Sorresponderce.

Can a Celestial Body Fall to the Center of Its Attraction?

To the Editor of the Scientific American:
Newton demonstrated that from gravity a moving orb will assume an orbit corresponding to one of the four conic sections, with the controlling body at the focus of the curve. Now, from this law, is it possible for a celestial body to fall to the body around which it revolves, i. e., to leave the perimeter of its orbit and pass to the focus thereof? It has been said, even by men of science, that were the earth stopped in its orbit it would fall to the sun. If Newton be correct, the earth, thus stopped, would not fall to the sun, but would make a perihelion passage around that body and assume a new orbit, for, from the moment it started toward the sun, it would move and continue in a curve of a section of the cone. A binary system of stars is an example where suns have fallen toward each other, but, keeping to their mathematical curves, have made mutual perihelion passages without ever coming dangerously near each other.
If Newton's theory is correct, Mayer's theory of solar maintenance (from meteoric impact) is untenable.
E. B. Whitmore.
${ }^{(R}$ Rochester, $\mathrm{N} . \mathrm{Y}$.

A Plan to Heat the Cold Wall.

To the Editor of the Scientific American:
Instead of damming the Straits of Belle Isle to keep out the cold water, as so ably suggested by Mr. John C. Goodridge in your paper of October 31, I propose that we place waterwheels and friction contrivances in the Straits, so as to heat the water as it comes through during the winter season. Stop the wheels in sum mer.
By these simple expedients the water will be made to warm itself, and a southerly moving, genial, warm climate of the adjacent countries during the winter while the refreshing coolness of the cold wall may still be enjoyed in summer. Furthermore, this plan obvi ates all risk of changing the climate of Europe or Great Britain.
I hereby file this my caveat of priority upon the general idea of making streams of water heat themselves in winter by friction, without the use of coal-applicable to all great rivers, such as the Hudson, Ohio, Missis sippi, Missouri, and others in this and other countries, which are now frozen solid, and commerce suspended in winter. Incalculable benefits to the world must ensue when my discovery is adopted.
O. B. Server.

The Word " Atlantic."

To the Editor of the Scientific American :
Referring to Dr. Le Plongeon's note, in your edition of the 7th instant, I have to deny that my former note contains any error-even a "tiny wee" one. When I used the expression "sea beyond Mount Atlas," I did not offer it as a translation of the Greek words, but merely as explanatory. Dr. Le Plongeon, in attempting to correct a supposed error of mine, has "put the cart before the horse" in his translation of the Greek words as the "open sea Atlantic," since the meaning is just the reverse, viz., the "Atlantic open sea," or, to substitute an equivalent English adjective for the Greek one, the "Atlasian open عea."
In answer to Dr. Le Plongeon's query as to where the Greeks obtained the word ' $\alpha \tau \lambda \alpha \nu \tau$ тжо5, $-\varkappa \eta,-\varkappa о \nu$, I would say that they formed this adjective from ${ }^{2} A \tau \lambda \alpha s$ (gen. ${ }^{*} A \tau \lambda \alpha v \tau 05$). As I before intimated, the ocean was so-called because it lay beyond Mount Atlas. As regards the etymology of Atlas, I would say that the best Greek scholars derive the word from α (euphonic) and $\tau \lambda \alpha 5$, participle of $\tau \lambda \tilde{\eta} \nu \alpha \tau$, 'to bear,' 'to endure,' which is from the Aryan root tal, ' to bear,' ' to lift,' ' to sustain,' whence also Sanskrit tul, 'to lift,' Latin tollere, 'to lift,' 'to bear,' Gothic thulan, 'to endure,' Anglo-Saxon tholian and English thole, 'to endure.' (Cf. also the derivative Atlantes, used in architecture as a name for male figures employed in place of columns to support an entablature.) The meaning of the word is evidently the 'bearer' or 'sustainer.' How the mountain came to receive the name of the god is a question of mythology which does not concern us.
So much for the Greek; now for the Nahuatl: Dr. Le Plongeon derives the word atlan from atl, 'water,' and tlan, 'near,' 'between;' but the real meaning is, rather, 'water country.' Titlan is, in Aztec, a locative suffix meaning 'land,' 'place,' 'country,' and, in its abbreviated forms, -tlan and -lan, is found in many place names; for example, Mazatlan, 'deer country,' Quauhtemallan (whence Guatemala), 'wood-pile place,' Huaxtlan, 'land of acacias,' Tzapotlan, 'land of the sapote,' Mixtlan, 'land of clouds,' etc,

a new apparatus for measuring electric

 CURRENTS.These new amperemeters and voltameters are made without permanent magnets, thus removing cominon cause of error. The principle on which they operate is based on the action of a solenoid on a bunch of soft iron wires placed movably within it, and maintained by an opposing force.
To obtain this result in a practical way, the apparatus is formed of a bunch of soft iron wires placed within a float, and put in a test tube filled with water, and surrounded by a bobbin through which the surrent to be measured passes. The initial position of the float, regulated by the constant level of the liquid, being always the same, it is evident that it will have a positive fixed equilibrium, sinking to a certain depth, which is varied by the strength of the current which passes through the bobbin, but is alway the same for the same electromotive force. The upper end of the rod of the float forms the index, which moves over a vertical graduated scale. The float rod passes through and is guided by a metallic eye in the liquid, thus preventing friction by contact with the sides of the tube.
By varying the dimensions of the bobbin and of the bunch of soft iron wires or of the float rod, a move-

ment of any desired length can be obtained for a given current. In the models, which have been very carefully made by Mr. Carpenter, a displacement of ten centimeters (4 inches) corresponds to a current of from 10 to
volts.
The bobbins of the amperemeters are formed of only one or two layers of very coarse wire; they may have a resistance of only one one-hundredth to two onehundredths of an ohm; the apparatus can, then, be introduced without inconvenience in almost any electric circuit. The bobbin of the voltameter is of fin wire, and has a resistance of about 1,700 ohms.
The apparatus is very sensitive, and is not visibly affected by changes of temperature, by the presence of metallic masses, or even by powerful magnets.

Experiments with the Lime Cartridge.

M. Mathet in L'Echo des Mines et de la Metallurgie, has recently described some experiments which have been made at the Blanzy mines, with a view to determine the bursting power of sime cartridges before employing them on a large scale, the cable testing machine supplied by Falcot, Meyret \& Co., of Lyons, being used to measure the pressure. The cartridge was cylindrical in form and of the following dimensions: Diameter, 65 millimeters; length, 86 millimeters; surface of base, $33 \cdot 16$ square centimeters; total surface, $241 \cdot 76$ square centimeters; volume, 285 cubic centimeters; weight, 550 grammes. The cartridge was inclosed in a lead casing 3 millimeters thick, which it fitted exactly, a space of a few millimeters only being left for the admission of water. The whole was then introduced into a cast iron cylinder, provided with two openings, one of a large size serving for the introduction of the cartridge, the other being to enable the whole of the vessel to be filled with some incompressible liquid; this latter opening was hermetically closed by a plug. The larger opening was fitted with a cast iron cylinder in which a piston moved, and this piston was in connection with the testing machine. The cartridge being placed in position, water was injected, and the outer vessel filled with mercury. After one and a half minutes, the balance registered a pressure
of 2,000 to 2,500 kilogrammes ; after this first period of 2,000 to 2,500 kilogrammes; after this first period
of pressure there were a few moments of repose, after which the pressure again gradually increased, the results of a large number of experiments showing final pressures varying from 3,160 to 6,600 kilogrammes; but these figures are considerably lower than the real pressure exerted by the cartridge, as a leakage of mercury could not be avoided. The cartridges used

