

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	K, APRIL 10, 1	

THE DRIVEN WELL SYSTEM OF THE BROOKLYN WATER WORKS.
The method of obtaining an additional supply of water for the city of Brooklyn, N. Y., by means of driven wells, has attracted widespread attention because of the originality and boldness of the plans and the perfect success attained; and not only is the same system applicable in the case of other large cities similarly in need of more water, but it is particularly adapted for small towns near which there is no stream of sufficient size to furnish all the water required.
A town unprovided with water works can obtain its supply from driven wells, and an immense aggregate quantity of water can thus be obtained in thickly peopled d tricts from a comparatively small ground area. But the position of these wells in relation to each other would of course vary with the needs of the owners, and a systematic distribution would be impossible. But if we think of these wells as being arranged in regular order, at certain distances apart along a line extending at right angles to the flow of the underground streams, each one being connected with a large collecting pipe leading to a powerful pump, we shall have an accurate conception of the Andrews system as now in operation in Brooklyn. In an early issue of the Scientify American we shall describe this system more in detail.
this system more in detail.
At the Clear Stream pumping station there are 152 driven wells, 2 inches in diameter, arranged in pairs 18 feet apart. This makes two lines of wells, parallel with and between which is the collecting main, 16 inches in diameter. The top of each well tube is connected with the main by a 3 inch pipe; and in each connecting pipe is a valve by which any of the wells can be shut off. Located at the center of the collecting main, which is 1,368 feet long, is the engine house, the interior of which is shown below.
It is apparent that, in the establishment of any such

NEW YORK, APRIL 10, 1886
$\left[\begin{array}{c}\text { [POSTAGE PREPAID.] } \\ \text { [3.20 }\end{array}\right.$
system of water supply, it is of the highest importance that all the material which goes to make up the ance that all the material which goes to make up the
working plant shall be of the most efficient and working plant shall be of the most efficient and
thoroughly reliable character, and, with this end in view, the officers of the Brooklyn government contracted for the working of the Andrews system with the Knowles pumping engines. A good view of the plant in one of the stations is given on this page. There are two compound, crank and fly-wheel, duplex condensing pumping engines. The engines were put in under a guarantee to deliver $10,000,000$ gallons each 24 hours, but their actual pumping capacity is much in excess of this, since they have delivered $14,000,000$ gallons and over during many successive days. The economical duty of these engines is between $80,000,000$ and $90,000,000$ foot pounds per 100 pounds coal under ordinary working conditions.
The pumping engines are provided with automatic cut-off valve gear of the most approved type, using steam pressure of 90 pounds per square inch. The steam cylinders are arranged on the cross compound plan-that is to say, in each engine, the high pressure cylinder works one water pump and the low pressure cylinder works the other. The pump cylinders are directly connected with the back ends of the steam cylinders. The steam, after having been used in the high pressure cylinder, is carried over to the low pressure cylinder, where it is used a second time before going to the condenser. An intermediate receiver is placed on the pipe between the high and the low pressure cylinder.
The water cylinders have inside packed pistons. The valve area is exceptionally large, so as to admit of a very great quantity of water being pumped with minimum amount of friction. The suction valves are placed below the pump barrel and the discharge valves above, thereby giving the most direct course to the water as it passes through the pumps from the wells to the aqueduct. The suction and discharge
pipes for each pumping engine are 20 inches diameter, the suction pipe, of course, leading to the collecting main of the wells, and the discharge pipe extending to the conduit running to the city.
Owing to the admirable design of these engines, they are able to lift water from the greatest possible depth, a vacuum of 26 to 27 inches being readily obtained.
The air pumps for the condensers are of novel construction. They are arranged on the independent ystem, and are provided with double pump cylinders. The leg pipe of the condenser goes into one pump, and the air pipe from the condenser goes into the other pump, thereby discharging all the water into one pump and the air into the other; sufficient water is taken in the air cylinder to supply the hot well, by that means securing a higher temperature of .water to feed the boilers than would be obtained by the usual design of air pump.
As shown by the engraving, the exhaust steam from each engine passes through an overhead heater, and enters the condensers and air pump shown in the center of the room. The advantage of the independent air pump is that a vacuum can be readily secured for the engines before they are started.
The heater, steam pipes, and steam cylinders are handsomely lagged with black walnut, bound with polished brass bands. The valve seats, piston rods, and water piston are made of gun metal composition, thereby insuring great durability. The cylinders are also lined with composition.
This is the fourth compound pumping outfit supplied for the city of Brooklyn by the Knowles Steam Pump Works, making in all eight compound pumping engines, with their boilers and connections complete. The water works authorities are so well pleased with the performance of these engines that they have specified the same class of engine for a proposed further cified the same class of engine
extension of the water supply.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. ․ BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, one year, postage included.. 1620One copy, six months, postage included.............
Clubs.-One extra copy of The Scientific Amprican will be supplied ratis for every club of tive subscribers at $\$ 3.20$ each; additional copies at proportionate rate. Postage p
Remit by postal or express money order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages. uniform in size
with ScIENTIFIC AMERICAN. Terms of subseription for Supplement, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country
will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, express money order, or registered letter.

Scientific American Export Edition.
The SciEntific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
arge flarto pages, profusely illustrated, embracing:(1)) Most of the plates and pages of the four preceding weekly issues of the Scientific AmpriCAN with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The SCIENTIFIC AMERICAN Export Edition has a large guaranteed cir-
culation in sil commercial places throughout the world. Address MUNN culation in sll commercial places throughout the world.

NEW YORK, SATURDAY, APRIL $10,1886$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 536
For the Week Ending April 10, 1886.
Price 10 cents. For sale by all newsdealers.
. ENGINEERING.-The Mersey Tunnel-With full description and numerous engravings.
Long Distance Transportation of Natural Gas.-Pumping gas.Natural flow.-By T. P. Roberts..
The Use of Torpedoes in War.-A lecture delivered before the Royal U. S. Institution by Commander E. P. Gallwey, R. N.With full page of illustrations..
Estrade's High Speed Locomotive and Cars.- 3 figures.
Apparatus for utilizing the Force of Waves. -1 figure............. 85
Sibley College Lectures.-The Riddle of the Sphinx, the Coming
Problem for the Engineer.-By J. C. Bayies.......................... 8557
II. TECHNOLOGY.-Isochromatic Negatives from Paintings, with or without Yellow Screen.--By Dr. H. W. Vogel. Pueumatic Tubes.
.... 8561
Measuring Timber.-System of measurement.-The measurer's mplements.-Measuring felled and standing timber.-Marking the trees. -The dimension book.-To calculate contents
III. PHYSICS, ELECfRICITY, ETC.-New Analogies between Electric Phenomena and Hydrodynamic Effects.-Imitations of the electric brush.-Electric figures.-Imitation of electric shadows.-
Electric shadows on Nobili's colored rings, etc.-24 itgures.......... 8563 v. Horticulture, etc.-A Garden at Falmouth.-Plants which fourish on the Cornish coast.
DECORATIVE ART.-A Parlor in the Gutmann Villa, Baden.-
VI. NatURAL History.-The Tarantula.-Effect of its bite.-Its habits
VII. MEDICINE, ETC.-Asiatic Cholera.-Report of the English Com-
mission .. VIII. MISCELLANEOUS.-Missouri Crematorylassociation............

THE TEHUANTEPEC SHIP RAILWAY.
Seldom has any public enterprise received such gross misrepresentation at the hands of the press as has been the portion of Captain Eads' proposed ship railway across the Isthmus of Tehuantepec. Every effort to make what is, in itself, an honorable proposition seem odious appears to have been made. The enterprise is one which is open to thorough inspection, and therefore an ignorance of the subject is the more unpardonable in those who assume the position of critics. In many of the statements made there is such an evident absence of truthfulness that one is forced to believe the error is not unintentional. It is asserted in more than one quarter that no survey of the route has ever been made by the present company, when, in truth, the greater part of the $\$ 350,000$ already expended has been for a complete hydrographical and topographical survey of the isthmus from ocean to ocean; that the United States is appealed to as a last resort, when, in point of fact, it is the first government approached; that the ship railway is pronounced impracticable by the acknowledged experts of the world, whereas the very opposite is the case The Canadian Government has just subsidized a ship railway to be built from the Bay of Fundy to the Gulf of St. Lawrence, under the direction of Sir John Fowler, one of the ablest engineers of our times. It is further asserted by Captain Eads' opponents that the capitalists of Europe and America have re fused to have anything to do with the project, when they have had no such opportunity, for their aid has not yet been solicited. But of all these misstatements, probably the most flagrant is that the United States is asked to give $\$ 37,500,000$ to aid in building the ship railway. By no misinterpretation of the English language can such a conclusion be reached. The bill now before Congress provides distinctly that the government shall not pay a single dollar until the railway is completed, until it has passed a satisfactory official examination, and has successfully carried a vessel of specified tonnage from ocean to ocean
These conditions could not be stated more plainly nor could a more severe test of the company's good faith be demanded. When this great work has been accomplished, the Government is only asked to guarantee that, for a period of fifteen years, two-thirds of the net annual revenue of the railway shall be $\$ 2,500,000$. By no reasonable possibility could the Government be liable for the entire guarantee. As the net revenue is taken at one-half the gross receipts, the total liability of the Government, at the most unfavorable estimate, would not exceed $\$ 7,500,000$, and that in equal payments over a period of fifteen years. But even if the entire sum guaranteed were to be drawn from the public treasury the country, it seems to us, would find the investment highly profitable. Those who so vigorously denounce the enterprise as an attempted raid upon the national revenues do not seem to recall the fact that Congres is each year asked to pay out immense sums of money for the improvement of some insignificant stream or obscure harbor, even the location of which is scarcely known to the majority of the members, and that not only does Congress accede to the request, but dupli cates the appropriations when the results show the work to have been a benefit, however local and restricted In the case of the Tehuantepec ship railway, no direct supportis asked. The guarantee for which Congress would be reponsible, if the bill passes, would only be a contingency. Every indication points to the financial success of such a road, and it is highly improbable that any money would ever be drawn from the public treasury. But the guarantee is desirable, in order that the seventy-five millions necessary for the construction of the road may be raised on the most favorable terms. It seems incredible that, under these circumstances the Government should hesitate to become the patron of an engineering work of such undoubted importance. The advantages of having an interoceanic communication under American control ; of being able, in times of war, to have the squadrons of the Atlantic and Pa cific co-operate without doubling Cape Horn; of enjoy ing, in times of peace, the reduced tolls accorded to American shipping, and all the impetus to that indus try which such a discrimination means-these seem to us of sufficient value to warrant the assumption of a much graver responsibility than Captain Eads has de manded, and to make what he has asked seem abso lutely insignificant.
Much of this violent opposition to the enterprise ap pears to be due to the adherents of the Nicaraguan Canal, an enterprise which, if the history of the Pana ma scheme teaches anything, would involve the Government in an expenditure which would be calculated by the hundred millions.
One other charge is brought against the Tehuante pec enterprise, which is alike insulting to those inter ested in its success and discreditable to those making the assertion. The statement has been made, and is reiterated in a large portion of the daily press, that Wn extensive and influential lobby is maintained at Washington in the interest of the enterprise. Captain Eads' denial is absolute. The president and vice-presi-
dent of the company and its counselor are the only
persons who have authority to speak in its interest. We do not believe that these gentlemen have need of such methods, were they willing to employ them, nor do we believe that the committee who have charge of the bill are open to the persuasiveness of such arguments.

LICENSES FOR SMALL STEAMBOATS.

The yachting season is now pretty well upon us, and he number of inquiries which we have already receiv ed in regard to the laws regulating steam yachts indi cates that it will be one of considerable activity. It may therefore be of interest to our readers to know what requirements must be fulfilled before their pleasure craft may be enjoyed in peace and quietness. The United States law says that all steam launches of five tons burden or less must pay a license of $\$ 5$ and for master, pilot, and engineer 50 cents each. The hulls and boilers must be inspected by the United States local inspectors, and a permit from the nearest custom house must also be written upon the inspection certificate.
In regard to the equipment of yachts of this size, the aw provides that, where passengers are carried, the lifeboat may be dispensed with, if the vessel is provided with metallic air chambers placed under the seats or in the ends, of sufficient buoyancy to float both vesse and machinery. One life preserver must be provided for each person whom the inspection certificate allows them to carry. For each fifteen passengers omess two fire buckets and oine ax are required.
One of our subscribers in Camden, N. J., had rather an unpleasant experience from his want of knowledge of these requirements. He had an interest in a 25 -foot launch of $13 / 4$ tons custom house measurement, which had been built under the impression that no license was required. The vessel had only been out a few times when it was seized by the custom house officers for not complying with the law. After a great deal of trouble and some expense, she was finally cleared, and was licensed, inspected, and eguipped to start on her career afresh. A license of $\$ 5$ was paid, but a few days later a notice was received that it should have been $\$ 25$, and that $\$ 20$ was still due. As a refusal to comply with this demand led to a threat of second seizure, the amount was paid under protest. Five dollars was afterward recovered, but where the difference went still remains a mystery to the owners.

SHOP COMMON SENSE.

Sometimes even shop lore, and engineering skill, and mechanical experience are at fault, and there is no resort in an emergency but plain common sense, untrammeled by precedent. And it is not unfrequently the case that the successful suggestion in an emer gency comes from a man whose opinions on mechanical subjects would notagenerally receive much attention.
In a large manufacturing establishment a heavy bal ance wheel was used as an equalizer between the prime mover and the driven machinery, and was run by a "jack shaft." It was noticed that when in mo-ion-particularly when stopping and starting-the balance wheel was loose on its shaft. But when the machinery was stopped, all attempts to discover the cause of the looseness, or even to detect the looseness, were futile; the wheel was firm on the shaft. Still, the looseness was an apparent fact as soon as the machinery started. The attempts to discover the trouble were given up, with the design of allowing the looseness to increase until it would manifest itself when the wheel was at rest. An observant operative in the mill asked leave to try, and he found the trouble at once. He blocked the jack shaft, and put a purchase on the wheal against the direction of its motion, and showed that the key and key seat had lost their corners, allowing the wheel to move slightly on the shaft. New key seats and keys rectified the trouble. The man had thought out the difficulty in a sensible manner. He imagined that when the shaft stopped, the impetus of the wheel carried it forward nough to squeeze or lock the loose key, and that a purchase backward would reveal the trouble, which it did.
Some years ago ån establishment was building some propeller engines for the Government. As this was before the adoption of the plan of raising the propeller when the vessel was to be driven by sail alone, the engines and propeller *were disconnected by clutches worked by compound levers. These clutches were arge and heavy, the flanges being about six feet diameter. They were shrunk on the shaft. In shrinking one of the glands on, it stuck before coming to place. It was a bad job; the clutches were costly; they had been bored and turned; the jaws were faced with steel they represented the work of weeks; to smash the stuck gland would be an expensive job. One of the shop hands, who had no particularly high standing as a workman, suggested a way of removing the gland and he was allowed to try. He hung the shaft and gland by the steam derrick, the gland on the ground. He built a high dam of clay on the back of the gland surrounding the hub, and he covered the shaft thick with the clay
red hot lead were then poured into the dam surrounding the hub; the hub was expanded, and on raising the shaft the gland dropped off.
An annoying thump in a stationary engine bothered the engineer for days. As time allowed heinspected and repaired, removing and replacing the brasses, opening the cylinder and examining the rings, inspecting the crosshead, and testing every moving part. In vain. But he was not a man to give it up. He sat thinkBut he was not a man to give it up. He sat think-
ing in the doorway of his engine room one day, when, in the sunlight that gleamed over the crosshead and slides, he saw a spurt of fine mist rise from the brasses next the crosshead, as the piston started on its outward stroke. The shooting mist and the faint thump were synchronous; the logic of cause and effect gave him the clew to the matter. After shutting down at night he removed the brasses and found a very slight indentation on the gib, hardly perceptible. This was filed out, a skein of sheet brass put in, and the thump was gone.

A System of A wards for Workmen.

By his observation and every day experience in the workshop, an intelligent workman will be constantly discovering better ways of doing the ordinary work about his bench or lathe than he was taught to do, or his fellow workmen continue in doing.
It may not reach the dignity of a patentable improvement that he has conceived, but it is a wrinkle which increases the workman's value to his employer and at the same time renders his labor less irksome to himself.
It is not the most original inventions that always pay the best, but it is the little things, the aggregation of useful ideas, like those suggested by the different workmen, that increases the capacity of a machine shop, and gives it a reputation for good work. And it is but right that the workman who suggests these improvements which are beneficial to the manufacturer should be rewarded by his employer; and if it was made the practice in large establishments to thus recognize the merit of the most painstaking and ingenious workmen, we believe the employer would derive much greater benefit than the money outlay; besides, he would have the gratification every one feels in according a helping hand to a worthy person.
To encourage their workmen to be constantly on the watch for any possible improvements, a regular system of awards has been established in a number of English works, and, after five years' trial, has met with a success that has more than justified its adoption. The ship building firm of Denny \& Brothers, at Dumbarton, inaugurated such a system in the summer of 1880; and in recording their very gratif.
experience, we do so in the hope tha will
lar enterprise.
The committee of independent judges who decide upon the awards have now issued their sixth annual report, and placed it in circulation among Originally, the awards varied from ten to fifty dollars, according to the worth of the improvements for which claims were lodged with the committee. After a year's trial, the Messrs. Denny authorized the committee to increase Messrs. Dard where they saw fit, or, if the workman preferred, offered, in addition to the award of fifty dollars, to take out a provisional patent at their own expense, in which case the firm reserved the right to use the improvement at its own works, but left the further disposition of the patent with the inventor. In 1883, the minimum and maximum awards were increased to Still a little later, it was intimated thaid to each work of one hundred dolars when he had received as many as five awards. When he had received ten, this would be increased to one hundred and twenty-five dollars, and so on twenty-five dollars extra being added to the original premium with each five a wards.
The report for the years 1880 to 1884 inclusive shows that about $\$ 2,600$ was disbursed in this manner, $\$ 1,400$ being paid out during the latter year. Of this sum, $\$ 1,000$ went in payment for the regular awars, four inven-
$\$ 400$ as four premiums. Up to this time, $\$ 400$ as four premiums. Up to this time, four inven-
tions had gained the maximum award. One of these, an improved method of laying the Decauville Railway across the main line, gained an additional reward of fifty dollars from the patentee of the railway. of fifty dollars from onds given were gained by work-One-half of the rewar and carpenters' department. An men in the joiners and carpenith another firm which arrangement was also made with another firm which had adopted a similar system of awards, by which any improvement introduced in either. Works a duplicate award to the inventor. During the past year, the scheme has been in vigorous operation, and in the scheme of the large reduction in the number of men employed, the total of the awards has been greater than before. The minimum award has been reduced again to ten dollars, so as to permit a larger number
to be given, but the maximum award has been in
creased to seventy-five dollars. The system of premiums has also been rearranged on a fairer basis.
When a workman has received five awards, his When a workman has received five awards, his
premium is made equal to their total value. The wenty-five dollars, however, is added successively as before.
The decisions of the committee have proved remarkably just, for of the improvements accepted nearly every one has turned out of practical value. They cover a wide range of subjects, from mechanisms of general ap
In a number of establishments in this country, the workmen are financially encouraged to make improvements in the machines and processes in use, but in none of them, we believe, has the scheme been so thoroughly systematized as among the English workers. The marked success which has been experienced by the Messrs. Denny commends their sys tem to imitation on this side of the water.

The Education of Gas Managers.

