Not one of the cartridges in the drill holes is connected with wires, nor is one to be exploded by electricity.
Extending from wall to wall in each of the galleries, and at intervals of about 25 feet, are timbers, 3 by 5 inches, as shown in Fig. 9. Tied side by side upon each one of these timbers are two dynamite cartridges like those already described as filling the mouths of the drill holes. Tied upon each pair of these cartridges is a mine exploder, represented in No. 5 (Fig. 7). The en tire mine is divided into 24 independent circuits, each circuit representing or covering a certain section. Within each circuit are 25 fuses or mine exploders.
A wire from the surface of the rock at the mouth of the shaft leads from one fuse to the next until the 25 fuses are in the same electrical circuit, the other end of the wire, of course, returning to the surface Each of the 24 circuits has its own wire. The wire circuit is shown at 1 and 2, Fig. 9. We now come to the electrical firing apparatus, shown in Fig. 10. We will suppose one end of each wire of each circuit to be + and the other -. All the + ends are dipped in mercurycontained in a cup, and all the - ends in mercury in a second cup. It will be seen that if the mercury in these two cups be united by a wire, we shall have a complete electrical circuitembracing every fuse or mine exploder in the excavation.
Leading from the left hand or + cup is a wire secured to one pole of a battery; and leading from the opposite or - cup is a wire, C, which extends to the bottom of the middle cup, which contains only a little mercury. The wire, B, leads from the other pole of the battery, and is held suspended over the mercury in the center cup. It is evident that, when the wire, B, enters the mercury in the center cup, the circuits through the mine and battery will be completed, and the fuses discharged.
At A is a fuse held to the string carrying the wire, B, by a half hitch. One wire passing through this fuse is grounded, while the other leads to the shore, where it also is grounded; a battery on shore is placed in this circuit. The current through the shore wire explodes the fuse, A , which breaks the cord and allows the wire, B, to drop into the mercury in the cup; the mine is then exploded. It will be observed that the wire, B, enters the cup a short distance. This is in order that the mine may be exploded even if anything should happen to the shore wire or battery, or if the explosion of the fuse, A, should fail to break the string holding up the wire, B. The outlet of a vessel containing mercury is placed over the center cup. It has been ascertained by experiment just how long it will take the mercury running from this vessel to fill the cup up to the end of the wire, B. The flow has been so gauged that after all the apparatus has been arranged, there will be ample time for the boat to go from Flood Rock to the shore; then the current will be sent through the shore wire.
Should the shore wire fail, there will be nothing to do but wait until the mercury has filled the cup to the wire, B. The shore connection was devised mainly for the benefit of scientists, who will be located in the vicinity, and who wish to make observations of the vibrations of the earth caused by the explosion. The current will notify them of the exact instant of explosion. The failure of the shore wire would of course deprive them of this most important point, but would interfere in no way, as mentioned above with the firing of the mine.
The electrical current will explode the 600 fuses or mine exploders (Fig. 9), when the dynamite cartridges projecting from the drill holes will "explode by sympathy," as it is termed, and thesein turn will discharge the rack-arock placed behind them. Each cartridge is rendered more sensitive by the exploder embedded in it. The explosion of the 40,000 cartridges containing 75,000 pounds of No. 1 dynamite and 240,000 pounds of rack-a-rock will completely break up the 9 acres in which they are buried, so as to render easy the final operation of dredging the broken rock. The cost of the improvement is estimated at $\$ 1,000,000$.
The Harlem River improvement contemplates the building of a deep water channel from the East River through the Harlem from the East River through the Harlem River and Spuyten Duyvil to the Hudson
River, as shown in the map, Fig 11. Above River, as shown in the map, Fig 11. Above
the Third Avenue bridge to the entrance of Dyckman'sCut into the Harlem, the pier and bulkhead lines will be 400 feet apart. The line through rock at Dyckman's Meadows
will be 350 feet wide, and from there to the Hudson 400 feet wide. From Third Avenue bridge to lower part of Randall's Island the width will be 500 feet, and from there to the East River 800 feet wide. Betwoen
Morrisania and Randall's Island the channel will be Morrisania an
350 feet wide.
All the work at Hell Gate was designed by Gen. Newton, to whose perseverance, industry, and skill we owe the successful opening of one of the most important entrances to New York; the last operation-blowing up Flood Rock--fittingly completes, by its great magnitude and the rare difficulties it presented, long years of well
directed effort. During the past few years the work at Flood Rock has been under the supervision of Lieut. G. McC. Derby, who has without accident of any kind, or any delay, succeeded in performing one of the most arduous pieces of mining ever attempted. We wish

