daily press, that an extensive and influential lobby is maintained at
Washington in the interest of the enterprise. Captain Eads' denial is absolute. The president and vice-presi dent of the company and its counselor are the only
persons who have authority to speak in its interest. We do not believe that these gentlemen have need o such methods, were they willing to employ them, nor do we believe that the committee who have charge of the bill are open to the persuasiveness of such arguments.

LICENSES FOR SMALL STEAMBOATS.

The yachting season is now pretty well upon us, and he number of inquiries which we have already receiv ed in regard to the laws regulating steam yachts indicates that it will be one of considerable activity. It may therefore be of interest to our readers to know what requirements must be fulfilled before their pleasure craft may be enjoyed in peace and quietness. The United States law says that all steam launches f five tons burden or less must pay a license of $\$ 5$, and for master, pilot, and engineer 50 cents each. The hulls and boilers must be inspected by the United States local inspectors, and a permit from the nearest custom house must also be written upon the inspecion certificate.
In regard to the equipment of yachts of this size, the aw provides that, where passengers are carried, the lifeboat may be dispensed with, if the vessel is provided with metallic air chambers placed under the seats or in the ends, of sufficient buoyancy to float both vessel and machinery. One life preserver must be provided for each person whom the inspection certificate allows them to carry. For each fifteen passengers ouless two fire buckets and oine ax are required.
One of our subscribers in Camden, N. J., had rather an unpleasant experience from his want of knowledge of these requirements. He had an interest in a 25 -foot launch of $13 / 4$ tons custom house measurement, which had been built under the impression that no license was required. The vessel had only been out a few times when it was seized by the custom house officers for not complying with the law. After a great deal of trouble and some expense, she was finally cleared, and was licensed, inspected, and equipped to start on her career afresh. A license of $\$ 5$ was paid, but a few days later a notice was received that it should have been $\$ 25$, and that $\$ 20$ was still due. As a refusal to comply with this demand led to a threat of second seizure, the amount was paid under protest. Five dollars was afterward recovered, but where the difference went still remains a mystery to the owners.

SHOP COMMON SENSE.

Sometimes even shop lore, and engineering skill, and mechanical experience are at fault, and there is no resort in an emergency but plain common sense, untrammeled by precedent. And it is not unfrequently the case that the successful suggestion in an emer gency comes from a man whose opinions on mechanical subjects would notagenerally receive much attention.
In a large manufacturing establishment a heavy balance wheel was used as an eq ralizer between the prime mover and the driven machinery, and was run by a "jack shaft." It was noticed that when in mo-tion-particularly when stopping and starting-the balance wheel was loose on its shaft. But when the machinery was stopped, all attempts to discover the cause of the looseness, or even to detect the looseness, were futile ; the wheel was firm on the shaft. Still, the looseness was an apparent fact as soon as the machinery started. The attempts to discover the trouble were given up, with the design of allowing the loose ness to increase until it would manifest itself when the wheel was at rest. An observant opefative in the mill asked leave to try, and he found the trouble at once. He blocked the jack shaft, and put a purchase on the whesl against the direction of its motion, and showed that the key and key seat had lost their corners, allowing the wheel to move siightly on the shaft. New key seats and keys rectified the trouble. The man had thought out the difficulty in a sensible manner. He imagined that when the shaft stopped, the impetus of the wheel carried it forward enough to squeeze or lock the loose key, and that a purchase back ward would reveal the trouble, which it did.
Some years ago àn establishment was building some propeller engines for the Government. As this was before the adoption of the plan of raising the propeller when the vessel was to be driven by sail alone, the engines and propeller were disconnected by clutches worked by compound levers. These clutches were large and heavy, the flanges being about six feet dianeter. They were shrunk on the shaft. In shrinking one of the glands on, it stuck before coming to place. It was a bad job; the clutches were costly; they had been bored and turned; the jaws were faced with steel they represented the work of weeks ; to smash the tuck gland would be an expensive job. One of the shop hands, who had no particularly high standing as a workman, suggested a way of removing the gland and he was allowed to try. He hung the shaft and gland by the steam derrick, thegland on the ground. Hebuilt a high dam of clay on the back of the gland surrounding the hub, and he covered the shaft thick with the clay for some distance above the hub. Large quantities of
red hot lead were then poured into the dan surrounding the hub; the hub was expanded, and on raising the shaft the gland dropped off.
An annoying thump in a stationary engine bothered the engineer for days. As time allowed he inspected and repaired, removing and replacing the brasses, opening the cylinder and examining the rings, inspecting the crosshead, and testing every moving part. In vain, But he was not a man to give it up. He sat thinking in the doorway of his engine room one day, when, in the sunlight that gleamed over the crosshead and slides, he saw a spurt of fine mist rise from the brasses next the crosshead, as the piston started on its outward stroke. The shooting mist and the faint thump were synchronous ; the logic of cause and effect gave him the clew to the matter. After shutting down at night he removed the brasses and found a very slight indentation on the gib, hardly perceptible. This was filed out, a skein of sheet brass put in, and the thump was gone.