In the course of an address before the S. W. District Association, Mr. G. Garnett said:
Higher education among artisans, foremen, and managers was now regarded as a necessity in all our great industries, and it seemed that the time had come when, in gas manufacture, as in other branches of engineering and applied chemistry, a scientific training must become a factor in the product; and we must look to the combination of science with practical experience for the chief improvements which are to be made in the future. The questions then arise, What course of study is to be pursued? And how is the necessary training to be obtained? As part of the general education of the gas engineer, we may regard French, German, and geology, including the inspection of a few typical mines and coke ovens. The more systematic training should comprise mathematics, elementary mechanics, hydrostatics, hydraulics, graphic statics, including the determination of stresses in framed struc tures, such as roofs, principals, girders, etc., shearing stress and bending moment in continuously loaded girders, strength of materials, including practical work with testing machine, transmission of power by me chanical means, practical geometry, machine drawing, building construction, heat, light, electricity, and magnetism, including practical laboratory work; chemis try, including a systematic course of lectures and proceeding as far as coal and gas analysis, the elemente al
 s and a course of instruction in gas ma
an chemistry of the ceal tar products. cture and the chemistry of he ce been impossible for Twenty years ago a youth of average educa the auspices of the City and of instruction ; but under the auspices of the city and Guilds of London Institute, evening classes are now being held in mechanical and electrical engineering, wood and metal tools, iron, steel, gas manufactures, and tar products, in most of our principal towns. And these classes, combined with the instruction afforded by the government science classes, aford nes of a more ing to those unable to and systematic course. But a higher class of technical and scientific education may be desirable for engineers and managers, and this is now being rapidly provided by the local university colleges in several large towns, especially Institution of the City and Guilds of London Institute, at fees for the complete Guilds of
The course at the Finsbury College extends over two ears, and includes mathematics, practical geometry, and machine drawing, theoretical and applied me chanics, with laboratory practice ; light, heat, and laboratory; chemistry, French, German, and the use of tools. The engineering workshops are provided with a gas engine and steam engine, specially fitted with a pliances for experimental testing, shalictric lighting of and other appliances used in the electric lighting of the college buildings.
The regular course of instruction averages 36 hours per week. Last session there were special courses of lectures on "Gas" and "Gas Engines," and during the present session on "Coal Tar Products." This course may be regarded as sufficient for all except those who wish to fit themselves for the most responsible positions, in which case it should be supplemented by one tions, in which case the Tentral Institution, South Kensington, or by a complete course in the engineering department of the Institution, extending over three years. The student will not only be provided with the most complete appliances, but, what is more important, will be brought into constant intercourse with ome of the most eminent teachers of the day.
In concluding, Mr. Garnett said that if it was not given to all to seek the loty heigh was much that fathom the depth of philosophy, there was much that
ces. Let every one get and give what he can, and encourage his brother. In the words of Judge Payne: Do what you can, be what you are,
Shine ilie a
Shine like a glow worm, if you cannot be a star
Work like a pulley, if you cannot as a crane,
Be the pliant oar, if you cannot be the sailor,
Be the little needle, if you cannot be the tailor;
Be the cleaning broom, if you cannot be the sweeper,
Be the sharpened sickle, if you cannot bithe reaper.

decisions relating to patents.

Supreme Court of the Uuited States.

PRESTON v. MANARD et al.

"This was a bill in equity for the infringement of letters patent granted Oct. 10, 1876, and reissued Febuary 28,1882 , for an improved fountain hose carriage. " The first claim in the original patent was as follows: ' 1 . The hose reel, mounted upon a wheeled carriage, which is provided with a foot or brace, by means of which it may be sustained in an upright vertical position, whereby the device becomes capable of use both as a hose carriage and as a fountain standard, substantially as specified.' $"$ A former suit under the original patent was dismissed for want of novelty. The specification in reissue patent is exactly like that in original, but with different clains, the only material one of which was in these words: " 1 . The combined hose carriage and fountain standard, consisting in the combination of the following elements, viz.: a wheeled carriage provided with a foot or brace by means of which it may be sustained in an upright vertical position, a nozzle-holding device, and a reel of large diameter to allow the water to flow through the hose when partially wound thereon, substantially as specified." "The hose reel, the standard, the brace, the nozzle holder, and their use in combination being all old, the description of the hose reel in the specification and claim as 'a reel of large diameter to allow the water to pass through the hose when partially wound thereon,' is not sufficient to sustain the patent." "The fact that water will flow through a hose wound on a reel, if the diameter of the reel is large enough and the curves or angles are not too abrupt, is a matter of common knowledge, which no one can appropriate to his own use to the exclusion of the public. In any view of the case, the specification describes nothing that the patentee is entitled to claim, but only what

"To sustain this patent.
 pübicaf the mi-my way

Appeal from the Circuit Court of the United States or the Northern District of Illinois.
Mr. Justice
U. S. Circuit Court Southern District of New York.
aron v. THE MANHATTAN RAILWAY COMPANY.
Ge manhattan railway
gate operating device.
Wallace, J.:
A device for opening and closing the gates of railway A device, consisting of a link connecting a sliding rod with the gate, and a rod sliding in or on bearings secured to the guard rail, and having a handle located within the guard resh of the attendant, does not possess convenient reach
Courts will take judicial notice of mechanical devices of common knowledge.
Although the patentee was the first to conceive of the convenience and utility of a mechanism for opening and closing the gates of railway car platforms, his right to a patent must rest upon the novelty of the means he contrived to carry his ideas into practical apmeans he

It rarely happens that old instrumentalities are so perfectly adapted for a use for which they were not originally intended as not to require alteration or modification for such use; but if the changes involve only the exercise of mechanical skill, they do not sanction a patent.
The mere duplication of a device for operating a gate for the platforms of railway cars, whereby the gates of wo adjoining platforms may be operated simultaneously, does not require invention.
The first five claims of letters patent No. 288,494, granted November 13, 1883, to William W. Rosenfield, for an improvement on railway car gates, declared void for want of patentable novelty.

Luminous Printing

An Italian has, it is alleged, invented a luminous rinting ink that renders it possible for newspapers to be read in the dark. What a luxury it will be, when one is restless at night, to be able to take up a book or newspaper and read himself into a somnolent condition, without the trouble or danger attending other lights!
Luminous cards are not unusual, and the reader may not be surprised at some future time to find himself able to read his Scientific American at night, without other light than its brilliant pages will reflect. the invention line.

MIXING AND VAPORIZING DEVICE FOR INHALERS. This device-the invention of Mr. G. E. Johnson, of Albion, Ind.-is designed for thoroughly mixing anæs thetics, such as nitrous oxide and laughing gas and ether, at the time they are being used. The neck of a cylinder containing nitrous oxide is held in a yoke form ed at one end of the tube in such a way that the gas can pass into the bore of the tube. The inner end of the bore is curved downward, and leads into a chamber the lower end of which is connected by a tube with a gaso
gauge shows the level of water in the well. The space between the outer well casirg and theoutershell serves to catch the water that is forced out of the well.
This construction provides a dry gas chamber, and the water forming the seal cannot absorb much gas. The gasometer is small in relation to its capacity, and weighs very little. This invention ha
by Mr. G. E. Johnson, of Albion, Ind.

TIME CALCOLATOR.

This invention provides a simple and easily operated device for the use of time keepers or foremen in manufacturing establishments, to enable them to readily calculate the amount of time consumed by any workman upon any job. A circle in the plate forming the body of the instrument is divided into twenty-four equal parts, representing the hours of the day; each division is subdivided into parts of the hour. The circle is divided into halves, and the divisions in each half are numbered from 1 to 12 . Opposite the twelve mark at one side is an arrow to indicate the starting point. Pivoted to the plate is a circular disk similarly divided, but the divisions are numbered from 1 to 24 in the reverse direction. Opposite the twentyfour mark is an arrow.
Suppose, for example, the workman quit at half-past one. Theindex on the disk is then moved to a point opposite the half-past one mark upon the upper half of the outer circle. He began work at half-past eleven. Now, by following the graduations of the upper half of the scale backward to the mark representing halfpast eleven, it will be seen that the mark on the disk opposite half-past eleven is numbered two, thereby indicating that the workman had been employed two hours. It will be seen that the device is simple and easy to handle, and gives perfectly accurate results.

Sul.N.M. N.Y.

streck's time calcolator.

This invention has been patented by Mr. S. S. Streck, of 309 Coliseum Street, New Orleans, La.

Medical Attendance for Railroad Hands.

The New York elevated railroads have some $4,000 \mathrm{em}$ loyes, including about 500 repair men, constantly duty. This is an extremely large proportion of labor for repairs and track inspection, which is necessitated by the peculiar character of the road, and it is a kind of work where the men are particularly exposed to accident and to injury to their eyes. The manager have, therefore, established a regular medical depart ment, with one doctor for the eastern and one for the western division of the city lines, with facilities for prompt communication with any portion of the track. The company pays where men have to be taken to hospital, but its own doctors attend to the slight injuries, which are very numerous, A large satchel, with instruments, bandages, etc., stands ready for emergency, and is carried by the surgeons on duty. Among ther functions discharged by the surgeons is the examination of employes for color blindness, sight, and hearing. Those not considered in sound condition and given other and less important positions, where these physical qualities are of less consequence. This medical attendance is without charge to the employes.

COMBINED SPRING BED AND FIRE ESCAPE

When necessary, the spring bed shown in Fig. 1 can be unfolded and used as a fire escape, as illustrated in Fig. 2. The apparatus is made up of several sections hinged together at their ends, so as to be folded alongside of each other to form a bed bottom, or extended to stand endwise to each other to form a ladder. Each section is composed of two upper and two lower parallel bars or plates, upper and lower cross plates, and together end to end by upper crossed hinge are hinged oin the ends of the upper bars and low hinge plates that lates that join th upper bars and lower cross hinged tions can thus be folded side by side, or extended to form a ladder. When folded, they are held from
spreading apart by two binding plates formed with downwardly projecting arms at their ends to reach over the outside edges of the outside sections, and also with arms to reach down between the adjacent edges of the sections. One of the outside sections is attached to any stationary object in the room by means of a strong cord, so that when the apparatus is cast out of the window, it will be securely suspended from the sill. The

COMBINED SPRING BED AND FIRE ESCAPE

cross pieces of the sections constitute the rounds of the ladder.
This invention has been patented by Messrs. W. G. Wilson and G. Zimmermann; the latter, whose address is 2165 Oldam Street, Philadelphia, Pa., will furnish further particulars.

A NOVEL BAAREL HEAD.

The accompanying engraving represents an improv ed barrel head-the invention of Mr. Francisco J. Oliver, of 43 Cheever Place, Brooklyn, N. Y.-which can be easily placed and locked in position on a finished barrel, or removed from the same without disturbing the hoops, so as to facilitate the inspection, filling, or emptying of the barrel. The head is made in inree pieces. The center piece is made in two parts, one of which has on its inner end a projection that fits into a corresponding groove in the inner end of the other part. The form of the beveled periphery of the head and of the corresponding croze in the barrel is nlainly shown in the cut; a packing of rubber or other survante inalan is placed in the groove of the head; the double join
well fitting hea. To place the head in position, the side pieces are inserted in the usual way, and then the bevels of the center pieces are placed in the croze di rectly under shoes fastened to the upper edges of the rectly under shoes fastened to the upper edges of the
staves and projecting slightly in ward. The inner ends are then fitted into each other, and the two parts are pressed downward to form a straight piece, thereby completing the head. The locking plate, there which passes a bolt secured to the inner end of one of
sides of the bell enter the water in a well formed b two cylindrical casings united at the bottom and coured to a base. Between the edges of the double which rests a the inner casing is held a rubber packing which rests against the inner surface of the bell. When the desired quantity of gas is in the bell, the oxide cylinderis closed and the hose uncoupled. To administer the gas, a flexible tube provided with a mouthpiece is coupled on the end of the outlet pipe, and the latch is raised to permit the bell to descend to exert pressure on the gas. Scales are provided, which show how much gas is in the bell and how much has been removed; a glass

he center pieces, is then placed transversely over the center part, the bolt passing through an aperture. The plate is then turned so as to cover the center piece and its ends are placed under the shoes. The nut is then tightly screwed on the bolt against the plate, whereby the entire head is firmly locked in place. The head is reinoved by first unscrewing the nut, swinging the plate from under the shoes, and then, with he bolt as a handle, raising the center pieces. This ead is strong and durable, since it is of the same thickness all over, and it requires no skill to han.
dle it.

Frozen Fish.

The notice of frozen fish in the Scientific AmeriCAN of March 20 recalls a similar occurrence under my own observation. Several winters ago I purchased in one of the Hartford, Conn., fish markets three frozen pickerel, and carried them home at night. They were frozen perfectly hard and stiff. I placed them in a large tin pan, and filled it with cold water. In the morning my attention was attracted by a flopping at the pan, and I found one of the fish was splashing about as lively as when he first took the bait.
J. H. L.

steam disinfecter for use in hospitals.

The importance of having efficient means at command when an epidemic of contagious disorders breaks out in a populous place has been so abundantly proved in this and other countries that great attention has been drawn to the subject, with the view of securing

dial of the champion door lock.

CHAMPION FLUSH DIAL CHEST LOCK.

the best disinfectant. It has been found by high scientific authorities, says the Universal Engineer, that heat alone, without the aid of dangerous chemicals, is sufficient to destroy all the germs of disease, all forms of insect life and low organisms, etc.; and the introduction of steam under regulated pressure into a properly constructed apparatus appears the safest and best method for hospital authorities, etc., to adopt.
Washington Lyon's patent steam disinfecter, a made by Manlove, Alliott, Fryer \& Co., of Nottingham, appears to offer a thoroughly practical and efficient means of dealing with bedding, carpets, clothes, etc., without any injury to the fabric and no material damage to colors, as letters and papers can be disinfected without risk of damage. As will be seen from the engraving, the apparatus consists of a large and strong iron chamber, with double walls of boiler plate, provided at each end with a steam-tight door. The chamber is made elliptical in section, to enable large spring mattresses, couches, or bulky articles to be inserted without requiring to be doubled up. Steam from a boiler is admitted into the hollow casing to heat the walls of the chamber. While this is going on, the articles to be disinfected are placed in the traveling cage and rolled into the chamber, the door secured by screw clamps round the edge, and the steam by another pipe admitted to the interior of the chamber at 20 lb . pressure.
The temperature and pressure are regulated by valves and gauges outside, the degrees of temperature corresponding to the several pressures marked on the dial. By employing a higher pressure of steam on the outer casing than in the interior chamber the steam in the latter can be superheated, and consequently dried, preventing the condensation of moisture in the articles while being disinfected. The most approved method of fixing is to place the thod of fixing is to place the
apparatus midway between two chambers; goods received in one chamber after disinfection are taken out into another chamber, to wholly prevent any contact between the infected and disinfected articles. For rural districts a portable apparatus, with boiler attached, can be made, but a fixed machine in a central position of a
district is the best way. The apparatus has been definitely adopted by the Government, by the Metropolitan Asylums Board, many corporations, and the Government of China have ordered one to be sent to Hong Kong, so that it has successfully passed the experimental stage, and is an acknowledged method of disinfection.

THE "CHAMPION" KEYLESS LOCKS.

Our usual expression for security is that we hove placed valuables " under lock and key," but as the lock may be picked and the key lost, this does not always describe the best fastenings. In some of the improved "Champion" locks there is neither key nor key hole. Doors provided with them may be opened from either side, the "Open Sesame" being a knowledge of the combination of figures by which the knob may be made to turn and the door open.
Several forms of these keyless locks are manu factured, the shapes varying according to the purpose for which they are to be used. We illustrate the two forms which will be of more particular interest to builders. The first, known as the "Champion" flush dial chest lock, will be found of much value in protecting a fine set of tools or other shop valuables from theft or the inconvenient curiosity of visitors or borrowing by associates.
As its name implies, the lock is let in flush with the woodwork, that it may not be exposed to injury. It is made entirely of brass, with the dials nickel plated. To open a chest so fastened, it is necessary to know the three numbers which make up the combination. As the possible combinations are almost infinite, there is no chance of the secret being discovered. The numbers may be changed at pleasure, so that, should the combination become known to any undesirable person, it is a simple matter to change it. In construction, the lock is strong and reliable, and being so much more simple, it can be opened in much less time than an ordinary safe.

Perhaps it may be feared that the combination might be forgotten, but it must be remembered that a key is not only liable to be left behind, but as well to be lost or duplicated. The combination necessary for the unlocking of a keyless lock may be recorded in any number of places, and in such a way that detection would be impossible. The beveled form of the numbered dial is considered preferable for a great many purposes, but these minor details are susceptible of a large variety of designs.
The second lock illustrated, the "Champion" keyless door lock, is, we believe, the first keyless dial lock applied to a wooden passage door. We show it in section, and also the outside and interior parts, which are visible when it has been applied to oor.' The difficulty heretofore has been to control the fastening from both sides. As now arranged, the door may be opened from either side, and the lock may be put in place with little trouble. The section shows its construction.
The smaller part of the cylinder, A, is screwed into the ring, R, on the outer face of the door. The spindle is then put in, and the under plate, U, of the bolt case is laid against the inner face of the door. The screws, CC, secure this plate to the cylinder, A. The lock is adjustable to any door. The mechanism by which the dial piece, D, operates the bolt is connected with the bar, B. Before the case is put on, the combination is to be set, in a manner
companying each lock.

STEAM DISINFECTER FOR USE IN HOSPITALS
ase, the bolt may be "thrown off", as in ordinar night latches. But a single revolution is required preliminary to unlocking, and the combination is made
directly by turning at once to each of the three num bers. The simplicity and strength of the lock adapt it for use in the best houses. The dial, shown full size in our illustration, may be either nickel plated or bronze. The Champion locks are, for the most part, the invention of Milton Jackson, now Manager and Treasurer of the Miller Lock Co., of Philadelphia, who are the sole manufacturers, and to whom all fürther inquiries should be addressed.

The Fattening Effect of Chewing Gum.
A Southern paper (Macon (Ga.) Messenger) says: Twenty years ago the rule was that Southern women

CROSS SECTION OF CHAMPION KEYLESS DOOR LOCK.

inside latch of champion door lock.
were thin and delicate; it is not the rule now. Southern women are not physically equaled in all North America. Any physician who is as well informed as he ought to be will tell you that this is true. This change is due to the habit of chewing gum. You may smile, you may even laugh, if yoㅁ. please, but I am telling you a plain fact. As to Southern men, they are as thin and gaunt as they ever were, and so they will remain until they cease to chew tobacco and begin to chew gum."

Liquid Carbonic Acid.

A patent recently taken out proposes to produce the carbon dioxide gas for liquefaction by having a solution of sodium bisulphate in a leaden container, and running into it some carbonate or bicarbonate, dissolved or suspended in water, the evolved carbon dioxide being drawn off over a drying mixture into a gasometer, from which it is drawn for liquefaction by compression. Liquid carbonic acid, equal to $j 00$ liters of gas at ordinary pressure, can be supplied for one shilling. In using this for various purposes, it is proposed to pass the gas that escapes after using over moist sodium carbonate, which is thus converted into bicarbonate, which can be again used as a source of supply of the carbon dioxide. There is a bore hole near the village of Burgbrohl, or the Rhine, which yields a constant sur which of very pure carbon dioxide. This village is near to the Lake of Larch and the interesting volcanic district surrounding it, where there are a very large number of mineral springs and exhalations of carbon dioxide. This bore hole was sunk some two years ago, and has given a constant supply of gas amounting to about $2,160 \mathrm{cu}-$ bic meters per twenty-four hours. Apparatus has been erected for liquefaction of the dioxide, and this is now regu larly carried on close to the bore hole. The water which rises with the gas is very cool, and is employed to cool the compressing apparatus. About 500 liters of gas are compressed per minute into about one liter of liquid. This is sent away in wrought iron vessels containing about eight liters.