Fig. 11.-MAP SHOWING HARLEM RIVER IMPROVEMENT.
to acknowledge the kindness of Gen. Newton and Lieut. Derby, who furnished us data.

an improved wrench.

The wrench shown in the accompanying cut has many admirable features-it adjusts itself to either pipe, nut. or stud; owing to the form of the forward or movable jaw, it can be used to fit corners about mahinery that cannot be reached with other forms of wrenches; and owing to the fact that it has three bearings on the pipe, the latter is not liable to be crushed. The serrated or holding surfaces of the movable jaw are at right angles to each other; this jaw is pivoted in a fork projecting from the side of a fixed sleeve on the end of the handle, and a spring presses the holding portion of the jaw toward the end of the handles, which is also serrated. By pressing upon the rear end of the movable jaw bar, the jaws may be opened to their widest extent. The metal (best steel) is so distributed as to make those parts which are subjected to the severest
strain exceedingly strong. The wrench is easy to han strain exceedingly strong. The wrench is easy to handle, exerts a powerful grip, and may be instantly freed rom the pipe. It is manufactured in sizes, taking pipe from one-eighth inch to five inches, the smallest

This wrench is manufactured by the Porter Manufacturing Company, of Revere, Mass.; The Eaton, Cole \& Burnham Company, of 82 and 84 Fulton Street, New York city, are sole agents.

An Electric Railway in Toronto.

The Vandepoele electric railway was recently put in operation in Toronto, in order to carry passengers from the horse cars to the fair grounds, a distance of one mile. Trips were made in two and a half minutes, and large numbers of passengers were carried
over the road daily.

Rapid Steaming by the Etruria.

The Cunard steamship Etruria arrived at New York August 22, from Liverpool, having made the fastest trip in the record of Atlantic traveling. Time from Queenstown to Sandy Hook, 6 days 5 hours and 31 minutes. The fastest previous passages were made by the Oregon of the same line, and were: Westward, 6 days 10 hours and 10 minutes, just a year ago, and eastward, 6 days 6 hours 41 minutes, in December. 1884. The Etruria's previous trip eastward, reckoning to Fastnet only, was made in 6 days 5 hours and 35 minutes.
Following is a table of the runs made on the different days during the Etruria's last voyage:

Run.

Run.	Miles
Liverpool to ueenstown	
From leaving Queenstown to noon August 17	424
24 hours to noon August 18.	464
24 hours to noon August 19....	450
24 hours to noon August 20	465
24 hours to noon August 21.	464
24 hours to noon August 22	465
From noon to 3:35 P. M. August 22	71

The Etruria is built of steel, has a gross tonnage of 8,000 tons, and upward of 14,000 horse power; her length over all is 520 feet, and extreme breadth 57 feet 3 inches.

a Grear Caryo of Lumber.

