svicutific © ${ }^{\text {An mexicam. }}$

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 PUBLISHED WEEKLY atNo. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 Une copy, one year, postage included.One cons, six

8320
160
Clubs.--One extra copy of The Scientific Amprican will be supplied
gratis for every club of tive subseribers at same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN \& CO, 361 Broadw
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

The Scientific American Supplement

is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages. uniform in size
with SCIENTIFIC AMERICAN. Terms of subseription for SUPPLEMENT, With scientific american. Terms of subseription for SUPPLEMENT, all newsdealers throughout the country
Combined Rates.-The Scientrific american and Supplement papers to one address or different addresses as desired.
The safest
The safest way to remit is by draft, postal order, express money order, or registered letter.

Scientific american Export Edition.

The Scientific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
arge quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERI-
CAN. with its splendid engravings and valuable information; (2) Commercial; trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the to secure foreign trade may have large and handsomely displayed anouncements published in this edition at a very moderate cost.
Thation in all commercial places throughout the world. Address MUN \& CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, MARCH 13, 1886.

TABLE OF CONTENTASTS
SCIENTIFIC AMERICAN SUPPLEMENT
No. 538

For the Week Ending March 13, 1886.

Price 10 cents. For sale by all newsdealers.

1. ENGINEERING, ETC.-Prince's Bridge, Melbourne, Victoria.A Simple Process of Lowering Concrete under Water.. 888 Sibley College Lectures.-Principles and Methods of Balancing
erces Developed in Movir Bodies.-By Chas. T. Porter.- 5 Forces
flgures.
The
The Use of Iron in Fortiffation.-Cupola for Hotchkiss gun
cupola for coast defense, etc- 3 furures.....................
A Description of the Charlottesville Water Works, Va.-By E. D
The Chnlais-1spuden Rulicon...................................... Sciences by Capt. Reva ro-- With en
Liquid Fuel compared with Coal.....

TECENOLOGY-Malt Making
TECHNOLOGY.-Malt Making.-ByH. Stopes.-Orizin and pro. ress of the industry.-The malt tax.-The material used in maltucts....
Shoring. -The various kinds of shoring and uses of the same..998
Translucent Pictures.-Process employed, Translucent Pictures.--Process employed,
Working of Sugar Cane, Sorghum, or Corn
Working of Sugar Cane, Sorghum, or Corn Stalks for the Manu-
II. PHYSICS, MICROSCOPY, ETC.-Action of Light.-Effect chlorine and hydrogen on light.-Color blindness:-Experiments of Dr. Pringsheim, Dr. Konig, and others... Liquefying Common Ai
Microscopic Writing...
V. ARCHITECTURE-Cast Iro Wo................................... 8501 Prize Design for Suburban Howse - National silver medel - An engraving.

Design for a C
. ASTRONOMY.-The Shooting Stars of November 27, 1885, as observed in Different Countries.-3 engravings...
I. PHYSIOLOGY AND HYGIENE.-The Gait of Nervous Persons. 8 Recent Observations in Micro-biology and Their Bearing on the
Evolution of Disease and the Sewage Question.-By F. J. F Evolution of Disease and the Sewage Question.-By F. J. Faraday.
How Old do Meous.-A N
How Old do Mares Breed?.

UNSUCCESSFOL INVENTORS:

Inventive talent may exist and yet be atterly useless to its possessor. There are persons whose keen observation detects readily the need of improvement in some crude device, or whose capacity suggests some new thing or better method, but who are unable to devise the one or to give form to the other. Lack of persistence, cowardice in the face of discouragement, want of mechanical experience, ignorance of natural laws, one or all combine to bar the road to success. If the time and talent misspent on attempts to achieve perpetual motion had been directed to some possible improvement, the advance in mechanical art would be greater than it is. There are mechanics who ridicule the idea of discovering the means of perpetual motion, who are not ashamed to employ their time and skill on an absurdity fully as ridiculous. There is a bright mechanic, somewhat of an inventor in a small way, living in an Eastern city, who has been for several months trying to produce a road vehicle that shall run by weight, or by two weights, depending on the motion of the vehicle itself to wind up the weights as they run down.
His idea is that the motion of the vehicle on the road is a gradual accumulation of power-a reservoir of force, like the flywheel of an engine-and that this force may be utilized to give out power sufficient to rewind the weights as often as they run down. His model, which is a very workmanlike toy, runs over a smooth floor with great velocity, and the momentum of its speed does suffice partially to wind up the operating weight, and thus gives it another (somewhat feeble) start from a condition of almost rest. The mechanic hopes to give greater force to the winding-up arrangement, and make his self-propelled vehicle successfui over city streets and good roads.
His belief in the power of mechanical devices to develop more power than is imparted is not an uncommon one; the expectation of getting more than is given is a common hallucination-it is the universal desire. But mechanical contrivances can only divert and direct power; they cannot create it.
Some would-be inventors go ahead with their work, and make their calculations with no regard to the element of friction; but with the most favorable appliances this hinderance to motion cannot be eliminated. The writer has seen a top, which was a metallic ring with a thin web connécting the pintle and point, run, after being speeded, thirteen minutes on a plate of glass. In this case, friction was reduced to a minimum, but it was acting continuously from the time the top was started until it finally brought it to rest. The elements of weight, atmospheric resistance, rubbing of surfaces, and imperfection of workmanship. combine to produce friction, an obstacle that no mechanical device can overcome.
The inventor sometimes misdirects his efforts; the means employed to compass a result may be inadequate or unfit, or the object may be valueless. There are bona fide inventions which are not even improvements. It is useless to waste thought, time, and money on some mechanical device to do what can better be done by hand, yet this is frequently done. The success of the inventor is more nearly assured when he is a practical workman, able to make a drawing, to construct a model, or, at least, to make a sketch and whittle out his idea; for verbal explanations to the professional model maker are not always clear. It is true, however, that some very valuable inventions have been conceived by men who were not practical mechanics, but how much of the success was due to the intelligent skill of the model stated in the letters patent

HARDENING CAST STEEL.