The Currents of the Atlantic ocean．

We read，and we see it everywhere repeated，that the climate of Norway，which is mild as compared with that of the American coast in the same latitude，is due to the influence of the Gulf Stream．This is the common opinion shared in by a large number of compe－ tent persons in France and elsewhere．The public，in it turn，goes still further，and attributes the mildness of the temperature on certain portions of the French coast to the same cause，that is to say，the warm cur－ rents of the sea．
It is nowadays generally agreed that the Gulf Stream is soon lost on the surface of the Atlantic， and an endeavor has been made to refer the heat－ ing action，which it thus could no longer possess，to another current that forms a sort of continuation of it，and which，after all，is nothing more than a slow movement of the surface waters of the ocean from the east toward the west．Hence the question of heating through a slowly moving mass of water be－ comes very problematical，and there is now an opinion forming which would attribute the calorific influences formerly ascribed to the Gulf Stream to an atmo－ spheric circulation，and not to an oceanic one．
The circulation of the ocean nevertheless presents considerable interest，and the reason that the ques－ tion has not been more fully studied is because such researches require large pecuniary sacrifices，on ac－ count of the vast field to be covered．
A contribution to our knowledge of this subject， however，has recently been made by Professor G． Pouchet，who，through the liberality of the city of Paris，and the co－operation of Prince Albert of Monaco， was last year enabled to undertake some experiments． Prince Albert＇s sail yacht，the Hirondelle，which had been placed at Professor Pouchet＇s disposal，was fit－ ting out at Lorient，and it became necessary to make haste，and，in a manner，improvise the apparatus to be used．The following three forms of floats were de－ cided upon：1．Ten copper spheres，one foot in diameter，formed of two hemispheres screwed upon a rubber joint．2．Twenty kegs similar to those used fcr beer，and of a capacity of $31 / 2$ gallons．3．A hun－ dred and fifty ordinary bottles，closed by a selected cork，and capped with rubber．Each float contained a request，printed in French，Russian，Norwegian， Danish，English，German，Dutch，Spanish，Portu－ guese，and Mangrabin，that the finder of it would country，in order that it might be sent to the French government，with details as to the place and date， government，with details as to the place and date，
and the circumstances under which the float was picked up．
The Hirondelle，having on board the material for the experiment，set sail about the first of July， 1885. It was agreed that the floats should be put into the sea to the northwest of Corvo，the last of the Azores． On the 2\％th of July，at a quarter past six in the morning，the vessel being about 110 miles northwest of Corvo，the putting of the bottles into the ocean was begun，and was kept up，mile by mile，till forty minutes past three，when a beginning was made with the kegs，and afterward with the spheres． These two latter styles of floats were spaced two miles apart，and the last of them was thrown over on the 28th．Then the second series of bottles fol－ lowed．The floats were distributed over a line which ran about 14° north by east，and was 170 miles in length．

The place that had been selected in advance for the operation，and where Prince Albert accomplished the latter so happily，is situated almost exactly upon a line which joins the Strait of Florida（through which the Gulf Stream enters the Atlantic）and the entrance of the British Channel．

It was Prince Albert＇s opinion that if any of the floats reached the coast of Europe，it would be be－ tween 40° and 0° of north latitude；but up to the present no such thing has occurred．Three of the floats were picked up，after a travel toward the east， in which they at the same time strangely inclined toward the south．Two bottles and one keg were found at the Azores－one of the bottles 10 miles off the port of Saint Iria，San Miguel Island，one a mile east of Porto Formoso of the same island，an the keg at the port of Porto，Santa Maria Island．
The two bottles had taken 53 days to travel a dis－ tance of 420 miles．The keg，which stranded on Santa Maria，seemed to show that the floats were con－ tinuing their course toward the south．It is allowable to suppose that the floats，after turning the Azores， continued to travel in the direction of the Cape Verd Islands，in order to cross the Atlantic and di－ rectly reach the Antilles，or to revolve indefinitely in the immense and pacific whirlpool called the Sargasso Sea．However this may be，the positive although partial results obtained seem to establish the fact that from the latitude in which the floats were thrown overboard，not a drop of the Atlantic＇s surface water reaches the coast of France．This is a point that now appears to be demonstrated．If we admit that there exists a current or simply a shifting of the warmer
water from the west toward the east on a level with
the coast of France，it is，then，to the north of the heating of this water．Every one now appears to argue that the Gulf current no longer makes its in－ fluence felt beyond the 40th degree of latitude．In reality，outside of its sphere of action，which is now well known and has been perfectly measured，it seems that the motion of the superficial water of the Atlan－ tic between the Azores，the Cape Verd Islands，and the Antilies is in great measure a function of the movements of the atmosphere．On comparing the travel of the floats with Brault＇s wind charts for July， August，and September，it was found that their di－ rection sensibly agreed with that of the current that carried the floats along．－Condensed from Le Genie Civil．

In opening a discussion on this subject，Dr．C．L Dana said that he had found the information con tained in the text－books upon insomnia in the aged was very slight in amount．Insomnia was not frequent in the aged，but when it was present it was sometimes very intractable．Pathologists thought it was due to anæmia and mulnutrition．The thickened arterial walls and the high arterial tension from the contracted kidneys，and similar states，which were found in the aged，would indicate that the blood supply to the brain was deficient．The insomnia produced by anæmia was characterized by drowsiness during the daytime，the patient falling into little naps，while at night he was unable to obtain any rest．This was true of the young as well as the old．If in any case we found no actual disease，it was customary to try iron and rich diet．In the speaker＇s experience，however，iron did not relieve the anæmia of the aged so as to produce sleep．Alco－ hol with the food was another remedy，and many recommended hot gruel or hot milk with alcohol be－ fore going to bed．While alcohol would relieve some cases，there were others in which the insomnia was in creased．
The bromides and chloral，even when given in enormous doses，often failed to give relief．Opium was
another remedy．Dr．H．C．Wood had recommended that we make our aged people opium eaters and alco－ hol drinkers．The speaker had not found that opium always agreed with the aged，and in his experience where opium had produced sleep，it was sometime followed by such physical and mental depression as precluded its further use．
He had been disappointed in bromide and chloral， and considered the results of opium sometimes disas－ trous．He recommended good food，warm drinks at night，and small dosen of codeia with canna＇bis indica． Valerian and laventuer，hyoscyamine，and lupulin sometimes were also useful drugs．－Bulletin of Clinical Society，N．Y．P．G．M．太．

Motive Power for War Ships．

On this subject Chief Engineer N．B．Clark gives ome good suggestions in the Army and Navy Journal． The swift passenger steamer requires engines which will develop power with the utmost economy at the high speed at which they are constantly run，without regard to economy of fuel at low speed．As the war ship consumes by far the greater part of her fuel sup－
ply（probably 95 per cent）at low speed，economy of fuel at that speed is a very important factor in the design of her engines．
As it would require about eight times the power to drive a vessel 18 or 20 knots that it would to drive her 9 or 10，it will be seen that engines designed for econo my at high speed would not develop power with econ－ omy at low speed，as there would be great loss from friction and radiation incident to a large engine devel oping a small power．
At the present time，the steam machinery of war ships is patterned after that of the merchant service， inasmuch as it is so excessively heavy that，if sufficient horse power is applied to attain high speed，the ship is so loaded down with steam machinery that but little weight－carrying capacity is left for anything else．
The average weight of the steam machinery of the British Navy is 360 lb．per I．H．P．，with 289 mb ．for the Iris and Mercury，and 180 lb ．per I．H．P．for the tor－ pedo ram Polyphemus，and only 57.7 lb ．per I．H．P．in the existing first－class torpedo boats，while the steam machinery of the Chicago is 419 lb. ，and that of the Boston and Atlanta is 448 lb ．per I．H．P．
The difference between 57.7 lb ．in the torpedo boats and 448 lb ．in the Boston and Atlanta seems to be a high price to pay for economy in the consumption of a small percentage of the fuel，to be obtained by its use， on rare occasions，for short periods of time，particularly when we consider that this ponderous machinery itself has to be carried at the high speed，and that additional power must be applied to overcome the resistance inci－ dent to its weight．
The remedy for this state of affairs is the application to war ships of the light－running，rapid－moving engines， constructed entirely of steel and bronze，similar to
those applied to the torpedo boats，whereby great
strength and power are obtained on a light weight，and by a division of the power among separate engines，sn by a division of the power among separate engines，
as to disconnect a part when running at low speeu．
Such engines，if increased in weight to $115 \cdot 4 \mathrm{lb}$ ．per I H．P．，or 100 per cent，would have ample endurance for the emergency power of a war ship，would develop power at low spead，with the utmost attainable econo－ my，and would by their light weight permit of the ap－ plication of sufficient power to attain a high emer gency speed．
For the sake of illustration，we will take the hull of the British dispatch steamer Mercury，of 3，735 tons dis－ placement，which has made a speed of 18.87 knots，with 7，500 I．H．P．，having steam machinery weighing 968 tons．If the far lighter mitchinery，weighing $115 \cdot 4 \mathrm{lb}$ ． per I．H．P．，was applied to the Mercury，the same power would weigh but 386.4 tons，thereby gaining $581 \cdot 6$ tons，which，if applied to water line defense $581 \cdot 6$ tons，which，if applied to water line defense
and V gun－shields，would produce a swift vessel，with and V gun－shields，would produce a swift vessel，wit
great sea endurance，invulnerable to shot and shell．
great sea endurance，invulnerable to shot and shell．
Referring to the British torpedo boat Childers，we find she has compound engines $81 / 6 \mathrm{ft}$ ．high，with cylin－ ders 14 in ．and $241 / 2 \mathrm{in}$ ．in diameter，and 15 in ．stroke of piston．If these engines were amplifled to $1,875 \mathrm{I}$ ．H．P． their cylinders would measure $191 / 2 \mathrm{in}$ ．and 34 in ．dia－ meter，w
ft．high．
If two such engines were applied to each screw shaft of the Mercury，she would have machinery capable of developing a high emergency power，and of running with great economy at a low speed，thereby augmenting her sea endurance，as but one set of compound engines would be used in each shaft－the others being discon－ nected－thereby avoiding the great loss from friction and radiation incident to a large engine developing a small power．
Light－running，swift－moving engines，analogous to hose of the torpedo boats in many features，are now being generally applied in industrial establishments， displacing the heavy，centrally located engine formerly used－the smaller engines being applied directly to the machine to be run，instead of running shafting to the machine，thereby avoiding the loss from friction and radiation due to running a large engine to produce a mall power，when there is no more required．
The great power developed by the torpedo boat type of engines is due to their high piston speed，which is over $1,000 \mathrm{ft}$ ．per minute；but as the steam enters the cylinder at a speed of $1,600 \mathrm{ft}$ ．per second，it will be seen a still higher speed，and consequently greater power，might be developed，if it was not for the racking power，might be developed，if it was not for the racking
effect produced by the great momentum of the recipro－ cating parts．
The momentum of the reciprocating parts is measur－ ed by their weight multiplied by the square of their velocity，consequently a decrease of weight would ad－ mit of a higher piston speed and greater transmission of power by the same engine．
An aluminum bronze can be made having the ame strength as the best steel，with only one－third its weight；and if the reciprocating parts of the engines described，consisting of the pistons，piston rods，con－ necting rods，and crank pin brasses，were made of this metal，the piston speed，and consequently the power transmitted，might be increased almost 75 per cent， without any increase of momentum．
The weight of reciprocating parts of an engine of the type and proportions of that of the Childers，if amplified to 1,875 I．H．P．，and augmented in weight 50 per cent，which would be sufficient for those special parts，would，if made of steel，be $1,507 \% \mathrm{lb}$ ．If made of aluminum bronze of equal strength to the steel，the veight would be only 502.5 lb ．
If the engines were run at the same piston speed that is now attained with steel，and the 75 per cent in－ crease of power，made available by the use of the lighter metal，was held in reserve for a great emergency，they would possess remarkable powers of endurance．

A Grand Donation to the National Museum．

Dr．C．V．Riley，Entomologist of the Department of Agriculture and Honorary Curator of Insects in the Na－ tional Museum，has presented to the National Museum his extensive private collection of North American insects，representing the fruits of his labors in collecting and study for over twenty－five years．His collection contains over 20,000 species，represented by over 115,000 pinned specimens，and much additional material pre－ served in alcohol or other methods．It is estimated by those familiar with the collection to have a money value of at least $\$ 25,000$ ．In addition to the actual cost of material．it is＂hard to estimate the amount of time and labor that such a collection represents．In ac－ knowledging the donation，Professor Baird expresses he warmest appreciation for this most generous gift， and his assurance that both now and in the future it will afford a valuable means of study for the ento－ mologists of this country．This collection is especially rich in Coleoptera and Lepidoptera，and the latter con－ tains many rare larvæ，blown and in alcohol．As it tands，says the American Nuturalist，by this gift the entomological collections of the National Museum be－ entomological collections of the National Museum
comenext in importance to those at Cambridge．

Gorresponderice.

Liming Wood to Prevent Fire from Steam Pipes. To the Editor of the Scientific American:
I have read much in your valuable paper about "Fires from Steam Pipes." We have many steam pipes in contact with wood, and have tried the use of lime on the wood coming in contact with the pipes. I coated the pipes where they touched any wood, and found that several coats of lime or whitewash was a good preventive against charring of the wood.

Louis J. Sehring.
Joliet, Ill., Feb. 23, 1886.

Fire from steam Pipes.

To the Editor of the Scientific American:
I am surprised to read a letter on the subject of fires caused by steam pipes, in the Scientific American, dated Jan. 30, 1886, signed by E. P. Clark, stating that it is impossible to set wood on fire with steam pipes working at any reasonable pressure.
A few years ago I was in the city of Toronto, and as business took me to one of the largest distilleries in that city, I happened to notice several men opening what appeared to be a covered drain. On looking into it, 1 saw a steam pipe about two and a half inches running through it from the boiler room to the cattle sheds, several hundred yards away. The steam pipe, when it was put there, was covered with wood, or I should say that the iron pipe was laid through a large wooden one several inches in thickness, for protection. When the earth and the covering were taken off the trench, all that remained of the wooden pipe that surrounded the iron one was a pile of charcoal, and as good a sample of charcoal as I ever saw; the wood was all gone. Some places the charcoal lay on the pipe as well as underneath it. The trench being covered with earth made it air tight; that I expect accounts for the wood burning to charcoal by the hot steam pipe. I hope this will satisfy persons interested in the matter that hot steam pipes will set wood on fire, especially when they are closely covered.

Joseph' Dix, Jr.,
Kingston, Canada, March 20, 1886.

Restoration of Magnetism by Heat.

To the Editor of the Scientific American:
To heat a magnet to a red heat has long been known to destroy its magnetism; but from a recent experiment of mine with two sound magnets that havc from want of care lost nearly all their magnetism, I fully restored them by rubbing a red hot iron, $1 / 4$ inch, over them until it had become quite cool. The magnets are better now than when new. This experiment was prompted in my desire to prove magnetism bears to heat as close a relation as electricity. Thus we hope soon to be able to make a clearer demonstration.

Chas. H. Roberts.

Troy, N. Y., March 30, 1886.

Dilatancy.

To Professor Osborne Reynolds is due the credit of making a discovery which promises to be of some importance. The discovery appears to have resulted from experiment, guided as much by inductive reasoning as pure curiosity. It is, says the Engineer, a remarkable discovery, in that it was quite unanticipated, and is, indeed, apparently opposed to past experience. Of course, it is not really opposed, for nature does not contradict herself; but the precise conditions necessary have never before been secured properly by a philosopher, though no doubt they have been present scores of times when the philosopher was absent. The discovery, referred to at the last meeting of the British Association, was more fully described at the weekly evening meeting of the Royal Institution on the 12th of February. A special word has had to be coined for dealing with the discovery, which word we have used at the head of this article. The title of Professor Reynolds' paper given at length is "Experiments' showing Dilatancy, a Property of Granular Material, possibly connected with perty of Gran
If we ask any of our readers what will occur if an India rubber bag containing sand and water, and communicating with a bucket of water by means of a tube, be pressed between two flat boards, the answer will be that the water in the bag will be squeezed out into the bucket. Broadly stated, Professor Reynolds' discovery is that this is not what will happen, but that, on the cotrary, water will at once rise up the pipe from the bucket, and enter the bag. Paradoxical as it may seem, the bag becomes
larger, up to a certain limit, the more it is squeezed. larger, up to a certain limit, the more it is squeezed.
Professor Reynolds began his discourse by telling his hearers something about the mysterious ether by which light is transmitted to us from the sun; by shearing which in two, according to Dr. Lodge, we get electricity; the possible canse of cohesion and gravitation; an elastic, homogeneous jelly pervading all space, more rigid, in one sense, a million times,
sensibly retard the motion of planets moving through it. Whenever a phenomenon presents itself which cannot be otherwise explained, it is referred to the ether, and there are nearly as many ethers as there are philosophers. It has been said, indeed, that no less than six different ethers are needed to satisfy the predicates of the vibratory theory of light. Maxwell found no comfort in the ethers; on the contrary, he maintained that they were like the glasses of the dram drinker-one always led to another, necessary to explain the existence of the first. "As the result," says Professor Reynolds, "of a long-continued effort to conceive a mechanical system possessing the properties assigned by Maxwell, and, further, which would account for the cohesion of the molecules of matter, it became apparent that the simplest conceivable medium-a mass of rigid granules in contact with each other-would answer, not one, but all the known requirements, provided the shape and mutual fit of the grains were such that, while the grains rigidly preserved their shape, the medium should possess the apparently paradoxical or antisponge property of swelling in bulk as its shape was altered."
No one ever dreamed that the cubic content of sand in a sack was affected by the shape given sand in a sack was affected by the shape given
to the sack. Yet, now that we are told all about it, we wonder that we did not see the truth before. If the grains interlock, their alteration of form must, under given conditions, augment the space occupied. For example, if we shake or disturb a brick wall, it is evident that we increase its dimensions, because the bricks are no longer so close to each other as they were. In an ordinary mass of brickwork or masonry well bonded without mortar, the blocks fit so as to have no interstices; but if the pile be in any way distorted, interstices appear, which shows that the space occupied by the entire mass has increased, as was shown by a model. At first it appeared that there must be something special and systematic, as in the brick wall, in the fit of the grains together, but subsequent consideration revealed the striking fact that "a medium composed of grains of any possible shape possessed this property of dilatancy so long as either of two important conditions was satisfied." The conditions are that the medium should be continuous, infinite in extent, or that the grains at the boundary should be so held as to prevent a rearrangement commencing. All that is wanted is a mass of hard, smooth grains, each grain being heid by the adjacent grains, and the grains in the outside prevented from rearrangement.
Professor Reynolds obtained the necessary conditions by using a thin India rubber bag holding six pints. This bag being fille ith clean dry sand, such as is used for hour gla served for many experiments. The bag was coupled to one leg of a mercury pressure gauge, and it was only necessary to flatten the bag to make the mercury rise 7 inches in the leg next the bag; in other words, a partial vacuum was established by squeezing the bag. The reader will naturally ask what would take place if no air found its way into the bag by the way of the
mercury. In that case, the resistance to squeezing mercury. In that case, the resistance to squeezing would be much increased, and when water is used, which is non-elastic, the shape of the bag cannot be altered at all.