Mr. J. K. Ward, the well known Montreal lumberman, gives the following in the Guzette of that city: Probably the largest cargo of sawed lumber that has ever been shipped from Canada left this port to-day per steamship Regius, Capt. Kayll, on account of Bryant, Powis \& Bryant, of London, Eng. It consisted of 1,272 St. Petersburg standard three inch deals, or $2,518,560$ feet board measure, equal to ten large barge loads of 250,000 feet each. If it were in one inch boards it would cover a farm of 60 acres, and require the pine product of say 1,000 acres of ordinary forest land, such as we have to depend on for our future supply. This shipment may suggest to the minds of many the great importance of the future of our leading industry. There is no questioning the fact that our country is fast being depleted of one of its most important elements of prosperity. and that it behooves not only the lumbermen and the government, who are directly interested, but also every member of the community, to do what they can by expression of opinion or otherwise to protect that that cannot be reproduced in our day.

Texas Copper Deposits.

According to a Texas newspaper, the copper region of that State is of great extent, running westward rom Red River, from the line of the Indian Territory, hrough several counties, prominent among which are Archer, Baylor, Knox, Hardeman, and Cottle. The district is approximately in latitude 32 degrees north, with Red River to the north as well as the east, and the Brazos River to the south. The copper deposits were discovered by General George B. McClellan, in 852. In that year, McClellan, then a lieutenant in the army, was detailed by Jefferson Davis, Secretary of War, to accompany an expedition up Red River into Texas and Indian Territory. While on this duty Lieutenant McClellan found important deposits of rich copper ore near the point where Cache Creek empties into the river, and some miles above it was discovered that Red River flowed through apparently solid beds of the valuable mineral. In the same locality rich gold bearing quartz veins and placers were found, and all the conditions pointed to the existence of a mining district of great possibilities. To complete the romantic history of the discovery of copper in Texas, it is only necessary to add that General McClellan is now, after the lapse of a third of a century, the leading spirit engaged in the development of the deposits. The Grand Belt mines, in which he is largely interested, are fifty miles from Harrold, in interested, Wilbarger county, from which latter point forty wagons are at present engaged in hauling coke to the smelter. The smelter is an experiment, but has a capacity of forty tons per day, and is suitably provided with engine, blower, pumps, etc. All told, the McClellan company's patented claims embrace some 36,000 acres, stretching sixty-five miles along the ore belt. Upon this vast property they have made probably sixty shallow openings of an average depth of seven or eight feet. The ore is found principally in shallow pockets, and at the main point of taking out is said to average about 54 or 55 per cent metallic copper. Some of it is supposed to be very rich in silver. The most promising opening at present being worked by the company is at Kiowa Peak, the center of Motley County, some sixty miles west of Margaret, the county seat of Hardeman County.