A System of A wards for Workmen

By his observation and every day experience in the workshop, an intelligent workman will be constantly discovering better ways of doing the ordinary work about his bench or lathe than he was taught to do, or his fellow workmen continue in doing.
It may not reach the dignity of a patentable improvenient that he has conceived, but it is a wrinkle which increases the workman's value to his employer and at the same time renders his labor less irksome to himself.
It is not the most original inventions that always pay the best, but it is the little things, the aggrega tion of useful ideas, like those suggested by the different workmen, that increases the capacity of a machine shop, and gives it a reputation for good work And it is but right that the workman who suggest these improvements which are beneficial to the manufacturer should be rewarded by his employer; and if it was made the practice in large establishments to thus recognize the merit of the most painstaking and Ingenious workmen, we believe the employer would derive much greater benefit than the money outlay; besides, he would have the gratification every one feels in according a helping hand to a worthy person.
To encourage their workmen to be constantly on the watch for any possible improvements, a regular system of awards has been established in a number of English works, and, after five years' trial, has im e with a success that has more than justified its adoption The ship building firm of Denny \& Brothers, at Dumbarton, inaugurated such a system in the sumtwer of 1880; and in recording their very gratiening

The committee of independent judges who decide upon the awards have now issued their sixth annual report, and placed it in circulation among the work men, to stimulate them to renewed effort. Originally, the a wards varied from ten to fifty dollars, according to the worth of the improvements for which claims were odged with the committee. Acreas Messrs. Denny authey saw fit, or, if the workman prethe award where they saw fit, of award of fifty dolerred, offered, in addition the own lars, to take out a provisional patent at their own expense, in which case the firm reserved the right to use the improvement at its own works, but left the further disposition of the patent with the inventor In 1883, the minimum and maximum awards were ncreased litle later, it was intimated that a premium Still a little lat dollars would be paid tio each work of one hundred dollars as five awards. man when he had received as mould be increased to When he had received ten, this would be increased to one hundred and twenty-five dollars, and so on, twenty-five dollars extra being
premium with each five years 1880 to 1884 inclusive show
The for the The report for the $\$ 2,600$ was disbursed in this manner, $\$ 1,400$ that about $\$ 2,600$ was disbursed being paid out during the latter year. Of this sum $\$ 1,000$ went in payment for the regular awards, and $\$ 400$ as four premiums. Up to this time, four inventions had gained the maximum award. One of these, an improved method of laying the Decauville Railway across the main line, gained an additional reward of fifty dollars from the patentee of the railway. One-half of the rewards given were gained by work-One-half the joiners' and carpenters' department. An men in the joine also made with another firm which had adopted a similar system of awards, by which any improvement introduced in either works could be utilized in the other by the payment of a duplicate award to the inventor. During the past year, the scheme has been in vigorous operation, and in the scheme of the large reduction in the number of men employed, the total of the awards has been greater than before. The minimum award has been reduced again to ten dollars, so as to permit a larger number
to be given, but the maximum award has been in-
creased to severty-five dollars. The system of premiums has also been rearranged on a fairer basis
When a workman has received five awards, his When a workman has received five awards, his
premium is made equal to their total value. The twenty-five dollars, however, is added successively as before.
The decisions of the committee have proved remarkably just, for of the improvements accepted nearly every one has turned out of practical value. They cover a wide range of subjects, from mechanisms of general application to the detailed arrang-ments. on shipboard.
In a number of establishments in this country, the workmen are financially encouraged to make improvements in the machines and processes in use, but in none of them, we believe, has the scheme been so thoroughly systematized as among the English workers. The marked success which has been ex perienced by the Messrs. Denny commends their system to imitation on this side of the water

The Education of Gas Managers.

In the course of an address before the S. W. District Association, Mr. G. Garnett said:
Higher education among artisans, foremen, and managers was now regarded as a necessity in all our great industries, and it seemed that the time had come when, in gas manufacture, as in other branches of engineering and applied chemistry, a scientific training
must become a factor in the product; and wie must look o the combin factor in the product, andical experience for the chief improvements which are to be made in the future. The questions then arise, What course of study is to be pursued? And how is the necessary training to be obtained? As part of the general education of the gas engineer, we may regard French, German, and geology, including the inspection of a few typical mines and coke ovens. The more systematic training should comprise mathematics, elementary me chanics, hydrostatics, hydraulics, graphic statics, in cluding the determination of stresses in framed struc tures, such as roofs, principals, girders, etc., shearing stress and bending moment in continuously loaded girders, strength of materials, including practical work with testing machine, transmission of power by me chanical means, practical geometry, machine drawing, building construction, heat, light, electricity, and mag netism, including practical laboratory work; chemis try, including a systematic course of lectures and proceeding as far as coal and gas analysis, the elements a the metallurg iron and star and jore on en and a course of instruction ingas m Twenty years ago it would have been impossible for Twenty years a a youth of average education auspices of the City and of instruction; but under the auspices of the City and Guilds of London Institute, evening classes are now being held in mechanical and electrical manufactures, wood and mets, in most of our principal towns. And these classes, combined with the instruction afforded by the government science classes, afford no mean train by the gove unable to avail themselves of a more thorough and systematic course. But a higher class of technical and scientific education may be desirable for enginers and managers, and this is now being rapidly provided by the local uni versity colleges in seveal large towns, especially in the Finsbury Technical College and the Central Institution of the City and Guilds of London Institute, at fees for the complete Guilds ranging from $£ 9$ to $£ 3110$ s. per annum.