Taking," says Professor Reynolds, "the same bag, the sand being at its closest order, closing the neck so that it cannot draw more water, a severe
pinch is put on the bag, but it does not change its shape at all; the shape cannot alter without enlarging the interstices, these cannot enlarge without drawing more water, and this is prevented. To show that there is an effort to enlarge going on, it is only necessary to open a communication with a pressure gauge, as in the experiment with air. The mercury rises on the side of the bag, showing when the
pinch is hardest-about 200 pounds on the planes that the pressure in the bag is less by 27 inches of mercury than the pressure of the atmosphere; a little more squeezing, and there is a vacuum in the bag. Without a knowledge of the property of dilatancy, such a method of producing a vacuum would sound somewhat paradoxical. Opening the néck to allow the entrance of water, the bag at once yields to a
slight pressure, changing shape, but this change at once stops when the supply is cut off, preventing further dilation."
Professor Reynolds has as yet drawn few deductions. He prefers to continue his experimental researches, and some of the results are very curious. "Putting a bag filled with sand and water between two vertical plates, and slightly shaking while squeezing, so as to keep the sand at its densest, while it still has a free surface, it can be pressed out until it is a broad, flat plate. It is still soft as long as it is squeezed, but the moment the pressure is removed, the elasticity of the bag tends to draw it back to
its rounded form, changing its shape, enlarging the interstices, and absorbing the excess of water; this is soon gone, and the bag remains a flat cake, with
once yields, such pressures having nothing to over come but the elasticity of the bag, for change of shape in that direction causes the sand to contract. To radial pressures on its rim, however, it is per fectly rigid, as such pressures tend further to dilate the sand; when placed on its edge, it bears 1 cwt. without flinching. If, however, while supporting the weight it is pressed sufficiently on the sides, all strength vanishes, and it is again a rounded bag of loose sand and water." By shaking the bag into a mould, it can be made to take any shape; then, by drawing off the excess of water and closing the bag, the sand becomes perfectly rigid, and will not change its shape unless the envelope be torn; no amount of shaking will effect a change. In this way bricks can be made of sand or fine shot full of water, and the thinnest India rubber envelope, which will stand as much pressure as ordinary bricks without change of shape; also permanent casts of figures may be taken. When we walk along a wet beach, around each footprint the sand is seen to change color for some distance. This is because the pressure of the foot has changed the shape of the mass under it, and the water is sucked in, drying the sand all around. It seems a paradox that instead of squeezing the water ut of that portion of beach rigid under foot, it is sucked in.
Although Professor Reynolds has not drawn deductions, we cannot resist calling attention to one or two which suggest themselves. May we not find here the cause of rigidity? The bag of sand is stable, because to change its form would augment its bulk. May not a bar of steel be stable for the same reason? Our readers will not be slow, we think, to see that Professor Reynolds has left a good deal to be explained. For example, to state that a cake of sand and water is stable because a change of form would augment its dimensions, is only to reason in a circle We naturally ask, Well, why should it not increase its dimensions? and to this Professor Reynolds supplies no answer. It is true that an increase in volume would lead to the production of a partial vacuum inside, and that in so far the pressure of the air outside would tend to promote stability; but this stability ought to be elastic or dynamic stability, not static. Concerning this, no doubt Professor Reynolds will have more to say. The apparatus required is extremely inexpensive, and there is no reason why a whole army of workers should not attack this subject with excellent results. Meanwhile, we may say that it has long been known to engineers that sand, unlike water, exerts under suitable conditions no lateral pressure. For example, bags of dry sand have been employed instead of wedges to carry the centering of bridges. The loads may be very heavy yet these canvas bags will not burst. If the sand behaved like a liquid, they would be rent in a moment by a hundredth part of the load. To strike the centers, it is only necessary to open a small hole in a bag, and let as much or as little sand run out as may be needed. A paper plug will suffice to stop the flow.

Germanium, a New Metal.

In the Berichte der Deutschen Chemischen Gesellschaft there is an account of a new metallic element discovered by Clemens Winkler. It occurs in argyrodite, a silver ore from the Himmelsfurst mine, near Freyberg. Germanium, symbol Ge, has a great resem blance to antimony, though it is distinguished by cer tain well-marked reactions. If the sulphide is heated in the absence of air, e.g., in a current of hydrogen, t forms a blackish crystalline sublimate, which at a higher temperature melts to brownish red drops. This sulphide dissolves in ammonium hydrosulphide, and is reprecipitated with a whitecolor by hydrochloric acid, and is again redissolved by ammonia. If arsenic or antimony is present, the color is yellow. If heated in air, or treated with hot nitric acid, the white germanium oxide is formed, which is not volatile at a red heat. The oxide dissolves in potassium hydroxide. If this solution is slightly acidified, it gives a white precipitate on treatment with hydrogen sulphide. The oxide is easily reduced by hydrogen; the sulphide less easily. The metal is gray, volatile at a full red heat, though less readily than antimony. The vapor deposits small crystals resembling those of iodine, which do not melt. In a current of chlorine the metal yields a white chloride, which is more volatile than antimony chloride. The acid solution gives a white precipitate with hydrogen sulphide. Herr Winkler is determining its atomic weight, with a view to determine its place in the periodic arrangement.

The telephone is hardly a safe medium by which to convey news items to the printer. A Western news paper related the incident of one of its townspeoplegiving her name-having eloped with an eighteen year old man. In the next issue of his paper the editor apologized for his blunder by stating that the item was received by telephone, and should have stated that

A New Traveling Torpedo.
The details of moving torpedoes, as regards their steering power, propulsion, and explosive charge, have for some time past formed a special study with Mr. R. Paulson, who has effected what would appear to be some important improvements in these respects. Electro magnets are the chief agents used in the steering arrangements, although their exact construction and arrangement are points upon which the inventor pre fers to preserve silence at present. So with regard to his improved means of propulsion and the explosive charge; the most that he is just now prepared to state publicly respecting these is that propulsion is effected by a system differing in toto from any of those at present employed.
Broadly stated, it consists in the use of chemically generated gas, which is utilized either for forcing a column of water direct astern or for causing it to actuate machinery for driving a propeller. The explosive charge consists of a species of guncotton possessing 50 per cent more power than ordinary gun-cotton, but having an equal degree of safety. The steering device is that upon which Mr. Paulson is most communicative, and this is stated to consist of two batteries, one pole of each of which is placed in connection with the coils of two sets of electro magnets, from which leads are conducted to two metal pins fixed on a disk of insulating material. Both the other poles of the batteries are placed in communication with a balanced magnetic needle of special construction. The metal pins are placed one on either side of the needle, and the course of the torpedo having been set, it is started. Any deviation of the torpedo from its assigned course causes a relative movement of the needle, which touches one or other of the pins, thus establishing the circuit through the coils of one or other of the two magnets. An armature connected with the rudder is attracted, and by this means the torpedo is again placed on its right course. The depth of immersion of the weapon is also regulated and maintained in a similar manner by a vertically balanced needle. Another feature is that the torpedo can be directed toward iron ships, irrespective of the predetermined course, by means of another balanced needle.
A demonstration of the steering powers of the apparatus was recently given by the inventor at 15 Cockspur Street, Charing Cross, a model torpedo, about 2 feet 6 inches long and 7 inches in diameter, being used. The model was not placed in water, but was swiveled on a stand, and it was clearly shown that when it deviated from the course upon which it had been laid, the electro magnetic arrange-
ment-which was, of course, concealed within the tor pedo-came into operation and restored it to its nor mal course. More could not be shown, but it was stated that a full sized torpedo, 16 feet in length and 14 inches in diameter, had been made and successfully tried on the coast in England. On the last occasion, however, the torpedo had managed to get away from its inventor, and had been no more seen. The material of which Mr. Paulson proposes to construct the shel of his torpedo differs from that hitherto used in thatit is a species of papier mache, of a tough and fibrous nature.
The new weapon is to be discharged from the shore or from any ordinary boat, thus obviating the cost of a special torpedo boat. This feature points it out as valuable for coast and harbor defense, for which purposes it is the opinion of several naval authorities by whom it has been examined that it is especially adapted. In view of its apparent merits, it would appear desirable that the government authorities, who have had the matter under consideration for some lit-
tle time past, should lose no time in constructing a torpedo of the proper working size and having it practically tested. This course is the less objectionable, seeing that the cost is stated to be only about $£ 150$. At any rate, the invention appears to justify prompt and thorough investigation, in order that its practical usefulness or otherwise may be ascertained.-London Times.

Freezing and Melting Points of Water.

Although water usually freezes at 32 degrees F., and ice melts when above that point, the result is not uniform in either case. If water, for instance, be kept in a clean, smooth-sided vessel, and perfectly still, it is possible to keep it from freezing until it reaches a temperature of 15 degrees. Under other conditions

As a few experiments in celestial photography tried last year by means of quite rudimentary instruments gave good results, the Director of the Observatory has been pleased to authorize the construction of a special apparatus, which we illustrate herewith.
This new instrument consists of two juxtaposed telescopes inclosed in an oblong rectangular metallic case, and separated through their entire length by a thin partition. One of the objectives, of $91 / 2$ inches aper ture and $123 / 4$ feet focal length, is designed for visual observation, and serves as a finder. The other, of 11.4 inches aperture and $111 / 4$ feet focus, is achromatized for chemical rays, and serves for photographing. As the optical axes of these two objectives are parallel, every such a temperature would produce half an inch of ice star kept in the center of the ocular field of the first telescope produces an impres sion in the center of the sensi tized plate of the photographic apparatus.
The equatorial is mounted after the English style, that is to say, the center of the tube always remains in the polar axis of the instrument. This arrangement permits of following up a star from its rising to its setting, without the necessity of turning back the instrument near the me ridian, and, moreover, it has the advantage of giving the direct and inverse positions for every region of the heavens, thus allowing of the elimination of certain errors in centering.
Like a horary equatorial, it is provided with horary and declination circles, and a clockwork movement, which carries the apparatusalong for three hours without rewind ing. In addition, there are very slow, independent, back movements that permit of holding the axis of the tele scope upon a given point of the heavens, in spite of any slight irregularity in the clockwork motion and in the setting of the telescope, or of variations in atmospheric re fraction. The photographic objective, which is the larg est that has hitherto been made, consists of a simple, achromatic system, and, al though of extremely short focal proportions, is capable of covering a field three de grees in diameter without the use of a diaphragm.
Although it has been mounted but a short time, this apparatus has already permitted of considerable work being done. The very reduced chart shown in Fig 2 is a specimen of what it is possible to obtain. In a sur face representing an area of about five square degrees of the heavens, we can count more than three thousand stars of between the sixth and fourteenth magnitude, two only of which are visible to the naked eye. We can even distinguish in the negative traces of stars of the fifteenth magnitude, that are too faint ly indicated to show up in the
in a single night, thus clearly indicating the influence of motion on crystallization. If this water at 15 degrees be disturbed in the least degree, the crystals will at once begin to form, and simultaneously therewith the entire mass of water will gradually rise to 32 degrees and freeze solid. In the same way the presence of salt and acid in water retards freezing. Again, it has been ascertained by experiments that if water be boiled in a glass flask, and the neck of the flask be plugged with cotton, the water may be cooled down to 9 degrees F. before it will freeze. With regard to the melting point of ice, the temperature is more uniform, as the solid ice is not subject to the law of motion as water is, but there are ways of precipitating the melting of ice, as has been frequently tested. Thus, for instance, if a block of ice be subjected to a heavy pressure, the melting point can be reduced to 18 degrees F., a point which would produce sharp freezing in a stream or lake, where the ordinary laws of nature were not interfered with. tized film, were not the precaution taken to make many exposures.
In the annexed chart, each star is formed of a group of three points forming an equilateral triangle, each side of which is no longer than 0.0033 of an inch. To the naked eye these three points appear to be confused into a single one; but, if we examine them by means of a strongish lens, the three exposures will become dis tinct, and it will then be easy to distinguish in the negative everything that does not belong to the heavens, and to eliminate it. By the ordinary processes, it would certainly have required a diligent labor of several months to obtain a chart such as we get here in three hours.
The time of exposure necessary for obtaining an im age of the stars is as follows :

1st magnitude, 0.005 s ; 2 d magnitude, $0.013 \mathrm{~s} . ; 3 \mathrm{~d}$ 1st magnitude, 0.4 th magnitude, $0.08 \mathrm{~s} . ; 5$ th magnitude, $0.02 \mathrm{~s} . ; 6$ th magnitude, last stars visible to the naked eye, 0.05 s .; 7th magnitude, 1.3 s ; 8th magnitude, $3 \mathrm{~s} . ; 9$ th magnitude, 8 s .; 10th magnitude, 20 s ., 11 th magnitude, 50 s ., 12 th magnitude, 2 m .-mean magnitude of the asteroids; 13th magnitude, $5 \mathrm{~m} . ; 14 \mathrm{th}$ magnitude, 13 m .; 15th magnitude, $33 \mathrm{~m} ., 16 \mathrm{th}$ magnitude,

Fig. 2.-PHOTOGRAPH OF A PORTION OF THE CONSTELLA TION CYGNUS.

1 h .23 m .-last stars visible with the average of large instruments.
All these figures represent a minimum. In order to obtain good reproductions upon paper, the time of exposure must be tripled.
It will be seen from this table that between the first and last magnitudes the time of exposure varies from 1 to $1,000,000$. (The proportion adopted between the brilliancy of two consecutive magnitudes is 2,512 .)
Aside from the construction of celestial charts, we may mention as another very important study the discovery of asteroids, which has now become possible through photography. The small stars appear upon the negative as, so to speak, a mathematical point, while the planets are distinguished therefrom by a small, well defined dash that indicates their proper motion, with magnitude and direction, during the time of the exposure. It is thus that we have been enabled to obtain the track of a small planet of the eleventh magnitude, showing its course through an exceedingly well defined line amid the fixed stars. In the same way it is possible to study the motion of the satellites around their planet, and perhaps to discover new ones.
The study of double and multiple stars will be greatly facilitated, and it will be possible, likewise, to apply photography to researches on the parallaxes. Finally, we must cite photometry as one of the branches of astronomy that will now be enabled to collect very useful data through the use of photography. Let us remark, in conclusion, that Let us remark, in conclusion, that
this recent progress has perceptibly increased the power of human vision. It permits, in fact, of obtaining the image of a star that would remain invisible with instruments of the same aperture as those that photography employs.- $-L a$ Nature.

Dialyzed Pitch.

The healing properties of vegetable resins are well known, and extracts therefrom in various form are extensively employed in med. cine; but they are more or less objectionable, as heretofore no means jectionable, as heretofore no mean of removing or separating the foreign and hurtful substances have been used. Mr. Charles J. Ulrici, a chemist of Havana, Cuba, has succeeded in obtaining, by dialysis, a new and pure preparation, which is believed to be of importance for medical purposes.
The first operation is the filtration of the pitch to separate certain substances, which in its natural state are incorporated with it, such as vegetable remains, carbon dust, bits of leaves, earthy matters, deposits of glycerine.
smoke, and other impurities. These substances are separated and removed by the filter, while the heat applied drives outa portion of the bad or poisonous principles, which become volatilized by the heat.
Vegetable pitch may be said to be composed of two parts, one portion consisting of combined dense empyreumatic resinous matters of dark color; and, second, another of liquid nature, which holds in solution the first part. The acrid and nauseous odor of the raw pitch is due to the poisonous or hurtful substances, some of which are pyroligneous acid, formic acid, wood spirit, or methylic alcohol, aldehydes, acetones, methylic acetates, creosote, cyanides of ammonia, and benzines, and these substances, by means of bicarbonate of soda, become capable of being removed by the operation of dialysis.

The dialyzing apparatus is made with vegetable parchment in the usual manner. The dialyzer is placed within a suitable vessel containing distilled water upon a level table, care being taken that the level of the exterior liquid is the same as the level of the liquid contained within the parchment or dialyzer.' The whole is allowed to stand three days, at the end of which time the exterior water is removed and a new quantity substituted. The first water is then tested with sulphuric acid, and note is taken whether there is any effervescence or discharge of carbonic acid. If there is, the dialyzation is continued for three days more, when the exterior liquid is again tested in the same manner described. If there is no effervescence, then the operation of dialyzation is complete, and the poisonous and injurious principles contained in the mixture will have been extracted therefrom and carried over to the exterior liquid, together with the sugar and the bicarbonate of soda, that which remains in the dia--lyzer being a neutral solution of colloidal and chemical nature derived from the useful principles or components of the pitch, the poisonous or hurtful principles or components having been removed.
The dialyzed pitch is then concentrated by the application of a gentle heat to evaporate it slowly. It is then mixed with coarse sand, and then evaporate from this mixture, with gentle heat, a portion of the water. The sand, after losing the water, will remain damp. Allow this to become cool, and then place it in a lixiviating apparatus.
This operation has for its object to dissolve the concentrated and dialyzed pitch that is imprisoned in the sand. This is accomplished by means of a suitable liquid vehicle, whereby the lyzed pitch will be liberated from the sand and taken up by the liquid vehicle, and in this manner is constituted the extract of dialyzed or colloid pitch. The lixiviation is prepared for use with a liquid vehicle composed of alcohol and

The operation of lixiviation makes a complete extract of the pitch which is imprisoned in the sand. Every portion of the liquid vehicle, when it comes in contact with the sand containing the pitch, becomes

ADAMSON'S SAFETY SWITCH.
harged with a proportional quantity thereof, and each portion of the liquid vehicle takes up a portion of pitch until the whole has been completely dissolved and all the pitch contained in the sand joined to the water, alcohol, and glycerine, these three bodies being powerful and inoffensive solvents, and being the vehicle of which most fluid extracts are made
This compound or fluid extract of dialyzed pitch thus prepared is of great medicinal value, as the hurt-
ful substances have been removed. It is used for various medical purposes, such as the treatment of bronchitis, of throat diseases, of ulcers of all kinds, herpes, chronic rheumatism, scrofula, sores, and diseases of the skin.

A RAILWAY SAFETY SWITCH.

The invention herewith illustrated shows a plan of constructing a switch by which a train moving on the main track will automatically close an open switch and bring the rails into alignment. To this end, sliding blocks are mounted to slide in inclined ways securely fastened to the ties in the center of the track beyond the ends of the switching rails. These sliding blocks have eyes at each end, to which are attached chains, one communicating with a rod connecting with the sliding block at the other end of the switching rails, and

Fig. 1.-PHOTOGRAPH OF THE MOON.
the other passing around a sheave in the inclined way, then around another sheave in the center of the track, to and around a chain wheel mounted in the switch stand. A dog or catch is pivotally connected to the under side of the locomotive, and when the train approaches a switch set for a siding, as shown in the engraving, this dog strikes the sliding block, moving it in the manner indicated by the dotted lines in the small view, drawing the chain to revolve the chain wheel in the switch stand, and thus moving the switch bar to bring the switching rails in conjunction with the main rails. The switch lever rides above a circular rack which projects from one side of the switch stand, and has a yielding roller catch. The various parts are so arranged that when the main line is open the sliding blocks will be at the lower ends of their inclined ways, so they will not then engage with the dog on the lower side of the pilot;"but if the train is to be switched, the dog is raised by a simply arranged device, so as not to throw the switch to the main line. With some slight changes in details, which are set forth in the patent, this form of switch is also adapted for use where there is a switch or siding on each side of the main track.
This invention has been patented by Mr. Robert Adamson, of Auburn, N. Y.

Monument to Friedrich Wohler.
The great German chemist Friedrich Wohler died in 1882. In recognition of his eminent services, the German Chemical Society at once proposed the erection of a monument at Gottingen, where most of his life's work was accomplished. A sum of $\$ 4,000$ has been collected, but as this is not sufficient for the purpose, an appeal has been made to American chemists to aid in honoring one who has done so much to elevate their calling to the rank of a true science. The American committee particularly appeals to those who formerly studied under Wohler, and to all who are interested in the science to which he devoted his life. Contributions may be sent to Prof. Ira Remsen, Johns Hopkins University, Baltimore, Md.

The following is given as a cheap mode of rendering fabrics uninflammable: Four parts of borax and three parts sulphate of magnesia are shaken up together just before being required. The mixture is then dissolved in from 20 to 30 parts of warm water. Into the resulting solution the articles to be protected from fire are immersed, and when they are thoroughly soaked, they are wrung out and dried, preferably in the open air. - New York dried,
Times.

The Price of Life.

We have become so much accustomed to measure the price of things in money that it is a little difficult to forget the rates of wages, earnings, or profits, and look only at the actual results of toil. But reflection will show that that for which men and women really work is not money, but subsistence. The price paid for shelter, food, and clothing is the price of sustaining life. It is therefore an urgent problem for millions how to get a good subsistence for less money than they now spend for a poor one. The way for the working classes to improve their condition is to produce more or waste less. When each one has found out this secret for himself, the labor question will be practically settled. All there is in it is how to answer the all-absorbing question, "What is the price of life "?"
The magnitude of this problem to the people of the United States appears from the fact that 90 per cent of them trust to their daily work for the daily price of their own lives and of those who depend upon them. In the "working classes," in the narrow sense of that term, are reckoned laborers, servants, mechanics, and factory operatives. with whom may be included teachers, clerks, salesmen, saleswomen, seamstresses, and the like. In the strictly working class may also be included 90 per cent of all the farmers who own their own land, but who work harder than any of their hired men. To all such persons the price of life is the one question which is ever before them.
There is a somewhat subtile distinction between the cost of life and the price of life. The cost is the force consumed. In respect to each individual, it is the effort which he makes, be it great or small. The true cost of life is the measure of the actual work performed by each person in order to secure the shelter, food, and clothing which are necessary, together with the additional comforts and luxuries which each person can afford to enjoy, including leisure. By "leisure" is meant the control of a part of each day free from the urgent necessity of working for mere subsistence It may be that he who attains such lefsure will adopt the definition of this word which is given by
the "old Bohemian" in his cookery book. He says that "leisure consists in the diligent and intelligent use of time."
In contrast with this broad view, the cost of a man's life to the community, whether he be capitalist or laborer, is just what he consumes out of the annual product, and no more. The price of a man's life to himself is what he pays out of his earnings for his necessary consumption. A man can live at a very low price to-day, and if he be intelligent, he may earn the price at the cost of very little labor.
To measure the price of life, let us suppose that a single man in the city of Boston puts the question to himself, "At what price can I live independently by myself in a small room, or chutmming with a companion in a better room?" The answer is that $\$ 200$ a year is the price of a very comfortable subsistence. If he can earn $\$ 200$ for eight or six hours a day's work, he will also live at a low cost and enjoy a large modicum of leisure.
If the man is really poor, or if he desires to save a large part of his earnings, the price of his life in money may even be reduced to $\$ 150$ a year. Buthe must be a very intelligent man who can live comfortably on that sum. He must be rather more capable than the average man. It takes a great deal of intelligence to get the most comfort for the least cost. How is it to be done?