Science Leads to Economy of Time and Labor．＊
How exultant is the old Greek peet Antipater （＂Analecta Veterum Græc•rum，＂Epig．39，vel．ii．，p． 119）when women are relieved of the drudgery of turn ing the grindstones for the daily supply of corn Weman，you wne have hitherte had to grind corn let your arms rest for the future．It is no longer for you that the birds announce by their songs the dawn
of the morning．Ceres has ordered the water nymphs of the morning．Ceres has ordered the water nymphs
to move the heavy millstones and perform your labor．＂Penel•pe had twelve slaves to grind corn fer her small household．During the mest presperous time of Athens it was estimated that there were twenty slaves to each free citizen．Slaves are mere machines， and machines neither invent nor discover．The bond－ men of the Jews，the helots of Sparta，the captive slaves of R॰me，the serfs of Eurøpe，and uneducated laborers of the present day，whe are the slaves of ign• rance，have added nothing to human progress．But than slave labor，liberty follows ad vancing civilization． Machines require educated superintendence．One shee factory in Beston by its machines dees the work of 30,000 shセemakers in Paris，whe have still to ge threugh the weary drudgery of mechanical labor．The steam pewer of the world，during the last twenty jears，has risen from $11 \frac{1}{2}$ million te 29 million horse pewer，or 152 per cent．
Let me take a single example of how even a petty manufacture impreved by the teachings of science af－ ects the comforts and enlarges the resources of man kind．When I was a bey，the only way of obtaining a light was by the tinder box，with its quadruple mate－ rials，flint and steel，burnt rags or tinder，and a sulphur match．If everything went well，if the box could be found and the air was dry，a light could be obtained in twe minutes；but very often the time occupied was much longer，and the process became a great trial to the serenity of temper．The consequence of this was that a fire or a burning lamp was kept alight through he day．Old Gerard，in his Herbal，tells us how cer－ tain fungi were used to carry fire from one part of the cuntry to the other．The tinder box long held its pesi－ tion as a great discovery in the arts．The pyxidicula gniaria of the Romans appears to have been much the same implement，though a little ruder than the flint and steel which Philip the Good put into the collar of the（iolden Fleece in 1429 as the representation of high knowledge in the progress of the arts．It con－ tinued to prevail till 1833，when phosphorus matches were intreduced，though I have been amused to find that there are a few venerable ancients in Lenden whe still stick te the tinder bex，and for whom a few sheps
keep a small supply．Phosphorus was n new discev－ keep a small supply．Phesphorus was ne new discev－
ery，for it had been obtained by an Arabian called Bechel in the eighth century．H॰wever，it was forgetten， and was rediscovered by Brandt，whe made it out of and was redisc \bullet vered by Brand
very stinking materials in 1669 ．
very stinking materials in 1669 ．
Other disceveries had，h७wever，to be made before it
Other disceveries had，however，to be made before it
could be used for lucifer matches．The science of com－ bustion was \bullet oly developed on the discevery of exygen a century later．Time had to elapse before chemical analysis showed the kind of bodies which could be add－ ed to phosphorus se as te make it ignite readily．Se it was n七t till 1833 that matches became a partial suc－ cess．Intolerably bad they then were，dangerously in－ flammable，horribly poisonousto the makers，and inju－
rious to the lungs of the consumers．It required rious to the lungs of the consumers．It required
another discovery by Schrotter，in 1845 ，to change another discovery by Schrotter，in 1845 ，to change
poisonous waxy int innecuous red－brick phesphorus， in order that these defects might be remedied，and te give us the safety match of the present day．

N•w，what have these successive disceveries in sci－ ence done for the nation，in this single manufacture， by an economy of time？If before 1833 we had made the same demands for light that we now de，when we daily consume eight matches per head of the pepula－ tion，the tinder box could have supplied the demand， under the mest faverable conditions，by anexpenditure of one－quarter of an hour．The lucifer match supplies a lightin 15 seconds on each eccasion，or 112 minutes for the whole day．Putting these difference inte a year， would require to spend 90 hours yearly in the produc－ would require to spend 90 hours yearly in the produc－
tion of light，while the user of lucifer matches spends 12 hours；se that the latter has an economy of 78 hours yearly，or about 10 working days．Measured by cost
of production at 1 s ． $6 \mathbf{d}$ ．daily，the econ of preduction at 1s． 6 d．daily，the ecenemy of time re－
presented in money to our population is $£ 26,000,000$ an－ nually．This is a curious instance of the manner in which science leads to economy of time and wealth even in a small manufacture．
In larger industries the economy of time and labor preduced by the application of scientific disceveries is
beyond all measurement．Thus the discevery \bullet latent beyond all measurement．Thus the discovery of latent
heat by Black led to the inventions of Watt，while that of the mechanical equiralent of heat by Joule has been the basis of the progressive imprevements in the steam engine，which enable pewer to be obtained by a consumption of fuel less than one fourth the amount
used twenty years age．It may be that the engines of