It is no uncommon event to have a nicely finished tool or other article spoiled in the hardening. This is the more vexatious because the cause of the disaster frequently cannot be discovered. Defectivesteel can usual ly be detected by a flaw. Overheating can be guarded against, and there may be invitations to a fracture which are avoidable. Pieces are sometimes lost in hardening because they are not properly prepared for the exacting test of fire and cold water. A piece of greatly varying dimensions will sometimes fly when it touches the bath, even if the heating has been even and suant." Especially is this the danger if there is In such cases, it is better to leave the piece unfinished and more uniform, and afterward finish it by grinding. The writer has been quite successful in such cases by dipping the thinner portion first-when the form of the piece would admit of it-and then the thicker por tion, which would half temper the thin portion by its remaining heat before the entire piece was chilled. But articles of very disproportionate dimensions may be casehardened in some instances and be equally durable.

Cast steel articles containing cavities should always be provided with vents. A die block containing a die sunk depression, not more than five-eighths of an inch 2 deep, was ruined by being cracked in hardening, be
cause the workman carelessly dipped it face-downward.
A workman made a hollow mill for turning fixed studs on a casting. The hole in the mill was threequarters of an inch diameter and two and a quarter inches deep. The mill was made from a round bar, two and a quarter inches diameter, as the radial teeth on the end were to face up a bearing more than two inches diameter at the bottom of the stud as well as to turn the stud. All around the hole there was threequarters of an inch of solid metal. The piece was heated over an open charcoal fire, and dipped perpendicularly in the bath to a depth of about three-quarters of an inch, the remaining heated portion being relied upon to draw the hardened end. But the tool cracked more than half way around. A second mill shared a similar but worse fate, for on withdrawing it from the bath a broken portion was left behind, the mill having cracked entirely around. A pinhole was drilled in a third tool near the bottom of the hole and the hardening was successful, the minute hole being a vent.
Sometimes a piece of cast steel is so massive that while it may be heated clear through-the heating being a gradual process-the hardening, being sudden cooling, chills the outside while the inside is still at a considerable degree of heat. In such cases, a fracture nay be expected, caused by the expansive force of the interior heat on the chilled and brittle esterior shell. Such an instance was afforded by the breaking of a solid steel tap, three and a half inches diameter, in hardening. The tap was cut to a pitch of eight to the inch, and finished. A piece from the lower end, two nches long, broke square off in the bath. The appearance of the fracture indicated that absolute hardening had extended slightly beyond the bottom of the teeth, the interior portion being apparently unchilled. The remedy in this and in similar cases is to drill a hole from end to end through the center of the piece.

Electric House Lighting by Primary Batceries.
Numerous attempts have been made to obtain a successful incandescent electric light by means of secondary storage batteries, charged from dynamos, but, owing to the small amount of electricity obtained in com parison with the power required, these batteries have so far, we believe, not been proved to be a commercial success.
One of the latest improvements inthis direction has been the production of a primary battery, named the "Aurora," whịch is really an improved bichromate soution battery, having a power which is remarkable for its size, and the advantage of not polarizing, heating; or evolving any deleterious gases. Each cell holds about a gallon of the exciting fluid, which, we are inormed, is made by a peculiar patented process, and is the important factor in the success of the battery.
Two large carbon plates are placed outside of the porous cup, and in the latter is inserted the zinc, of a special form to expose a large amount of surface. In the porous cup is put water, which in a few hours. becomes charged with the exciting fluid from the outside jar. The zincs are well amalgamated to prevent local action. We recently attended a private exhibition of a complete system of house lighting by the use of this battery, as introduced into the residence of Mr. Henry V. Parsell, of this city, and were agreeably surprised to notice the power of the battery in sustaining with beautiful brilliancy several incandescent lamps, and he facility with which they could be lighted.
In a room adjoining Mr. Parsell's laboratory, together with a fine large screw-cutting geared lathe and other highly polished steel tools, were located on shelves twenty-eight cells of battery. None of the tools were corroded or in the least damaged by reason of fumes emanating from the battery.
In addition to its use as a lighting battery, it was shown that it could be employed as a motive power for driving the large lathe, by means of a small Cleveland electric motor, developing a force equivalent to onethird of a horse power.
A special switch was provided, which enabled the perator to utilize atonce tre force from one to twenty cells, as might be needed. Nođifficulty"w experienced in rapidly boring, with large sized drills, through blocks of the hardest wood, two inches thick.
Many novel uses of the lamps were shown; half a dozen six-candle lights pláced in a cabinet of minerals, when turned on, instantly lighted it perfectly. In a dome in the ceiling of the laboratory, painted blue and decorated with gilt stars, were hidden from view a group of small lamps. These when lighted produced a very soft, radiant effect, giving a light similar to that of a full moon on a clear night.
A special small Edison lamp of 40 candle power placed in a magic lantern was next lighted, and the pictures in the lantern thrown upon the screen. The brilliancy of the light compared favorably with the lime light.
A peculiar dark room ruby light, for photographic purposes, was shown, and also the perfect adaptability of small lamps for illuminating safely dark closets Adjustable lights with neat porcelain shades mounted