1. Shelter. Two young men can find a decent room in one of several parts of Boston, tolerably furnished, which can be hired for $\$ 100$ a year, or $\$ 50$ for each, including the care of the room and the modicum of heat which they will need in winter. If they choose to take care of their own rooms and to buy their own fuel, they can do still better.
2. Clothing. If the man knows where to buy and what to buy, he can purchase a full and comfortable supply of clothing, including outer and under garments, hats, boots, and shoes, overalls and the like, at a cost of $\$ 45$; that is to say, within this sum may be included one-third part of the wear of a bestovercoat, of a best pair of shoes, and of a best suit of clothes for Sundays and holidays; also a good, warm woolen suit for every day wear, at a cost of $\$ 8.50$, to be used up in the year, and all other necessary ar-
ticles of good quality. If the man cannot afford $\$ 45$ ticles of good quality. If the man cannot afford $\$ 45$ per year, he may dispense with a beste satinet gar-
if he be willing to wear very durable sater ments in winter, he can save from $\$ 5$ to $\$ 8$ on the $\$ 45$. ments in warm and durable suit of satinet can be pur chased for $\$ 5.50$. None of these garments will be of the so-called "slop-shop" order, made at starvation wages by poor sewing women. The fabrics will have paid a profit to the mill owner; the making of the garments will have been profitable to the clothier; the cutters will have earned $\$ 15$ to $\$ 20$ per week, and the shirt makers $\$ 10$ to $\$ 12$ per week. And the sew-
ing of the woolen garments wiil have been done in
the farm houses of New England, bringing to the wives and daughters of the household a little wives and daughters of the househ
money income where it is most needed.
3. Food. A very economical kind of life is thus far simple and easy. The difficulty arises the moment we touch the question of food. To the working classes-again using this phrase in its narrowest paid for food.
From the best information which can be obtained the price of an adequate supply of food served in the ordinary way, either in boarding houses or in workmen's families, is from 20 cents to 30 cents a day for the mere cost of the materials. How much is wasted in bad cooking after the materials are bought, each reader can imagine for himself. The average cost of the materials in the cities of the East is not far from 25 cents per day. On a larger scale, the inmates of the jails of Massachusetts are supplied with food in a perfectly nutritious and suitable manner, the food being of excellent quality, at a cost for materials of from 13 cents to 15 cents a day.
Probably no single man or woman in Boston or New York could obtain at any restaurant, or at any cheap boarding house, a suitable supply of nourishing food, well cooked, at a cost of less than 30 cents or 35 cents, probably more. In some of the factory towns, like Lowell, mill operatives who have their ooms elsewhere, but who get their meals in the fac tory boarding houses, are served with good, nutritious meals, three times a day, at $\$ 1.60$ to $\$ 2.50$ a
week, or from 28 cents to 35 cents per day. But in week, or from 28 cents to 35 cents per day. But in
these cases the houses in which the meals are served belong to the factory corporations, and yield little or no rent.
It would therefore seem to be difficult for a single man, after having expended $\$ 120$, viz., for rent $\$ 50$, clothing $\$ 45$, washing $\$ 15$, and heating say $\$ 10$, to obtain an adequate supply of food without coming to the ordinary rule of spending as much for food as $\$ 150$. But yet even this supply involves a very great waste if the daily ration be considered in respect to the absolute nutrition required.
The science of nutrition is now being investigated in the most thorough manner, especially in Germany, where the. utmost economy has become necessary in order that there may be food enough to go around. What are some of the results? Assuming that the average expenditure of working people is 25 cents a day for food material for each adult, it can be conclusively proved that a sufficient and appetizing daily bill of fare can be served at one-half this cost in Boston to any one who knows what to buy, how to buy it, and how to cook it. is method would imply to a
large extent the substitution of the stew pan for the frying pan, of oatmeal, farina, and the like for pale pie and doughnuts, and of good, well-made bread, like that which is sold in New York by the Howe National Bakery
The trimmings of
The trimmings of the best joints of meat are now thrown into a scrap heap, and sold in every market at from $1 / 4$ cent to 1 cent a pound, to be rendered into fat. I am assured by a market man in is wasted every day from that market to feed 1,000 people or more. Of course, when people become intelligent enough to make a selection from this food which is now wasted, the price may rise in some neasure. But when that which is now wasted is substituted for sirloin and rump steak, the price of the best cuts may be reduced. This is the reason why the best
cuts even of American beef are cheaper in London as compared with the prices in New York and Boston. The English know how to make use of the coarse parts of beef and mutton much better than we do. The average of the whole beast is higher in price in England than it is here. We pay the highest price for what we call the best part, and we waste the rest, or else it is sold at a small price to the keepers of the jails, to be served to persons in a form which makes it better food than three-quarters of the workingmen outside the jails can secure for a much higher cost. have myself purchased this good meat, which is now wasted, at 1 cent a pound, in parcels of ten pounds, at which price the market man said he would select
any quantity at any time. Adding to this ten pints any quantity at any time. Adding to this ten pints
of water, with suitable seasoning, I have made a rich and nutritious bouillon. Rejecting the bone and leaving the stewed meat in the broth, ten pounds remained of very nutritious and appetizing food, at a cost not exceeding $12 \frac{4}{2}$ cents for the ten pounds of food, including the fuel with which it was prepared. It was cooked in an airtight vessel surrounded by hot water. In the same vessel-a pine box-in which this
bouillon was prepared there were cooked at the same time seven pounds of solid beef in another vessel and two pints of oatmeal in four pints of water, making in all about twenty-five pounds of food material thoroughly cooked with 1 cent's worth of kerosene oil burned in a hand lamp.
In a smaller vessel of the same kind, three pounds
of solid meat can be thoroughly cooked in its own juice in one hour and a quarter, with $1 / 4$ cent's worth of oil burned in a common lamp, which may also serve the purpose of lighting the room while the cooking is going on.
The singular merit of this apparatus is that a very ample supply of food for a large family may be put into the various receptacles at night, the lamp may then be lighted, and in the morning everything will be ready to be served. In this method no overcooked food is possible. After the chemical changes caused by heat are accomplished, the further effect of the application of heat is merely to keep the food hot, or to render it more tender if it be tough meat. The
walls of the vessel being non-conducting, the food will walls of the vessel being non-conducting, the food will
keep hot for many hours after the lamp is extinguished.
If this apparatus proves as useful in common practice as it appears to be in what I may call my cooking laboratory, a difficult question may perhaps have been solved. Given this or some other cheap application of fuel to the conversion of food, and it is en tirely possible to buy an ample and nutritious ration in considerable variety, in the city of Boston, at not exceeding 7 cents a day, and to prepare it for use within 8 cents a day.
At 14 cents a day, a day's ration may cost, in round figures, $\$ 1$ a week, or $\$ 52$ a year, and consist of one half to three-quarters of a pound of good meat, three quarters to one pound of bread, one-half to one pound of potatoes or some other vegetable, one-hal pound of oatmeal, one-half ounce of butter, one ounce of sugar, a large bowl of tea or coffee with a spoon ful of condensed milk, an orange, an apple, or some dried fruit.
Add 1 cent's worth of kerosene oil for cooking, all but the bread, which must be baked elsewhere, and we have food and fuel for cooking it at $\$ 1$ a week. This economy is possible in what may be called laboratory practice. How long will it take to make it common practice? How long will it take to alter the taste of the people from fried food and hot biscuit to stewed food and sound bread? If this can be done, as it now seems possible, the price of a wellconditioned life in the city of Boston for food, shelter, clothing, fuel, and laundry may be covered by the sum of $\$ 172$, leaving within the limit of $\$ 200$ a year $\$ 28$ for sundries or luxuries.
Either in this way or by way of combinations on a more moderate scale, like the "commons" table at Harvard College, at a less price, the price of life may be brought within a very small sum. The waste of food appears to require more attention than any other economic question that is presented to us at the present time, and, as was suggested at the outset, the true labor reform movement might well consist in teaching the workman how to help himself to get a good subsistence for less money than he now spends for a poor one. The price of food is half the price of life, and half the price of food is wasted for want of knowledge how to buy it and how to cook it. Five cents a day saved per capita would come to over $\$ 1,000,000,000$ a year. •Do we waste a thousand million dollars' worth a year or not? This. problem was better comprehended by our Puritan ancestors than by their descendants or by our adopted citizens. How to get a good living out of small resources has become almost a lost art.-Bradstreet's.

Carbonic Acid and steam Reaction.

In a paper by A. Naumann and C. Pistor on "The Reaction between Carbonic Oxide and Steam"-Jour nal of the Chemical Society-experiments are described, nade with a view of ascertaining the temperature at which carbonic oxide and steam react to form carbonic anhydride and hydrogen. The method consisted in passing carbonic oxide, freed from carbonic anhydride and oxygen, over water heated at 80 degrees, so as to obtain an approximately equimolecular proportion of carbonic oxide and vapor of water. The mixed gases were passed through a porcelain tube, the temperaure of which was roughly determined by introducing into it certain salts or spirals of various metals; the reultant gas was then analyzed by the usual methods. The following results were obtained: At 560 deg. no reaction took place, at 600 deg. 2 per cent, at 900 deg. 8 per cent, and at 904 deg. 10.5 per cent of the carbonic xide was converted into carbonic anhydride. All the conditions which militate against a reaction between arbonic anhydride and hydrogen are favorable to that between stea and carbonic oxide, inasmuch as uch a change be exothermic- $+10,72 \mathrm{cal}$.nd the resultant carbonic anhydride is very stable at high temperatures while the steam is readily decomposed into hydrogen and oxygen, the latter of which can burn the carbonic oxide.

Frosting Brass work.

Boil in caustic potash, rinse in clean water, and dip in nitric acid till all oxide is removed; then wash quickly, dry in boxwood sawdust, and lacquer while warm. This will give brass an ornamental finish.

Bacteriotherapy.

"Bacteriotherapy" is the designation appropriated for a new method of treatment introduced by Professor Cantani, based upon the recognized phenomenon of the "crowding out" of one species of micro organisms by another better suited to the prevailing conditions (Brit. Med.Jour., Aug. 29, p. 403). In a first experiment, daily inhalations of Bacterium termo, an organism assumed to be harmless, on the strength of experiments on animals, were administered to a patient suffering from tuberculosis, through the medium of a culture in gelatine diluted with meat broth and diffused by an ordinary spray producer. Professor Cantani reports that the tubercle bacflli in the sputum gradually became fewer, being replaced by the bacteria, and in less than a month had disappeared altogether, the sputum being no longer capable of conveying tuberculosis to animals. Meanwhile the patient had gained flesh and improved in every way. It is admitted that, outside the body, these bacteria do not always so successfully dispose of the tubercle bacilli, and that the two kinds of organisms even sometimes occur together in tubercular cavities; but the explanation suggested is that in the case reported the bacteria were introduced in large quantities and probably in a vehicle more favorable to them than to the bacilli. Does this foreshadow a recrudescence of contributions to the official materia medica from the animal kingdom?-Pharmaceut. Journal.

The Palace at Jeypore.
Mr. Sala has had the good fortune to visit the Great Palace of Jeypore, and writes about it thus in the London Telegraph: Seven stories of such wild and lovely struc ture as you would expect to see only in dreams rise here one above the other in rose red and snowy white balconies, oriels, arches, pilasters, lattices, and domes-gay everywhere with frescoes and floral ornaments. In this lowest floor, which is kept -like the second and third-as a winter residence, we are permitted to inspect a priceless volume, the abstract of the Mahabharata, in Persian, made by the orders of Akbar the Great at a cost of $£ 40,000$, and illustrated in the most exquisite manner with colored and gilded miniature pictures of an incredible delicacy. The Shobha Newas, floor above, is full of strange paintngs on the wall, and arcades embellished with gorgeous shells of copper, silver, and foil. Next we ascend to the Cnhabl Newas, or "hall of splendor," shining with polished marbles and colored enameling. Above this is the Shish Mahal, the pavilion of glass, with endless patterns wrought in little mirrors let into carved plaster work, and above that we step forth upon the Mokt, or "crown," of the palace, where the vast flat roof is encircled with shady alcoves and open chambers, vaulted by graceful curved cupolas. Beneath lie the green palace gardens, full of pomegranates, palms, and bananas; and beyond, the spread of the countless busy streets and lanes, girdled by the walls, and over hung by the encircling hills, topped with forts and temples. It is vain to attempt any description of that enchanting prospect, more absorbing than any which India herself can offer. Nature and man have here allied themselves to produce the most perfect and lovely landscape conceivable. In green and gold, in rose color and white, in distant, dim blues and grays, the gardens and the city, and the far off walls and mountain ridges of amber, group together at our feet-a picture to delight the eye and feast the mind. But how can words reproduce Govinda's temple, between the upper and lower gardens; the snow white sides of the Badal Mahal, or "Cloud Palace," on the edge of the lake; the dark ramparts of the fortress in the mountains, and those long lines of rose red streets which intersect Jeypore? To complete the rich colors of the scene, a feast is being given to Brahman men and women on one of the many flat roofs of the upper palace, and attendants go about bearing the Maharajah's bounty in the form of cakes and sweetmeats amid some three or four hundred men and women clad in holiday dresses of crimson and purple, saffron and blue, glittering like flow in the sun, which shines upon the "City of Victory" as if its people were indeed his children. Whoever has viewed that prospect from the palace roof of Jeypore has seen India in her inmost grace and beauty.

The Zinc architectural works.

On the night of March 5 the entire stamping department of the Zinc Architectural Ornament Works of Messrs. Bakewell \& Mullins, at Salem, Ohio, was destroyed by fire. . The plant will be replaced at once, and orders filled as promptly as circumstances permit.

THE KARG NATURAL GAS WELL at findlay, 0.
the gas was inflammable. He touched a match to seve ral of the bubbles, and each one responded with a blaze. At night he illuminated the entire eddy with these miniature natural bonfires. Dr. Winslow sounded the eddy, and found that in places the water was ninety feet deep, with a rocky bottom, and at some places h could find no bottom at all. His theory was that the rocky bottom was filled with crevices of unknown depth; and from them gas issued and found its way to the surface, forming the constantly appearing and disappearing bubbles.
In the mud along the shores of the eddy, and on islands of similar formation, this gas also found its way from the depths to the surface. Dr. Winslow inverted a barrel with one head out over a spot on the New York shore where the gas came up out of the ground. He placed a small pipe in the other end of the barrel, and in a short time.collected enough gas in the batrel to make a strong and brilliant flame at the end of the pipe when ignited, which burned steadily night and day.

a natural gas well.

The accompanying engraving is from a photograph of the mammoth Karg well at Findlay, Ohio. The photograph was taken by night, and the enormous height reached by the flame may be judged by contrast with the derrick in the background The capacity of the well is estimated at forty million cubic feet per diem.

Taking Down an Iron Mast.

An interesting and very difficult mechanical feat was performed in Akron recently, in the taking down of an iron electric light mast 213 feet in height above ground. The mast was composed of fifty-five sections of boiler plate, each fifty inches in length and varying in thickness from one-half inch at the base to three-eighths inch, five-sixteenths inch, one-fourth inch, and at the top threesixteenths inch. The diameter at the base was three feet, and at the top eight inches. The entire weight of the plate removed was eight tons. A change in the system of street lighting led to the abandonment of the mast, and the contract for taking it down and removing it was given to the Buckeye Machine Company, of Cleveland, whose efficient general manager and engineer, Mr. Ludwig Herman, had charge of the work. From the outset-the mast itself being bent out of plumb and in a dangerous conditionthe task presented numerous and trying difficulties, but careful calculation, coupled with cool-headedness and superior engineering skill, were adequate to successfully grapple them all. The method of removal, briefly, was this: Around the lower sections of the mast, to a height of twenty feet, a staging was erected. This was composed of uprights $8^{\prime \prime} \times 8^{\prime \prime}$, caps $10^{\prime \prime} \times 10^{\prime \prime}$, sills $8^{\prime} \times 8^{\prime \prime}$, braces $2^{\prime \prime} \times 10$," and struts $6^{\prime \prime} \times 6$, " all securely bolted together. From this staging, by means of chain blocks and swivel rods and peculiarly shaped hooks which took hold under the lap of the successive sections, the mass was suspended while the work of cutting the rivets and removing the sections was carried forward. The hooks in question were held in place by an adjustable band three inches in diameter. After cutting away the lower sections, the whole mast was lowered four inches at a time, the hooks
worked. There are two larger lakes, either one of which would keep a plant as large as that in Laramie going the year round, and in all the supply is inexhaustible, the deposits being constantly built up from some underground basin; but these lakes are not so extensive as others in the Territory which have not as yet been touched.

Natural Gas at Narrowsburg.

The existence of natural gas at Narrowsburg was discovered in a curious way by Dr. L. A. Winslow, in 1856. He was spending the summer at the Murray House, in that village. The Delaware River at that place forms into a deep and wide lake-like body known as Big Eddy. On the Pennsylvania side of the eddy there is a whirlpool so strong that frequently rafts are drawn into it and kept whirling about for hours and sometimes days before they can be turned into the channel again. One day Dr. Winslow was rowing on the eddy. After lighting his ppe he threw the match still blazing, into the river. Instantly a blaze started up in the water where the match had dropped. It burned with a faint blue light, and finally went out. Then, for the first time, Dr. Winslow noticed that many bubbles were floating about on the water, and that they appeared frequently, coming quickly up from under the surface. The Doctor, being something of a geologist and scientist, knew at once that the bubbles were made by a gas that must come from the ground or rocks at the bottom of the river, and that
shifted to the lap above, and the lower section cut out again. In this way the work proceeded, the mast being held by ten guys, the manipulation of which required the utmost skill and patience. At one time, during an adverse wind, the top of the mast swayed fifteen inches out of line, but close watching and careful management averted all accidents, and the entire task was successfully completed in a remarkably short period of time. For the first three days one section each day was removed; then three, five, and twelve, and on the last day, twenty-seven.-Iron Trade Review.

Petroleum in New Mexico.

The report that an artesian flow of petroleum had been discovered in the southern part of Santa Fe County, New Mexico, between the mining villages of Golden and Wallace, has been confirmed, and samples taken to the capital and tested. The oil flows through tubing fifty-five feet down, and the flow is reported to be copious and steady. The crude oil burns freely and with a good flame. Several claims have already been located in the neighborhood of the well.

To Remove Nitrate of Silver Stains.

The following is suggested by Mr. George R. Underwood: Dip the fingers into a strong solution of cupric chloride. In about a minute the silver will be convert ed into chloride, and may then be washed off with hypo.

ENGINEERING INVENTIONS.