[^0]Watt and Stephensen will yield in their turn to more economical motors；still they have already expanded the wealth，resources，and even the territories of Eng－ or all the treaties neg•tiated by her diplomatists．The coal which has hitherto been the chief source of power probably represents the product of five or six million years，during which the sun shone upen the plants of the carboniferous period，and stored up its energy in this convenient form．But we are using thisconserved
force wastefully and predigally；for，although horse pewer in steam engines has se largely increased since 1864，tw \bullet men only now preduce what three men did at that date．It is only three hundred years since we be－ came a manufacturing country．According to Profes－ sor Dewar，in less than two hundred years more the coal of this country will be wholly exhausted，and in half that time will be difficult to precure．Our not very distant descendants will have to face the problem －What will be the condition of England without coal？ The answer to that question depends upen the intel－ lectual development of the nation at that time．The value of the intellectual factor of production is contin－ ually increasing，while the values of raw material and fuel are lessening factors．It may be that when the dreaded time of exhausted fuel has arrived，its imperta－ tion from other coal fields，such as those of New South
Wales，will be se easy and cheap that the increased technical education of our eperatives may largely $\bullet v$ balance the disadvantages of increased cost in fuel But this supposes that future gevernments in England will have more enlightened views as to the value science than past gevernments have pessessed．
Industrial applications are but the overflowings of science welling over from the fullness of its measure． Few would ask n॰w，as was constantly done a few science？＂Faraday once answered this question by another，＂What is the use of a baby？＂Yet round that baby center all the hopes and sentiments of his parents，and even the interests of the State，which in－ terferes in its upbringing se as to insure its being a cap able citizen．The processes of mindowhich produce a discevery or an invention are rarely asseciated in the same person，for while the discoverer seeks to explain causes and the relations of phenomena，the inventor aims at producing new effects，or at least of obtaining them in a nevel and efficient way．In this the inventor may sometimes succeed without much knowledge of science，though his labors are infinitely more product－
ive when he understands the causes of the effects which he desires to preduce．

An Architect＇s Responsibility．

An architect is the chief builder，according to the crrect derivation of the word，but his responsibility for the safety，stability，and permanency of works that are being executed under his direction is a dif is directly responsible，not alone for accidents which may eccur in building operations（all of which he may make geod financially），but also for loss of life and his empley，if the same occurs through negligence to provide the proper labor and material necessary to carry on the work in safety．It is not always easy to draw the line at the point where an architect＇s re－ spensibility ends and that of a builder begins．There are sucl．hazy notions prevalent in regard to an archi－ tect＇s superintendence，and the amount of responsi－
bility it entails，that it is difficult to fix respensibility in any given case．The American Institute did ne help matters much by their somewhat elaberate defi nition of superintendence．In this there was a dis－ tinct effort to define the duties of an architect as re－ gards superintendence，and especially to show that an architect was not a clerk of works，and bound to de－
vote an unlimited amount of time in superintending． There was n七thing，h॰wever，intending to fix respønsi bility for peor work．This is left，wisely or unwisely， to the parties directly concerned，in case it should be necessary to determine respensibility．It seems to us that a general principle can be laid down which，if borne in mind，might prevent misconceptions．Let it be understood，first of all，that an architect by super－
intendence does not assune what must necessarily aways be a builder＇s risk， \boldsymbol{i} ．e．，the risk arision from imperfect materials or peor laber．Even if an archi－ tect has passed upon a portion of the work which is afterward found defective，the builder is not thereby relieved，and in any event he cannot transfer his di－ rect respensibility for peor work，ne matter when or how detected．On the other hand，an architect is clearly responsible for the result，in case his plans and specitications are strictly followed，and the construc－
tion has been according to his directions．If it should transpire in any case where a defect was found，that it was due to imperfect design，peorly conceived plan－ ning，or bad construction，either theoretical or practi－ cal，we think an architect becomes liable for damages The trouble is，however，to prove that the defect was brought about by any such cause．We speak of
legal proof－of the kind necessary to sustain action
for damages－not of the conviction which every well－ informed man has，after examining into a defect，as to the cause of it．For instance，suppose a building urn out when done to be peorly lighted and ill ven－ ticable manner，or that there are various absurd and ticable manner，or that there are various absurd and
crazy features which will entail future expense in re－ crazy eatures which will entail future expense in re－
pairs，or thet there are any features which will not adjust themselves to the practical requirements for which the building was built．An architect is cer tainly respensible for any such mistakes，and yet we have never heard of an action to recover based on them．