The course at the Finsbury College extends over two ears, and includes mathematics, practical geometry, and machine drawing, theoretical and applied me chanics, with laboratory practice; light, heat, and electricity, including practical work in the physical laboratory; chemistry, French, Geps are provided with tools. The eng steam engine, specially fitted with ap pliances for experimental testing, shafting, dynamos, pliances for experimental testing, shater appliances used in the electrichting of the college buildings.
The regular course of instruction averages 36 hours per week. Last session there were special courses of lectures on "Gas" and "Gas Engines," and during the present session on "Coal Tar Products." This cours may be regarded as sufficient for all except those who wish to fit themselves for the most responsible posi tions, in which case it should be supplemented by one or two years of study at the Central Institution, South Kensington, or by a complete course in the engineering department of the Institution, extending over three years. The student will not only be provided with the most complete appliances, but, what is more importnt, will be brought into constant ine day.
In concluding, Mr. Garnett said that if it was not given to all to seek the lofty heights of science or fathom the depth of philosophy, there was much that
ces. Let every one get and give what he can, and encourage his brother. In the words of Judge Payne : Do what you can, be what you are,
Shine like a glow worm, if you canno Shine like a glow worm, if you cannot be a star Be a wheel greaser, if you cannot drive a train Be the pliant oar, if you cannot be the sailor, Be the little needle, if you cannot be the tailor Be the cleaning broom, if you cannot be the sweeper, Be the sharpened sickle, if you cannot bg the reaper.

decisions relating to patents.

Supreme Court of the United States.

PRESTON v. MANARD et al.

"This was a bill in equity for the infringement of etters patent granted Oct. 10, 1876, and reissued Febuary 28,1882 , for an improved fountain hose carriage. "The first claim in the original patent was as folows: ' 1 . The hose reel, mounted upon a wheeled carriage, which is provided with a foot or brace, by means of which it may be sustained in an upright vertical position, whereby the device becomes capable of use both as a hose carriage and as a fountain standard, substantially as specified.'" A former suit under the original patent was dismissed for want of novelty. The specification in reissue patent is exactly like that in original, but with different claims, the only material one of which was in these words: " 1 . The combined hose carriage and fountain standard, consisting in the combination of the following elements, viz.: a wheeled carriage provided with a foot or brace by means of which it may be sustained in an upright vertical position, a nozzle-holding device, and a reel of large diameter to allow the water to flow through the hose when partially wound thereon, substantially as specified." "The hose reel, the standard, the brace, the nozzle holder, and their use in combination being all old, the description of the hose reel in the specification and claim as 'a reel of large diameter to allow the water to pass through the hose when partially wound thereon,' is not sufficient to sustain the patent." "The fact that water will flow through a hose wound on a reel, if the diameter of the reel is large enough and the curves or angles are not too abrupt, is a matter of common knowledge, which no one can appropriate to his own use to the exclusion of the public. In any view of the case, the specification describes nothing that the patentee is entitled to claim, but only wha

has a right to use without his a
 'To sustain this patent .
 publibat the m-may

Appeal from the Circuit Court of the United States Ap the Northery District of Illinois.
Mr. Justice
of New York.
ARON v, COMPANY. GATE OPERATING DEVICE.
Wallace, J.:
A device for opening and closing the gates of railway A device fors, consisting of a link connecting a sliding rod with the conse and a rod sliding in or on bearings secured to the guard rail, and having a handle located within , possess convenient reach of
Courts will take judicial notice of mechanical devices f common knowledge.
Although the patentee was the first to conceive of the convenience and utility of a mechanism for opening and closing the gates of railway car platforms, his ight to a patent must rest upon the novelty of the號 meanshe
It rarely happens that old instrumentalities are so erfectly adapted for a use for which they were not originally intended as not to require alteration or modification for such use; but if the changes involve only the exercise of mechanical skill, they do not sanction a patent.

The mere duplication of a device for operating a gate or the platforms of railway cars, whereby the gates of wo adjoining platforms may be operated simultaneusly, does not require invention.
The first five claims of letters patent No. 288,494, granted November 13, 1883, to William W. Rosenfield, for an improvement on railway car gates, declared void for want of patentable novelty.

Luminous Printing.

An Italian has, it is alleged, invented a luminous printing ink that renders it possible for newspapers to be read in the dark. What a luxury it will be, when one is restless at night, to be able to take up a book or newspaper and read himself into a somnolent condition, without the trouble or danger attending other lights !
Luminous cards are not unusual, and the reader may not be surprised at some future time to find himself able to ${ }^{\text {a }}$ Scievtific Americar at night, with out other light than its brilliant pages will reflect. tranger things than this are constantly occurring in the invention line.