A car coupling has been patented by Mr. Joseph T. Hammick, of Rhinebeck, N. Y. It has
stationary and movable drawheads, hinged lifting stationary and movable drawheads, hinged lifting
block and bail, with other nowel features, whereby the coupling link is permanently connected with the draw-
car etc, the invention being an bor, ete., the einvention being an improvement
forme patented invention of the same inventor. A switch lock and throw bar has been patented by Mr. William B. S. Reed, of Brooklyn, N. Y. This invention covers a novel construction and ar-
rangement of parts for an improved device for throw-
ing switches, which at the same time serves as a lock rangement of parts or an mproved aence for throw-
ing swithes, which at the same time serves as lock
for automatically locking the switch in place, both for automatically locking th
when open and when closed.
A station indicator has been patented by Mr. Watson Fuller, of Atlanta, Ga. The invention
consists in combining with a shaft a series of rollers or consists in combining with a shaft a series of rollers or
drums surrounded by boxes, each pair of drums carrying a band on which are the names to be shown, and the whole operated by a mechanism to indicate saccessive stations in their pi.
a car at the same time.
A locomotive whistle alarm has been patented by Mr. Charles Hults, of Torch Lake, Mich. It is a novel construction, by which a whistle can be
operated automatically by inclined guides at the sides of the track, whereby a whistle signal is given auto-
matically by the locomotive before the train reaches crossing, bridge, or other place wherea whistle is to b regular!y sounded.

agricultural inventions.

A wheel plow has been patented by Mr. Moses B. Farnham, of Germantown, Cal. The construction is such that when the forward end of the
tongue is secured to the neck yoke of the team, the forward end of the machine will be moved to on? or the other side, to cause the'plows to take or leave lana, the ing of summer fallowed land.
A check rowing attachment has been patented by Mr. Edward F. Crawford, of Honey Bend
IIl. Combined with a frame and seed slide is a rotary Ehaft for operating the slide and carrying the wire shart or operating the side and carrying the wire
wheel, with devices whereby the position of the rotary
shatt and its wire wheel may be changed, to be operated shaft and its wire wheel may be changed, to be operated
from either side of the machine, making a simple atfrom either side of the machine, making a simple at-
tachment to facilitate the planting of corn in accurate tachment to
check row.

miscellaneous inventions.

An attachment for tape measures has been patented by Mr. Edward Herline, Jr., of Hoboken,
N. J. The invention consists in a link and hinged N. J. The invention consists in a link and hinged
point for securing the end of the tape in place, and thus facilitate convenience in the use of such measures. Mr. Lester H. Gear, of Mentor, Iowa. It consists of a
cage with tilting plates hung in an opening, with stepcage with tilting plates hung in an opening, with step-
ped onter ende, and a bait suspending hook upon inped onter ends, and a bait suspending hook upon in-
clined plates of the cage verer the covered openings, by means of which any num
without resetting the trap.
A foot rest for school desks has been patented by Mr. William P. Connor, of Bloomsburg Pa. Combined with the desk are curved notched bars
on the legs and a a swinging foot rest bar above the notched bars, witt winged nuts for locking the foot rest
bar in place, so the rest can be adjusted in different bar in place, so the rest can be adjusted
positions or swung entirely out of the way.
A grinding mill has been patented by Mr. Lewis B. Joy, of Bath, N. Y. It has rollers with
corrugated faces and grinding plates with beveled and corrugated faces and grinding plates with beveled and
corrugated inner edges, with other novel features, to facilitate the grinding of mixed grains for feed, but grain for other purposes, and wich is so constructed grain for other purposes, and which is so co
that it can be readily adjusted and controlled.
A combined dust pan and ash sifter has been patented by Mr. John O. Beneke, of New Orleans,
La. It consists of lower and upper pans or sections, La. It conists of lower and upper pans or sections,
made of tin or other suitable material, the bottoms be inge circular form, and having perforations of any de.
sired pattern, but os arranged that the perforations of sired pattern, but so arranged that the perforations of
the upper and lower pans may be brought in line to the upper and lower pans may be bro
pass matter through or not, as desired.
A churn has been patented by Mr. Jas. Hultz, of Greeley, Kan. It is so made that by the turning of a crank, when the churn body is charged with
milk, the dashers will be rotated in opposite directions until the butter comes, when they can be made to rotate
in the same direction to gather and wash the butter, both dashers
when desired.
A drag saw has been patented by Messrs. Ira B. Warren and. Charles M. Potter, of Wau coma, Iowa. It is a power machine, in which the beam
or log of wood to be sawed is placed in a trough secured on bars pivoted on the base frame, and then the log is is pressed
anism until the operation is completed, when the frame is swung back from the saw.
A roller skate has been patented by Mr. joel Heacock, of Brighton, Iowa. Ind is made with a
main roller just forward of the heel, and intended to be almost directly beneath the center of gravity of the
body, while there is a forward roller under the ball or toe, on either side of which are guide rollers, the skate being for ise on a single track of a railway, the skater
propelling himself by means of a staff.
A horse marsh-shoe has been patented by Mr. Charles Dumke, of Portland, Wis. It consists
of a board provided at opposite edges with bars and obof a board provided at opposite edges with bars and ob-
long holes, in combination with eyebolts with heads and long holes, in combination with eyebolts with heads and
a lever fastener for clamping the board to the horse's a lever fastener for clamping the board to the horse's
hoof, making an extended surface for the horse's shoe,
to prevent the horse from sinking into the ground in
marshy places.
A combined step ladder and adjustable platform has been patented by Mr. Stephen J. Palmer, of Dover, N. J. The construction consists of a platform that it may be eet up at different heights, making a use ful and safe device for women to work upon about the house, and one which, when folded, takes up but little oom.
A gun barrel has been patented by Mr. John K. Ballard, of Grayling, Mich. A short distance
in front of its breech end the barrel has an annular n front of its breech end the barrel has an annular
groove in its bore, the groove increasing in diameter roove in its bore, the grove increasing in diameter
from the muzzle end toward the rearr, whereby the an nular shoulder is formed in the barrel., so that cloth
patched cartridges can le ffred withous cansing the patch to catch in the barrel.
A steamer for use in the ovens of stoves nem ranges has been patented by Mr. Charles F. Haneman, of Ahnapee, Wis. It is of such construction provided in the upper portions of ovens, or otherwise conveniently placed without interfering with the ordi-
nary wese of the even so that articles being baked may nary uses of the oven, so that articles being baked may
be partially steamed or moistened while in the oven.
A grain register has been patented by Mr. Lloyd Nottingham, of Norfoik, Va. Combined with a body or case, and a wheel having a iateral annular flange with a notch or gap, is a second wheel jour-
naled within the fange, with a support and two powls naled within the flange, with a support and two pawls
pivoted thereto, located laterally thereto, with other pivoted thereto, located laterally thereto, with other
novel festures, making a simple device to indicate on a novel features, making a simple device to indicate on a
dial the number of counts of certain measures of grain.
A case for photographic sensitized paper has been patented by Messrs. William H. Lewis and
Erastus B. Baker, of New York city. It is a box that Lrastus B. Baker, of New York city. It is a box that is light tight when the sensitized sheet is wholly within
the box, or being moved in or out of the box, and adapted for carrying a roller, to be operated from the exterior of the box, for supplying sensitized paper as desired, whether to be used for making negatives or for photographic printing.
Aerial navigation forms the subject of patent issued to ITr. Ringert Jongewaard, of Harrison,
Dakota Ter. This invention covers a construction dedagna ter. This invention covers a construction designed to rise upon the wind by presenting the under
side of an inclined plane thereto, while propelling the
machine slowly machine slowly toward it, or to rise on still air, propelling the machine more rapialy in the desired di-
rection, the propeller being driven by the strength of rection, the propeller being driven by the strength of he rider.
A button has been patented by Mr. Gabe Felsenthal of Louisville, Ky. It has two pairs of spring arms projecting from its back, with two angled
evers pivoted in the extremities of the arms having anevers pivoted in the extremities of the arms, having an-
ghed shoulders, which engage each other when the gled shoulders, which engage each other when the atton is arranged for insertion in the button hole, and
when it is in position to be worn, making an easily inshented it isilar or or cuff button that will not tear the but. ton hole.
A mould for casting solder joints has een patented by Mr. Arthur Cunningham, of Louisville, Ky . It is made in two halves, arranged to register as they are closed around the pipe, and will hold
sutficient melted solder to form a joint of the required
size size and shape, thus forming a joint by castlng upon size and shape, thus forming a join by casting upon
either a horizontal or vertical pipe, the mould being a
device which can be weed by inexperienced workmen to device which can be
make a perfect joint.
An automatic safety check for musical boxes has been patented by Mr. Charles H. Jacot, of Iriction wheel and a balanced friction pawl, whereby the haft will be stopped and held should its speed be unduly increased by escaping from the control of the es-
capements by accident or during adjustments, thus excapements by accident or during adjustments, thus ex-
posing the cylinder pins and the teeth to danger of posing the cyinde
breaking or injury.
An escapement lever for watches has ven patented by Mr. William B. Simpson, of Holden, Mo. It is so made that the lever fork of the escape-
ment can be readily adjusted forward or backward ment can be readily adjusted forward or backward
relatively to the ruby pin of the roller plate of the relatively to the ruby pin of the roller plate of the
movement, without taking the watch apart and while he balance wheel is on, so that a person can make the necessary adjustment while the timepiece is in working
A device for filing saws and drilling has been patented by Mr. Charles L. Polley, of Sandusky,
hio. It consists of a suitable frame with handles hio. It consists of a suitable frame with handles,
bevel wheel, detachable file, and socket shaft, which may be used as a means of attaching a driving rope or
io receive any tool, such as a drill or an anger, to be to receive any tool, such as a drill or an auger, to be
driven either by power or hand, or an emery wheel with driven either by power or hand, or an emery wheel with
sitable gear attached may be substituted for the rotary file and wheel.
A saw gummer has been patented by Messrs. Albert Stevenson and John Stuempges, of Ste-
venson's Pier, Wis. Combined with a base block and venson's Pier, Wis. Combined with a base block and
clamping plate are dies held therein, yokes on the sides of the base block and screws in the yokes, for adjusting the dies on the base block, the tool being adapthbe fer clamping any thickness between the base and
the top plate, and the invention being an improvement on a former patented invention of one of the in. on a forra
ventors.

NEW BOORS AND PUBLICATIONS.

Outing" for April, under its new ished character. Its matter is all choice in character, while the illustrations and typography are most ad-
mirable. Among the principal articles in this number are Ranch Life, by Theodore Roosevelt; American Steam Yachting, by E.S. Jaffray; Around the World on a Bic ycle, by Thomas Stevens; Crossing the Atlantic on
a Blockade, by Captain Roland F. Coffin; and Work and Sport on the Congo, by Henry M. Stanley-but this
by no means exbausts the list of

Special.

THE UNITED STATES MAIL.

On the end of a business house on Market Street, Phil
adelphia, adjoining the new United States Post 0 Ofice adelphia, adjoining the new United States Post Office
there is an exceedingly suggestive picture in
elto panels, giving the old and the new ways of delivering the
United States mail. The one indicates a very little to do, with leisure in is required. To one who is familiar with the growth of the postal service, this picture starts a very interesting
train of thoughts. One of these brings back the old train of thoughts. One of these brings back the old
stage-coach and the horseback rider, and the fact that we twe work of distributing the mails of mind the facilities of the present alay. with the high rate
mes of postage reduced to figures hardly more than nominal
by comparison. From the external mechanical chana by comparison. From the external mechanical change
the mind turns to the contents of the letters, botho the old time and the new.
One of the most engrossing topics in which people everywhere always have had, and always will
common interest is the matter of personal health common interest is the matter of personal health.
A large class of writers, seeing in the public pres statement of cures by the Compound oxygen Treat ment, which has been so widely advertised, at once write to the references for fuller particulars. The pa tients who have been cured are so numerous, and they
have so or eely spoken of their restored health, that the divided task has been to many a light one. But one lady in Maine writes us that she has answered letters from nearly every State. and from some sections very many.
Hon. William D. Kelley, Member of Congress, answers a very large number, saying that he owes the good health he has enjoved for ten years to the treatment
Hon. William Penn Nixon, editor of the Chicago InterOcean, reeeives hundreds of inquiries as to the gen-
uineness of his testimonials and ast to the permanence uineness of his testimonials and as to the permanence of results. These he answers through the mail. as it
was through a eetter received from a relative in Boston that he learned first of the value of the remedy. Once relief from parto of the task, asis the ease of a prominent
member of the bar of Topeka. Kansas, Hon. H. P. Vroo-
man whose a term as judge. He is also prominent in temperance
work, being Chairman of the State Executive Commit
 tee of the Prohibition Party of Kansas. In one of his
letters he esass, "I have been interrupted about t wenty gives some idea of the value of his time. The reason
for his being called upon on this subject, and letters written to him, is found in a letter to Doctors starkey $\&$ Palen, June 27.1882 , telling of the benents his wife had
received from their Compound Oxygen Treatment. received from their Compound Oxygen Treatment. We
quote exactly : $:$ In the interest of suffering humanity 1 send you for pubiication an account of the Imost miracu Lous cure which your Compound Oxygen performed in
the case of my wife. Her condition was a very peculiar the case or my wife. Her conatition was a very peculiar
one. She had a omplication of iseases-dyspepsia,
torpid liver, or liver complaint, as her hassicienns always called it, and general nervous prostration.
inf you will refer to my description of her case, made the first order for your Treatment, in December 1577, you will see that she was suffering from severe at once in two or three months, when she would vomit herself falmost to death's door, and until she would raise a
large amount of green bile. When her stomach was relarge amount of green bile. When her stomach was re-
lieved from this, she would become better at once. But lieved from this, she would become better at once. But
as soon as a certain amount of bile would again acas soon as a certain amount of biie would again ach
cumulate, there would be another attack of colic and
vomitin, vomiting. Each time the attacks came at shorter inter-
vals, and were more severe, until she became so weak and exhausted that we are sure she could not have lived many days longer, had not your oryyen Treatment come
just as it did and saved her, for the colic and vomiting had become almost perpetual, and her strenoth and life were nearly exhausted.
"We coulusaee a change in her condition from the frrst
inhalation, for she never had so severe an attack of colic inhalation, for she never had so severe an attack of colic
afterward, and had more strength to endure the pain and retching. She continued to gain steandily, and for the past four years has had no severe attacks. . If she is threatened with one, she takes an
so escapes any seerere paroxyms.
"We have
.
ouryeers. On of our bears five Home Treatments in an attack of infiammation of the bowels, which left him in a very yad condition. The Treatment did him nearly if not quite. as much good as it did Mrs. Vrooman.
II think it but right that we should make kno Ithers what Compound oxyenen has done for us, an therefore send you this statement for publication,"
Such a statement of neeessity attracted wide atten tion, especially among invalids, who naturally wanted particulars. These Judge Vrooman has in all cases
cheerfully given, so far as his time would permit. This he has continued to do for nearly four years, to the grat-
ifcation of all who need such aid. At the same time his business engagements have made it desirable that a por-
tion of the time thus occupied might be saved. This

as follows :

June , sent you my testimonial, which you published arts of the Unave received scores of letters from al questions about the Oxygen, etco; but the main thing most of them wished to know was, whether I do really
exist, or whether I am a mere myth, and yon only humbuggring the people with flctitious names for the purpose
of deceiving them. And now I wish to say to the public further (if you
will publish it). to so save my answering so many letters, that my wife has not been compenled to take any more
treatment for nearly five years, since which time her health has been constantly improving, and she weikh more than she ever has before, and has borne a fine
health bov now almost four years old, who, of course

is smart, he being the seventh son. "II impart this information to sho

解 that it will permanently cure and temporary reile, bu tality to the whole system ; and if any are still solicitous to know whether I am or rot. I I will say in the language
of Daniel Webster, "I I still live," and may be found with my law sign still out at 155 Kansas Ave., Topeka. KanConcerning the permanency of the cures performed by Compound Oxyen, and that a aficted ones may not de-
lay too long in esting is efficacy," The reauest that Juadee Vrooman makes that we print his statement, we cheerfully comply with, and agree with
his thought that what he has said should remove doubts. What he has written to patients has undoubtedly helped many to accept the evideneeceso freely and
abundantly given of the curative power of Compound abundantiv given of the curative power of Compound
Oxygen. There are others coming forward to
the task with him, and a very interesting letter justat
hand, giving in one report the record of results in three cases, one thousand miles apart, will serve to show how this relief is is oming.
of Sperry, Iowa, says:
"I have been able to labor in my old fild beyond al
my expectations. Some Sabbaths have four services, nd some weeks preaching every evening.
"My oldfriends express their survprise that I appear so
oung and vigorous. For this I am largely indebted to our Compound Oxygen Treatment. Mynephew James our Compound Oxygen Treatment. Mynephew, James
L.Leonard, of Iona, N. J., writes me that he has been ble to accomplish more the past season than for four years past, all owing to the Compound Oxygen.
"My sister, Mrs. Mary S. Leonard, has kone to Worth, Fla, at the urgency of her physician. She writes Werthat sha, at the urgency of her physician. She writes yent on arriving there, but that she'became so nervous that she could not sleep, and became so miserable
that she hardly kiew what she was doing. She then resumed the rreatment, and in one week was quite cemumed the rreatment, and in one week was quite
comfabe again. s see many that need the compound Oxygen, and am not slow in recommending it. You are
at liberty to use $m y$ letter as you desire, with the hope at liberty to use my letter as you desire, with the hope and I have received from the use of the Compound oxyger Treatment.
P. S.-Two of my friends, whose address I inclose,
ave applied to me for your address; one in the State of Indiana and one in Burlington, lowa. They want to see you
These method of treatment for diseasesp, and in the vivid light they throw on the freedom of communication between
different parts of the country, give emphasis to the mail. Treatise of nearly two hundred pages, entitled "Compound Oxygen," its mode of action and results, treet, Philadelphia, Pa.

Qusiness and Personal.

The chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line.
Advertisements must be received at publication office Advertisements must be received at pubbicaction office
as early as Thursday morning to appearin next issue.
$\$ 350$ buys entire patent right of a novel, new kitchen The Leonard hardwood, cleanable, five-walled Refrigeators are the best. Write for catalogue; mention pa-
per. Grand Rapids Refrigerator Co., Grand Rapids, Nickel Plating.-Sole manufacturers cast nickel anLittle Wonder," salts, polishing compositions, etc. $\$ 100$ ole manufacturers of the new Dip Lacquer Kristaline. Complete outfit for plating, etc. Hanson, Van Winkle \& Grimshaw.-Steam Engine Catechism.-A series of o as to give to a Young Engineer just the information required to fit him for properly running an engine. By Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by Gund
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pumps for liquids
will be ready in March.

Wm. Frech, Sensitive Drill Presses; Turret and Speed Lathes combined,
oe Street, Chicago.
Order our elegant Keyless Locks for your fine doors. Send for catalogue of Scientific Books for sale by The Knowles Steam Pump Works, 44 Washington .., Boston, and 93 Liberty St., New York, have just ised a new catalogue, in which are many new and im-
roved forms of Pumping Machinery of the single and uplex, steam and power type. This catalogue will be Haswell's Engineer's Pocket-Book. By Charles H. ig Tables, Rules, and Formulas pertaining to Mechanics, Mathematics, and Physics, Architecture, Masonry, ics, Mathematics, and Physics, Architecture, Masonry,
Steam Vessels, Mills, . Iimes, Mortars, Cements, etc. 900
pages, leather, pocket-book form, 44.00 . For sale by

Machinery for Light Manufacturing, on hand and Send for Monthly Machinery List
to the George Place Machinery Company
If an invention has not been patented in the United States for more than one year, it may still be patented in
tanada. Cost for Canadian patent. \$40. Various other oreign patents may also be obtained. For instructions ddress Munn \& Co., Scientific American patent Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Iron Planer, Lathe, Drill, and other machine tools of Nystrom's Mechanics.-A pocket book of mechanics onnection C.E., 18 th edition, revised and greatly enlarged, platates,
12 mo , roan tuck. Price, $\$ 3.50$. For sale by Munn \& Co., C.E.,
120 om , roan tuck. Price, $\$ 3.50$.
361 Broad way, New York city. Whether or Not
ou believe that consunption is an infectious disease, ransmitted by tubercular parasites, the fact that Dr.
Pierce's "Golden Medical Discovery" is capable of restoring a healthy conditon of the lungs however affected,
is one whi loes not admit of question. At the very rst intirn n of consumptive question. At the very the form of a persistent cough, gereral debility, loss of you should secure a bottle of the "Golden Medical Disou should secure a bottle of the "Golden Medical Dis-
covery." It will purify the blood. tone up the system, covery.
and rem
cause.