A case like the following will illustrate the differ－ ence between the architect and builder as to responsi bility for a disaster：Suppose a high wall of masonry where there were tall windows separated by piers， should fall dewn．The respensibility for this would depend，first，on the question of labor and material being all right；second，as to whether the proper pre cautions had been used；and third，as to whether the wall itself or through weak piers was unstable accord－ ing to the plans．If on investigation it turns out that the mortar was peor，or that the stones were poorly bonded，or that the wall was not secured in any way while building－no shセring supperts being used－then the builder has to bear the blame and sustain the noney loss．If the builder alleges that the archi－ tect saw the mortar frequently without remark，and gave ne directions concerning securing the wall，and that hence he is alse respensible and liable，the claim is not geod，and cannot be sustained．It is possible that poor mortar and imperfect work may escape the closest supervision，although，of course，this is not likely －eccur with a thørøughly capable superintendent Even the capable superintendent may be cheated，how ever，in the most ordinary building \bullet perations．Hence t is just to hold the builder respensiblefer any disaster aue to imperfect work or materials，even if the super－ intending architect has passed upon the work that is involved．The principle at stake here is one that finds expression in many contracts，as fellows：＂Under the superintendence of－＿，architect，whe shall have full right at any time to reject such work or material does not，in his opinion，conform to the truc mean－ ng of the plans and specifications．＂The words＂at any time＂are unmistakable in their meaning，but even without them the principle will be sustained， that the safety of the walls is at the solc risk of the builder，as far as ordinary imperfections are concerned The architect would be responsible for thc fall of the wall in case it was established that it was inherently weak in its design，and that good material and labor were not sufficient te make it stable．The wall might not be thick enough for the height to which it was car－ ried，or the piers dividing the windows might be too weak structurally．Any such cause of troublc as this clearly lays the blame upon the architect＇s shoulders． Further than this，if the materials havo been accord ing to specifications，and it is established that they were inadequate to do the work they were called upen \bullet de，the architect must be held liable．
Sometimes an accident occurs where no one is eally to blame，and thero is difficulty in fixing upen the person whe is liable；at least，there is a disposi tion to waive responsibility where there is n• blame attached．Suppose \approx trusc should give way，causing the fall of a roof，and upen investigation it was found that it was owing te a defect in theiren tie red－a de fect that might have stood the test at the mill，and of such a nature that no one could be aware of it． The builder，feeling that ho was not to blame for the disaster，net unnaturally seeks to cvade financial re sponsibility，but he is liable to the owner neverthe－ less，and he in turn ought to recover damages from he peoplc of whom he bought the red．
－the earnest architect every really important vilding that he has charge of brings a higher kind of responsibility than the kind we have been discuss－ ing．Whether the builder is technically liable or not，the architect is morally liable，and n• mishap can occur witheut damage to his fame．An architect lit－ erally has to entrust his roputation to the builder and his workmen，and the public will hold him strictly respensible，justly or unjustly．－Building．

Alfrein E．Moore，of Winsted，Cenn．，made a forty－ six mile journey in thirty－five minutes in a balloon， the 24 th of September．The trip was made at an ave－ rage of 6,000 feet abeve the earth，and rrom this alti－ tude he could see the cities of Hartford，New London， ew York，New Haven，and Bridgeport，like mere dots， through the glass．In speaking of his experience，he said：＂Balloons，in descending，frighten the crows and poultry terribly．Geing over farmhouses．I never heard such a racket in my life．When you are far up and above the clouds，the awfulsilence is terrible．You can hear the watch tick in your pocket，and the snap－ ping of a straw hat will make you start．The rushing f blood through your whole body is an experience you wouldn＇t care to have lest．There is ne sensation of neving along，when，perhaps，you are going at the rate

[^0]: ＊From Sir Lyon Playfair＇s address，Britısh Association，Aberdeen．