Curtis Pressure Regulator and Steam Trap. See p. 142. Tools, Hardware, and other specialties made under Best Automatic Planer Knife Grinders. Pat. Face Plater Bradley's improved Cushioned Helve Hammer. New
design. Sizes, 25 to 500 lb. Bradley \& Co., Syracuse, N. Y.

Supplement Catalogue.-Persons in pursuitof infor mation of any special engineering, mechanical, or scien-
tific subject, can have catalogue of contents of the ScIENTIFIC AMERICAN SUPPLEMENT sent to them fre The SUPPLEMENT contains lengthy articles embracin science. Address Munn \& Co., Publishers, New York. Crescent Steel Tube Scrapers are made on scientific principles. Crescent Mfg. Co., Cleveland, Ohio.
Curtis Pressure Regulator for Steam Heating Appa ratus, Mass.
The Improved Hydraulic Jacks, Punches, and Tub Expanders. R. Dudgeon, 24 Columbia St., New York. Friction Clutch Pulleys. D. Frisbie \& Co., Phila.
Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co. Rochester, N.Y. See illus. adv., p. 158 . Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 158.
Garden Hose, Linen Hose, Lawn Sprinklers, Hose Garden Hose, Linen Hose, Lawn Sprinklers, Hose
Reels, Hose Pipes. Greene, Tweed \& Co., 118 Chamber St., N. Y.
Manufacture of Soaps, Candles, Lubricants, and Glyce rine. Illustrated. Price, \$4.00. E. \& F. N. Spon, New
New Portable \& Stationary Centering Chucks for rapid centering. Price list free. Cushman Chuck Co., Hartford,

Astronomical Telescopes, from $6^{\prime \prime}$ tolargest size. Observatory Domes, all sizes. Warner \& Swasey, CleveEnglish tanned Walrus Leather, Sea Lion, Oak, and Bull Neck Leather for Polishing. Greene, Tweed \& C

HINTS TO CORRESPONDENTS
Names and Address must aceompany. all letters,
or no attention will be paid thereto. This is for our
information References to former articles or answers should
givedate of paper and pageo number of question.
Inquiries not answered in reasonghle time Inquiries not answered In reasionable time should
be repeated; correspondents will bear in mind that
some answers require not a little research, and, though we endeavor to reply to all, either by hetter
orin this department each must take his turn.
ecial Written Information on matters of Special Written In formation on matters on
personal rather than general interest cannot b
expected without remuneration. Scientific winmerrican Suppliements referre
to mayy be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt
price.
Minerals sent for examination should be distinctly
marked or labeled.
(1) H. C. S. writes: To make a dynamo machine like that described in Supplement, No. 161, larger, do you make the iron part larger in proportion
and work with more layers of wire? A. Enlarge the and work with more layers of wire? A. Enl
(2) H. L. B. asks how to connect wires in a battery telephone of three stations using ordinary electric call bells. A. Arrange your line so as
to cut out all the telephones, leaving the bells norto cut out all the telephones, leaving the bells nor
mally in circuit. Any ordinary switch which will cut mally in circuit. Any ordinary switch which will cut
out your telephone and leave the bells in the circuit will answer your purpose.
(3) J. P. L. asks how the zincs and carbons in a bichromate battery for a small incandes-
cent electric lamp are made. A. The zincs are generally cut from sheets of rolled cinc, but they may be not readily be made by a tyro. It is both better and cheaper to purchase them; however, if you desire to
try the experiment of making your own carbon, you try the experiment of making your own carbon, you
may select clean pieces of coke, finely pulverize them, mix with a small quantity !of sirup or molasses into a thick paste, force the paste into a suitable mould, close the mould, leaving vents for the escape of moist
are and gas, place the mould in a muffe or crucible moisture is driven off and the sirup is carbonized allow the mould to cool, then remove the plate from the mould, dip it in very thin sirup, dry, recarbonize, and repeat the operation until the plate is sufficiently dense for use
(4) W. K. D. asks: Please inform me in courespondence column of Scientific American lantern screen transparent, or as much so as white thin
cotton fabric can be rendered? A. Coat your screen with a varnish made of Venice turpentine dissolved in a good quality of spirits of turpentine. A sizing of the best white glue with a little r lycerine added ren
ders a sereen quite translucent. 2. Can I use a 1 inch diameter lens of $31 / 2$ inches focus to any advantage parencies for magic lantern slides, alout one inch wide, i.e., the picture on the slide to be that width? What size stop, if any, should I need, and how far from lens should it be placed? Could I make a bat tery to run Guiscom's electric motor as efficieintly as to buy it ready made by them? Also, please say if you
know what difference in running power there is betwee know what difference in running power there is between
the double induction motor and the V motor made by the double induction motor and the motor mace by Your lens, if of good quality, may be used for phot
graphic purposes in the manner suggested. You should employ different sized stops; a small stop will make camera work deep and sharp but slow. You can make your own battery for runnin.'g your motor. Consult
SUPPLEMENT, Nos. 157, 159.-. We do not know as to the relative merits of the two motors referred to.
(5) R. B. L. asks (1) how to construct a dry kiln to hold about 5,000 feet of lumber. A. The cost in a drying room for lumber depends upon the
method used. If you have exhaust steam, that should be used in preference to live steam. In either case coils of iron pipe are to be placed near the floor with an open platform above for piling the lumber in charge. See Scientific American Supplement, Nos 375 and 479 , for illustrations of drying apparatus. 2 The power of an average man compared with the horse power? A. The power of man at best performance is
from $1 / 6$ to $1 / 4$ horse power. Average men, one-sixth
horse power. 3. What is the best means of transmitting power by pulleys from a horizontal line shaft to one running at right angles? A. A right angle belt is much in use, and gives as good results as any of the
special angle couplers in the market. The right angle
. elt has a quarter twist pessing around idlers on ertical shaft. 4. The best way of constructing rumble" for smoothing chair legs and rounds friction, as is done in a hollow drum; and how fu A good "rumble" may be made from a large, strong cask by mounting it on a shaft with flanges to bolt to the heads with suitable door. Charge half full with material, and a
plish the work
(6) V. E. N.-Choke bore is a slight narrowing of the muzzle of shotguns to prevent the should be choked in boring. A good gunsmith should be able to make a fair job. Barrels are brazed to
(7) W. S. C. writes: 1. We use shavings or fuel. When we fill up the furnace, sometimes there is a puff, and the smoke will come out round the doors. What is the reason of this? A. Gas is formed, which,
mixed with the air, is expiosive. 2. What is a suction mixed with the air, is expiosive. 2. What is a suction A. To ease the motion of the water in the suction pipe nd prevent hammering.
(8) G.-The ear drums you ask about sell for $\$ 3$ per pair, silver mounted. For mending band eighths of an inch. Grind a piece of borax on a piece of slate or roughen earthenece with on a piece paste. Take a piece of charcoal, grind one side flat a stone, and hollow out a place in the middle a lowpipe flame go under the saw. Fasten the scarfed nds of the saw (after dipping in the borax) together with small binding wire, such as is used by jewelers.
Then fasten the scarfed part of the blade over the Then fasten the scarfed part of the blade over the
recess in the charcoal with wire pins, seeing that the w is straight. Lay a small piece of coin silver throw the flame under the blade, heating until the silver melts, when it will flow through the scarf and appear on the under side, and your work is done.
(9) J. A. T. asks amount of pressure
 25 , and $321 / 2$ pounds.
(10) K. G. McL. asks (1) how to temper ay that is used in making cast iron water pipe joints? How to tell tempered clay? A. By its soft, tenacious
(11) F. P.-Valves should have the full rea of the suction pipe, and should lift $1 / 4$ of their
(12) F. D. W.-In the vicinity of New York, tin waste is utilized by the chemical manufacturpolishing powders. The tin scrap is boiled in hydrochloric acid, or sodium hydrates, from which are reduced the salts and pigments used in the arts. Do not
(1) W.
(13) W. T. F.-The difference in presare between the top and bottom of a boiler is due to he weight of the water, which is about $0 \cdot 43$ pound hould make no difference in choice of the place for
(14) P. L. asks: 1. Will an eight horse ower boiler, using steam at 65 or 70 pounds per square nch, run an engine of four horse power (really a six horse engine, but speeded down to four) and heat a room 5×80 feet and room about 25×80 feet, using the ex
haust while engine is running, but having pipe conaust while engine is running, but having pipe con-
nections, so that live steam can be turned in when gine is shut down? The boiler is a first class upght tubular one, having heating surface equal to will not heat rooms and run engine, how large boiler will it need? A. It requires one-half the powe of your boiler to heat the rooms. If you use the exteam when required, you may accomplish considerable conomy in fuel. For this purpose, better consult ith some steam heating engineer as to details. 2. A eating capacity in steam at 60 than at 8 pounds quare inch. Is he right? A. He is wrong.
(15) W. T. F. - Multiplying the square the diameter by 0.7854 gives the area of the piston; une on the piston. To get the mean engine pres ure on the piston. To get the mean engine pres-
ure when a cut-off is used requires a special computation, which you may find in Haswell's Engineer's Pocket Book. A steam gauge will not be harmed at 2 or 3 nches from the boiler, provided there is a siphon below it to keep the steam from heating the interior of he gauge. The firm from whom you purchased the (16) L. J. S.-Cold cellars, as arranged New York on the plan you state, have a uniform mpera pipe surface cubic feet of space, or 1 lineal foot of inch pipe to $31 / 3$ cubic feet of space. The manner of circulating is of importance. It is desirable that the individual circuit
or travel of the brine should not be over 200 feet in ngth, and that the coils should be so arranged that every pipe shall have an equal circulation. The brine
should be kept at near the point of saturation. The iee need not be crushed fine, but rather in lumps, eeping the tank full of ice, with an overflow for the waste brine. The return stream should pour on top the tank with an ample strainer, the salt being fed with the ice. The "tank pumps "are also preferred as a circulating power, as they move nearly twice the quan tity of brine with the same size steam cylinder that the tity of brine with the same size steam cylinder that the
power pumps do. Rapidity of circulation is important.

The circulating pipes should be covered with frost The circulating pipes should be covered with frost
when the conditions are right. There is no better or igerating machine.
(17) W. F. B.-A locomotive built by e Baldwin Locomotive Works, forthe Central Rail road of New Jersey, has made 75 miles per hour on straight track, with 5 passenger cars. There are othe locomotives in England and the United States tha can do as well or possibly a little better for shor drives. See Scientific American Supplement,
Minerals, ETC.-Specimens have bee received from the following correspondents, and ex amined with the results stated
G. B. C.-Nothing definite can be said concerning the gecimen unless it was analyzed. It appears, howeve to be graphite. Its value d
availability of the deposit.

TO INVENTORS.

An experience of forty years, and the preparation of tents at home and abroad, enable us to understand th laws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. In specifications quickly, the applicant can rest assured that his case will be flled in the Patent Office without
delay. Every application, in which the fees have been paid, is sent usually to the Patent Office the same da the papers are signed at our office, or received by mail, often hear from other sources. A synopsis of the pa tent laws of the United States and all foreign countrie may be had on application, and persons contemplating vited to write to this office for prices, which are low in accordance with the times and our extensive facilitie

INDEX OF INVENTIONS

which Letters Patent of the United States were Granted

March 23, 1886,
AND EACH BEARING THAT DATE.
[Seenoteat end of list about copies of these patents.]

Acia comp
schmitt
Acid, etc., apparatus for the manufacture of sul..............................
phurous, Ritter \& Kellne
Alarm. See Burglar ala
motive whistle alarm.
Alloy, o. M. Thowless..................
Atomizer, A. M. Shurtleff.......
Auger, post hole, G. W. Smith
Axle lubricator, B. M. Frelig
Axle lubricator, J. C. Nichol
Axle, roller and ext
Bag. See Hand ba

Bail fastening or clutch, Bail, kettle, J. E. Gaitley

Banjo, B. E. Boyden.
Barium, manufacture of anhydrous oxide of, L

Barrel head, J. R. Allgire.

Bearing, anti-friction, G.
Beehive, W. M. Myers...
Beehive, J. M. Shuck.
Belt, electric, J. H. Woodward
Belt fastener, E. C. Smith
Biliard table leveler, E. A. Hornbostet.........
Binder for music, periodicals, etc., J. C. Koch.
Blacel Blackboard, school, J. Frey Sectional and fol

Boat. See Sectional Boiler. See Steam boil Water tube boiler

Boiler furnace, A. Backus, Jr
Boilers, water heating apparatus for, Welch \&
Crooks...............................
Crooks...
Bolt. Se Door bolt. Indicator bolt.
Bolts, machine for making thimbles for, J. Smith
Bolting r
Bolting reel cloths, cleaner for, G. S. Burnap.......
Boot-tree, E. W. Whitmore...................
Bottle stopper, C. K. Hamiton, Jr...
Bottles, etc., apparatus for rinsing or washing, F.
Bottles, etc., apparatus for rinsing or washing, F.
Cuntz...5887
Bottles, valve stopper for, A. B. Vanes........
Bottles, valve stopper for, A. B. V
Box. See Safety collecting box
Box. See Safety collec
Brake. See Car brake.
Brick, concrete block, etc., H. C. Cowan..
Brush, blacking, B. G. Fitzhugh
Brush handle and holder combine...............
Brushes, etc., rack and holder for

Griswold......... Buckle, J. F. Winte

Buckle, J. F. Winter..................................... Buildings, construction of wooden, c. C. Gilm
Buildings, outer wall of, C.
Burglar alarm, J. E. Church
Burglar alarm, A. C. Tonne
Butter and other materials, treatment of rancid
Button, H. R. Heath
Button, J. S. Hovey
Button and fastening, E. P. Whitney
Button fastener setting instrument, F. H. Rich
ards......................

Cable tension device, T. W. Burt

Can, D. C. Mory, Jr..................
Candy, etc., mixing and heating and cooling kett for, T. Burkhard..
Car braike, M. .
Car braine. M. J. Moriarty
Car coupling, J. C. Fowler
ar coupling, J. C. Fowler...
Car coupling, J. T. Hammick
Car coupling, C. E. Mark (r)
car coupling, w. Powell.
Car doorling, W. Powell.

Carbon from hydrocarbon vapor, apparatus for
producing, hard, J. J. McTighe.............. 338,605 Carbon, manufacture of hard, J. J. McTighe...................... 338,542
Carpet sweeper, J. Hinkley (r)............... Jr... 338,537 Carriage standard, H. Biggs....................................3888,285 Carrier. See Trace carrier.
Case. See Measurc case. Watch case.
Green.. 338,663
service, Stearns \& Grant, Jr................... 338,369
Caster, A. C. Frankel...................................... 338,63
Centrifugal power, continuous apparatus operated
by, A. J. A. Dumoulin..38,393
Centrifugal reel, H. . Be Beerling
Chair. See Invalid chair. Rail chair.
Cheese cutter. E. L. Liedke 338,533
Chimney top, C. W. Carll.................. 338,249
Churn, T. E. Macy... 338,280
Cigarette machine, pocket, 1. I. Arnold.......... 338,580
Clamp. See Keying clamp.
Clarifying extracts, A. Morand...................... 338,431
Clasp. See Spring, clasp.
Clip apparatus for transporting loads by means of

Coffin, B. Morris................. 338,288
338,677
338,607
388588
Comminuted substances, method of and appara-
tus for manipulating, A. Morand...............
Composing stick, C. Frecker.
Copying press, G. W. Williams.......................
Cords in the seams of textile and other fabrics,
method of inserting, J. Pusey................338,613
Cotton chopper, J. C. Farley.........................
Coupling. See Car coupling. Thill coupling.
Coupling. See Car coupling. Thill coupling.
Creamery, N. Yingst...............................
Cultivator, Peters \& Skin
338,577
338,294
ble cutter.
Damper regulator, automatic, J. E. Spencer..
Desk andseat, school, I. Osgood.
Desk, canheol, J. F. Bigger..................................... 3388,6388
Desks, foot rest for school, W. P. Conner......... 388,487
Des.
Ditching machine, tile, H. Sullivant.................. 338,678
Door bolt, S. A. Kintner...
Drier. See Clothes drier. Grain drier. Iumber
Drill frame anchor, E. Bittenbender................. 338,469
Dust collector, N. W. Holt.................. 388,639
Dyeing and washing wool and cotton, machine
Easel, Osborn \& Gregory
Electric coupler, automatic, J. S. . Raworth.
Electric generator, dynamo. C. J. Van Depoele...
Electric machine, dynamo, C. Batchelor...........
Electric machine regulator, dynamo, R. E. Ball.
Electric meter, J. S. Raworth.....................
Electric meter, S. Z. de Ferranti.
Electric motor, G. H. Stout..
lectrical currens, system of generating, C........
Electrical subway, C. C. Gilman.................... 388,321
Electro-magnetic poise adjuster. C. W. Hastings. 338,522
Electro-magnetic poise adjuster. C. W. Hastings.
Electro-magnetic reciprocating engine, C. J. Van
Depoele...........................
Depoele.
Elevator.
Elevator. See Water elevator.
Embroidering machine, E. Cornely........................... 338,488
End gate, wagon, Noyes \& Gardner.......
Engine. See Electro-magnetic reciprocating en-
Engine. See Electro-magnetic reciprocating e
gine. Motive power engine.
Eraser, J. Pusey....................................... 388,299

```
*)
```

ence wire, tension apparatus for, J. M.Overpeck
erments, manufacture of pure non-organized,
iber and fibrous matter, treatment of, F. B.
Fifth wheel, E. M. Simmons................................. 338, 3in
Fifth wheel gear for vehicles, J. G. Ebken........ 338,
File and binder for pamphlets, bills, etc., J. R.
Pitt..............................
File cabinet for papers, etc.., \mathbf{H}
File, newspaper, W. F. Winship...
Files, cabinet for holding paper, H. W. Reade.
Filter, J. C. Higgins.
Filter, J. W. Hyatt...
Filter press, Remmers \& Williamson....
Firearm, breech-loading, J. . . Broyles.
Firearn, safety lock, H. C. Waldecker....
Fire extinguisher, chemical, R. A. Ballou.
Fire extinguisher, hand, W. M. Harrison
Floor and ceiling, freproof, C. C. Gilman. Floor arch, C. C. Gilman......
Floor, fireproof, C. C. Gilman.
Floors and ceilings, construction of..........................
Foot power machine, W. L. Perry........ 338,437
Fruit gatherer, J. N. Rudd................................ 338,303
Fuel apparatus, vapor, A. I. A mbler................. 338,461
Furnace. See Boiler furnace.
Furnace door, J. A. Roney.......................
Furnaces, shaking grate for, C. Scheef...
Gas conveying conduit, J. Schinneller............... 338,
Gas regulator, E. C. McCloy..................... 338,
Gate. See Railway safety gate. Wagon end
gate.
Gate, M. B. \& W. Y. Gordon........................ 338,401
Gate, K. \boldsymbol{H}. . Preston................................
Generator. See Electric generator. Steam gene-
Glue, manufacturing, K. Upton...................... 338,
Grain binder, E. M. Kellogg....................... 338,
Grain drier, M. .. Mowrer.................. 338,
Grain drier, M. L. Mowrer...........................
Grain for fermentation, preparing whole, Ande
sen \& Woolner. Jr..
Grisining mill, L. B.
Hammer, G. F. Hall.
Hand bag, C. H. Buchanan....
Hand grenade extinguisher, w. W. Luyster.
Hand grenade extinguisher, W. W. Luyster.......
Handle. See Knife handle. Rein handle. Stove
door handle. Tool handle.
Harness ring, J. F. Smith
Harrow, W. J. Lane.......
Larvesters, main wheel for, W. N. Whiteley.
Harvesting and binding machine, S. Johnston.
338,568
338.531
338,376
338,273
338.584

Hat brim curling machine, R. Eickemeyer.
Hat brim heating machine. R. Eickemer Hat brim heating machine. R. Eickemeyer...
Hat brims, apparatus for shaping, L. H. Hoyt Hat brims, setting press for c Hat sizing or felting machine, F. Bauer. Hay rake, horse, H. A. Alden. holder. Paper bag holder. Splasher holde Tool holder.
Hoof pad, E. F. Collins..
Hoof parer, Glock \& Mo
Hoof parer, Glock \& Moo
Houk. See Clothes hook
Hoop fastener, N. Newman
Horse boot, S. Taylor.
Horse detacher, D. Singletary
Hose, machine for
Coultaus.......................................
rico
Hydraulic jack, C. Huebner.
Ice machine, O. H. Castle
Indicator. See Sta indic...
Indicator bolt, A. E. Barrett...
Iron. See Sad iron
Jack. See Hydraulic jack. Wagon jack.
Kegs, device for branding,
Key ring, T. W. Heury.
Keying clamp, R.S. Abernethy
Knife. See Pocket knife
Knife handles, manufacture of, H. C. Hart
Knitting machine, F. A. Calley..............
Lacing cords, fastening for, W. H. Blaney
Ladder, A. T. Hyde........
Lamp, street, W. P. Butler
Lantern, signal, G. Wells.
Lathe rest, P. O'Neil..
Lead or crayon holder, J. Appleby
Lead or crayon holder, J. Pusey
Lead or crayon holder, J.
Lead press, W. A. Shaw.
Lift or hoist, C. G. Major
Lift or hoist, C. G. Major...........................
Lock. See Combination lock. Firearm safety Safe lock. Switch lock. Vehicle seat lock. Locomotive whistle alarm, C. Hults.
Log turner, W. Ingalls..
Lozenge machine, N. A. Clacher
ubricator. See Axle lubricator. Sight feeding
Lumber, device for binding together, J. T. Bar-

Masher, vegetable, W. J. Johnson
Masher, vegetable, W.J. Jo
Measure case, tape, W. Keu
Measure tape, A. T. Hyde..
Measures, attachment for tape,
Huber.......................................
Measuring electrical currents, apparatus for, J.
Huber........
Mechanical movement, G. F. McIIdoe.
Metal rods or wire, apparatus for reducing,
Reese..
Bisbee

Mill. See Grinding mill. Mine ventilator, H. Davies.
 Mosquito canopy, R. Mitchell

Motive power engine, P. W. Willans
Motor, G. Haydn..
Mouse trap, L. H. Gear.
Mower. lawn, Campbell \&
Music satchel, E. Thayer
Musical instrument, mechanical, F. E. P. Ehr
lich.
Musical instruments. reed plate for, F. J. Brand
Necktie fastener, B. M. Fish
Nut lock, M. W. Tucke
Oiv cake, manulacture of, W. V. Kay.............
Ovens, attachment for, bake. L. B. Linthicum. Overshoes, clasp fastening for, F. Richardson.. Paint composition, J. McArthu Paint, composition for removing, G................
Painting bobbins, etc., machine for, L. c. Bald Pan. See Vacuum pan.
Pan. See Vacuum pan.
Pants, attachment for, H. J. Lyon
Paper, apparatus for the man
Richardson................
Paper bag holder, D. M. Karns
Paper bag holder, D. M.
Pavement, C. C. Gilman.
Pavement, C. C. Gilman.............
Pavement, concrete, A. L. Barber
Pavements, eonstruction of concrete, A. L. Bar

Permutation lock, H. Clarke

Phaeton spring, W. J. Wayne................
Pianos, repetition action for, H, Schallehn
Pictures and photographs, mount for, R. H. L
E. Talcott..........

Pipe wrench, H. M. Wilson.................
Pipes, expansion joint for, S. T. Hughes
Pitcher, sirup, Osborn \& Fritchey
Plane, bench, \boldsymbol{d}. A. Traut.
Planter, corn, S. E. Hake.
Planters, check rowing attachment for corn, E. F.
Crawford......
Plow, A. Wilhelm
Plow, combination, W. Y. Oliver
Plow jointer, G. B. Casaday.
Pోỗ, wheel. M. P. Farnham
Pocketbook lock. G. Hood..
Pocket knife, Crandal \& Jopson
Pocket knife, J. Pusey....
Pole tip. carriage, G. L. K
Press. See Copying press. Filter press. Hay
Printing machine, chromatic, J. T. Hâwkin
Printing machine, cylinder, C. B. Cottrell...
Printing machine, stop cylinder, C. B. C
Printing machine, yarn. E. J. Stephens
Printing machines, sheet straightener
delivery apparatus of, C. B. Cottrell.

Stove back, 0 . Bond

Stove door handle, J. G. Whitlock............338,4
Stove door knob and handle, J. E. Gaitley......
Stoves, vapor burning apparatus for cook, Brow

Strainer for water and other fluids, R. H. Hey..
Streets scraper and snow plow, G. G. Gibson......
Stretcher for conveying wounded persons, W. Johnstone..
Strut connection, hollow, A. T. Hyde.........................
Sulphites, manufacturing, Ritter \& Kellner. sulphites, manufacturing, Ritter \& Kellner.......
ing supporter.
Wwitch lock and throw bar, w. B. S. Reed.........
Trable. See Railway transfer table. Tillors. ting table. Turntable. Table leaf suppor

```
Target, flyng. F. J. Curran...
```

elegraph, printing, S. D. Field
Telegraph register, L. Winterhalder
Telephone, mechanical, A. W. Steige
Telephone receiver, Dann \& Lapp .
relephone receiver, Dann \& Lapp
Telephnne transmitter, Dann $\&$ Lapp
Temperature of a substance passing through
line of piping, method of and appa
regulating the, J. A.
Thill coupling, P. G. Dausc
Thrashing machines, band cutter and feeder fo
S. M. Graumlich............
S. M. Graumlich......................
Tiles, manufacture of, Bayer \& Puchta
mee register and alarm, elect
Tool handle, A. Gilliam.
ool holder, E. Waters.
Tool holder, F. W. Weiss....................................
Torvedoes to railway rails, instrument for attach
ing, A. B. Shaw...................
Trace carrier, S. \& W. E. Swengel.
Trap. See Mouse trap.
Truck, car, W.II. H. Sisum
Tube expander, W. I. B. McHale
urn table, G. T. Par
uyere, W. G. Miller
$\begin{array}{r}338,591 \\ .388,560 \\ \hline\end{array}$

DESIGNS.
Bor, W. C. Estes.
Drawer handle. A. $. ~ R o u x . . ~$
Mantelpiece, E. Hardy..........
Oilcloth, C. T. \& V. E. Meyer.

TRADE MARKS.
Cigars, F. P. Norton................
Cigars and cigarettes, G. A. Scott.
Cigars, cigarettes, and smoking
Cigars, cigarettes, and smoking and chewing to-
bacco, W. Duke, Sons \& Company.
Corset covers, B. Altman..
Flour, wheat, W. Lea \& So
Guano, C. Spear, Jr.....
Hair reviver, W. Moro.
Preparation for treatment of the circulation and
organs connected therewith, J. J. Mack \& Co Soap, laundry, Pugstey, Dingman \& Co...........
Stoves, ranges. heaters, and furnaces, and the partst hereof, Richardson \& Boynton Company
Ypsilanti mineral water and all the various pro-
Ypsilanti mineral water and all the various pro-
ducts of the same, T. C. Owen...............13,12
A Printed copy of the specifications and drawing of
ny patent in the foregoing list, also of any paten issued since in the foregoing list, all be furnished of any patem this office for 25
ind cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 361 Broadway, New York, We also furnish copies of patents
granted prior to 1866; but at increased cost, as the
geecificationk, not being printed, must be copied by granted
specific.
hand.
Canadian Patents may now be obtained by the
inventors for any of theinventions named in the forenventors for any of the inventions named in the fore-
going ilist, at a cost of $\$ 40$ each. For full instructions
address Munn \& Co., 361 Broadway, New York. Other $\xlongequal[\text { Pfovertisements. }]{\text { torelgs patents may also be obtained. }}$

 Purchasers
mittea tor return
b Express C.o. . D. for ful purchase price
at any time within lirity days, thus
giving an opportunthy for comporturn
with on ot her man

CET THE BEST AND CHEAPEST

PERIN BAND SAW BLADES,

Inauguration of the New Series,
1886. Thirteenth. 1886.

INDUSTRIAL
EXPOSITION.
Opens Sept. 1st. Closes Oct. 9th.
 Manufactures-Art-Inventions-Products. Open to the World.
 NO COMPETITIVE AWARDS.

All Articles witibe enterde fors
For full particulars admron, Secretary.
L. H. McCAMMO

Special Machines for Car Work, and the latest improved
Wood Working Maehinery of ail kinds.

Mechanical Boiler Cleaner.

E. W. Van duzen,

STAMPED METAL GOODS,
ew Brunswick, N. J.
 Ingersoll Rock Drill Co, OPARK PLACE, New Yon
ROCK DRILLS nprored Stone Channeling Machines, Gadders, Quarry Barrs, Plug
and Feat ther Drills, and and Fenther Drills, and
eneral Quarrying Machinery.
Send for fuldeserig AMERICAN STEAM BOLLERINSURANCE CO.,

Joshua Rose's Great Treatise on Steam Engines.
in press, for early publication.

 HENRYCAREY BAIRD \& CO., INDUSTRIAL PUBLISHERS, Booksellers \&importer

JUST PUBLISHED.

Electro-Deposition

By Alexander Watt. Crown 8vo, 568 Pages, - Price, $\mathbf{8 5 . 0 0}$. D. VAN NOSTRAND, Publisher, Nos. 23 Murray and 27 Now

IMPORTANT BOOKS.

A Catectism of the Stram Eny ino in its varion

 ories. pid ana ox,

 s.0.0.

 For sale by all bookseluers; or will be scnt by m
paid, on receerpt of price.
D. APPLETON \& CO., Publishers, D. APPLETON \& CO., Pablishers,
 FOREIGN PATENTS. Their Cost Reduced.
The expenses attending the procuring of patents in
most foreign countries having most foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inven-
tions abroad CA NADA.-The cost of a patent in Canada is even
less than the cost of a United States patent, and the less than the cost of a United States patent, and the
former includes the Provinces of Ontario, Quebec, New Brunswick, Nova Scotia, British Columbia, and Manitoba.
The number of our patentees who avail themselves of
the cheap and easy method now offered for obtaining the cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadily increas-
ENGLA ND. -The new English law, which went into torce on Jan. 1st, 1885, enables parties to secure patents
in Grea ritain on very moderate terms. ABritish patent includes England, Scotland, Wales,Ireland and the
Channel Islands. Great Britain is the acknowledged financial and commercial center of the world, and her
goods are sent to every quarter of the globe. A good goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patentee in England as bis United States patent produces for
him at hame, and the small cost now renders it possible for almost every patentee in this country to secure a patent in Great Britain, where his rights are as well protected as in the United states.
on very reasonable terms in Erance Belgium, obtained on very reasonable terms in Erance, Belgium, Germany,
Austria, Russia, Italy, Spain (the latter includes Cuba and all the other Spanish Colonies), Brazil, British ludia, Australia, and the other British Colonies.
An experience of Forty years has
publishers of THe Scientific americuntoest the competent and trust worthy agencies in all the principal foreign countries, and it has always been their aim to have the business of their clients promptly and proper ly done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
of all countries, including the cost for each, and information useful to persons contemplating the pro curing of patents abroad, may be had on application to this office.
MUNN
entific American aitors and Proprietors of THe Sct ENTIFIC AMERICAN, cordially invite all persons desiring
any information relative to patents, or the registry of trade-marks, in this country or abroad, to call at their offices, 361 Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mail promptly
answered. Address, \qquad Publishers and Patent Solicitors, Branch offices: No. 622 and 624 F Street, Pacifl Building, near 7th Street, Washington, D. C
 granh Instrument and boork by mand , propait, on receeip
of 83.35 . Satisfaction guaranteed or money refunded.

THE NEW "GRESHAM" PATENT
 Invaluable for use on Traction, Farm, Portable Marine, and Stationary Engines of all kinds. No Handles requined. Water Supply very dificult to
break. Capability of restarting immediately, automatically, after interruption to feed from an cause. Reliable and Cheap.

Sole Manufaotarers in the United States and Canada,
Nathan Manufacturing Co.
92 \& 94 LIBERTY ST., NEW YORK send for catallogue.

NEW YORK BELTING AND PACKING CO.
 Vulcanized Rubber Fabrics RUBBER BELTING, PACKING, AND HOSE, Mats and Matting, and Stair Treads, \&c. BIOTOIE TIREIE, OAR BPRINNGE,

Branches

IS THE ONLY MACHINE That knits hosiery or tubular work of all sizes.
That narrows and widens on hosiery or tubular work.
That knits a regular, right-angled hee such as is knit

That narrows off the toe.
That knits as aso
That sto sing complete.
knits mittens and gloves of any size without a That forms genuine Ribbed or Seamed work.
That knits the Double, ,lat, or tancy wesb. button-holes.
That knits the Afghan Stitch, Cardigan Jacket stitch,
Faitcy Ribbed stitch, the Raised Plaid stitch, the Nubia stitch, Shell stitch, Unique stitch, Tidy stititch, etc., etc.
It is now the Standard Machine for Manufacturing,
and the Only Family Knitter that fills the Bill.

Lamb Knitting Machind Manufacturing Co,
Boxs5, chicopee falis, mass.,u. s. a.

© New Catalogue of Valuable Papers containe in Scientiftc AmkiICAN SUPPLEMENT, sent
free of charge to any address.
MUNN $\&$ CO... 361 Broadway, N. \mathbf{y}

BOOKWALTER ENGINE. compact, Substantial. Econom-

price of $\begin{aligned} & \text { HOM } \text {, etc., } \\ & \text { HORSE POWER }\end{aligned}$.

JAMES LEFFEL \&
Springino
110 Liberty St., New York.
Draftsman', Adjustable rie Ruler, makes an
shape curve, $\begin{aligned} & \text { ri.50. } \\ & \text { R. } \mathrm{F} \text {. Send for card. }\end{aligned}$ WAVENPORT, Providence

\% ${ }^{\circ}+$ HALF A IILLION GARDENS SEEDS
 Our Seed Warehouses, the largest in Now York, are fitted up with every ap pliance for the prompt and careful filling of orders. 目 Our Green-house Establishment at
 pliance for the
 Our Catalogue for 1888, of 140 pages, containing colored plates, descriptions and litustrationss of the NEWEST, BEST and RAREST SEEDS and PLANTS, will be mailed on recelpt of
 PETER HENDEESSN \& CO, ${ }^{35}$ \& 37 cortand 8 \&

CURE Fill DEAF

 PILES. Instant rellef. Final cure in 10 days, and

e, by addressing C.J. MASON, 78 Nasseau st., N. Y.

 Adroes Prof E. C. FOWLERE, Moodus Conn.

WEAKMEN!

WEAK, UNOEVELOPEO PARTS

Pfovertisements.

To Business Men.

tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal now published. It goes into all the States and Territories, and is read in all the principal libraries and reading rooms of the world. A business man wants something more than to see his advertisement in a printed newspaper. He wants circulation. This he has when he advertises in the Scientific american. And do not let the advertising agent influence you to substitute some other paper for the Scientific American, when selecting a list of publications in which you decide it is for your interest to advertise. This is frequently done, for the reason that the agent gets a larger commission from the papers having a small circulation than is allowed on the Scientific American. For rates see top of first column of this page, or address MUNN \& CO., Publishers, 361 Broadway, New York. MRロP FПFGING5

Telegraph and Electrical
Melcal Baterese PPLIES
H.W.JOHNS ASHRESTOS
Steam Packing, Building Boiler Colt,
Fire Prings, Fire Proof Paints, Cements, Etc. H. W. JOHNS M' F 'G CO., 87 MAIDEN LANE, N 175 Randolph St., Chicago; 170 N. 4th St., Philadelphia

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas. ICE-HOUSE AND COLD ROOM.-BY R.

 COMMON SENSE CHAIRS, SETTEES

 men. send stamp for catalogue to
F. A. sIINLAIR, Mottrill, Onon-
daga Co., New York. DEAR SIR:-Your Rocker is rich
1y worth nill it cost ine. By the
comfort of your chairs, you make Nawp 18,1878 ICE-BOATS - THEIR CONSTRUCTION and management. With working drawings, details, and

 HARRIInal and only Builder ot thfine With Harris' Pat. Improvements, from 10 to $1,000 \mathrm{H}$. P

PATENTS.

MESRS. MUNN \& CO. in connectinn with the publi-
cation of the SCIENTIFIC AMERICAN continue to ex-
amine imurovements, and to act as Solicitors of Patents amine iuprove.
for
Pnventors.
In this line of business they have had forty one years'
experience and now have unequaled facilities for the preparation of Patent Drawings, Speciffcations, and the
prosecution of A pplications for PPatents in the United grosecution of Appications for Patents in the Unite
States, Canada, and Foreign Countries. Messs Munn
Co. alsoattend to the preparationof Caveats, Copyright

 mUNN \& Co., Solicitors of Patents,

(8)JWNKINS BROS: VATVES. Gate, Globe, Angle, Check, and Safety.
MANUFACTURED OF BEST STEAM METAL MANUFACTURED OF BEST STEAM METAL. To avoid imposition, see that valves are stamped "Jenkins Bros."

79 Kilby St., Boston,

EPPS'S
GRATEFUL-COMFORTING. COCOA WIREROPE
 ers, Trenton, and
Whend
send for circular

GABEISGINTE

 Machins Send Tor tustrated Catalogue.

ECONOMIC MOTOR CO.,
Office and Salesrooms, 9 CORTLANDT 8T. NEW YORK.

Frenton Iron Co.

 95 MILK ST., BOSTON, MASS.This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th,

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequence thereof, and liable to suit therefor.

$\operatorname{CH} \mid\left[D^{\circ}\right.$

9ROUPTu

§cientific Ammricau

The Most Popalar Scientific Paper in the World. Only $\$ 3.20$ a Year, including Postage. Weekly This widely circulated and splendidly illustrated teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechantcs, Manufacture New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity Telegraphy.Photography, ArchiChemistry, Electricity Telegraphy, Photography, Arch All Classes of Readers find in the Scientific formation of the day; and it is the aim of scientiflc in to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in Terms of Subscription.-One cops of the Scien TIFIC AMERICAN will be sent for one vear- 5 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the pable six monihs, $\$ 1.60$; thre months, $\$ 1.00$.
Clubs.-One extra copy of the Scientific Amert an $\$ 3.20$ each; additional copies at same proportionate The safest way to remit is by Postal Order, Draft, or f envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., pay

MIUNNV \& CO.,
361 Broadway New York.
TETE
Scientific American Supplement. This is a separate and distinct publication from
THE SCIENTIFII American, but is uniform therewith in size, every number containing sixteen large pages. weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in Useful arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, A rchæology. Astronomy, neering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photogriphy,
Technology, Manufacturing Industries, Sanitary EnTechnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Econo-
my , Biography, Medicine, etc. A vast amount of fresh my, Biography, Medicine, etc. A vast amount of fresh
and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated with
engravings. subjects is
engravings.
The most
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are represented and described in the Suppiement.
Price for the SUPPLEMENT for the United States and Canada. 85.00 a year, or one copy of the ScIENTIFIC AM-
EnICAN ERTCAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$ 7.00$. Address and remit by postal for one year for $\$ 7.00$. Address and remit by postal
order. express money order, or check, MUNN \& Co.. 361 Broa
To Joreign Subscribers. - Under the facilities of the Postal Union,the Scientific American is now sent by post direct from New York, with regularity, to subBritish colonies; to France, Austria, Belgium, Germany, Mexico, and all other European States; Japan. Brazil, Texiç, and all States of Central and South America. \$4, gola, for SCIENTIFIC AM LCRICAN, one year; $\$ 9$, gold, for both Scientific American and Supplement for
one year. This includes pcstage, which we pay. Remit MUNN \& CO., 361 Broadway, New York.

PRINTING INESS.

