

(1) C. W., Jr., asks: 1. What kind of clay is used in clay modeling, and where could it be ob-
tained? A. The clay used for this purpose is specially prepareol, and can be obtained from dealers in in artistst
materials. 2. How are those papier mache ornaments materials. 2. How are those papier mache ornaments
made. That
mis, what is the process they go through? A. The substance of the paper, i.e., the paper pulp, as
suitably mixed and then pressed into moulds. The ar-
ticles shop Receipts, 1st series, under title "Papier Mache" shop Receipss. 1 st series, under titie "Papier Mache. used for breeding purposes only? A. About $\$ 1.50$ per
pair. 4. In taking tintypes, 0 o ou have to develop them immediately after exposing them in the camera, or could you wait for some time? How long could
you wait? A. The developing must be done immedi. ately.
(2) C. W. G. asks the best receipt for
toothache and neuralcia. A. Cocaine hydrochloride as a local anesthetic is frequently used for the cmuruplad atu mentioned; its effect is of course but temporary.
(3) W. T. asks: Can you give me the process of oxidizing silver? A. Add four or five thou-
sandths of ammonium sulphide or potassium sulphide to water, at a temperature of 160° to 180° Fah. When th articles are dipped into this solution, an iridescent
coating of silver sulphide is produced, which after a coating of silver sulphide is produced, which after a
few seconds turns blue black if allowed to remain in the liquid. Remove, rinse, scratch brush, and burnish
(4) S. A. C. asks (1) how the liquid preparation for silver plating that is sold by street men is made. and if it has any vaiae for the purpose of
plating small articles? A. Dissolve 1 ounce crystals of silver nitrate in 12 ounces soft water. Then dissolve in the water 2 ouncess optassium cyanide. Shake the
whole together, and let it stand until it becomes clear. Have ready some half ounce vials, and fill them half
full of Paris white or fine whiting, and then fill up full of Paris white or fine whiting, and then fill up The silver coating is not as teuacious to the article as
${ }^{(5)}$ J. L. M. asks what the wheel is made of, and how made, that turns up the iron rollers
true, or the new iron fiouring mills. A. The rollers are turned in a lathe to the desired size, and then planed in their centers in a planing machine that has a de
vice for turning the roller as much as required for the spiral groove, while the planing tool cuts lengthwise spiral groove, Whine the planing tool cuts enithwe roller. The turning device has a division feed
of the motion to eaualize the grooves. For chilled rollere
anemery wheel is used for the cutter, the other \boldsymbol{d} vice being the same as for ordinary rollers.
(6) J. E. M. asks for a good quick hardening cement for serewing wrought iron pipes to
gether for ammonia gas. A. Rubber cement mixed with boiled linseed oil and plumbago. Rub the linseed oil and plumbago into a paste, and then mix the rubber
cement, about equal parts. Thin, if required, with a cement, about
little benzine.
(7) J. G. M.-The classification of the magnitudes of stars is not definite, but rather arbi-
trary, as there are no two stars, especially of the larger trary, as there are no two stars, especially of the larger
magnituies, that are exactly alike. There are assigned by astronomers about 14 of the brightest stars 3 magnitude, etc.c; all of which vary greatly in bright. 30 magnituate, etc., all of which vary greaty A probematic
ness within the limit of their grades. planet beyon
tronomiers
(8) C. W. C.-We cannot give the per centage of gain of composition tubes over iron. It is
very small and subject to great variation by the condition of cleanliness. They are very little used in station of ceaniness. They are very liable to leak than
tionary bilers. They are more lia
iron tubes. We cannot recommend them. (9) C. M. asks a rule for ascertaining diameter of any shaft required to transmit a given of shafts for transmitting a given horse power. For prime mover:

$\sqrt[3]{\frac{100 \times \text {. } P . ~ P . ~}{\text { Revolutions }}}$

For secon

$\frac{50 \times \text { H. P. }}{\text { P. }}=$

M T. asks: 1. If I exhaust the air from a cylinder with an air tight piston, thereby creat-
ing a vacuum, and then release the piston so that t fies back by means of atmospheric pressure, will it strike
with greater force in proportion to the distance it felles as in case of falling bodies under infuence of gravity? A. Yes. 2. If so, how shall I calculate the force of the
blow? A. Multiply the weight in pounds by the velocity in feet per second, which will give the momentum in foot pounds. You cannot make use of gravity in the
computation of the fall of the piston, as a vacuum acts computation of the fall of the piston, as a vacuum
as a force which accelerates the fall by gravitation.
(11) J. H.-Canceled postage stamps are stace stamps for collections.
(12) T. J. W. asks how egg shells are engraved upon. A. The egg. are first dyed any suitable
color, and then the desired figures are produced by an color, and then the desired tigures are prow uced by an
etching needle or any sharp pointed instrument produc(13) H. S. H. desires (1) a recipe for the Geilage whichis used on postage stamps. A. Take of Gum dextrin
Acetic acid.
Water
Dissolve in a water bath and add alcohol 1 part. 2 . inside? A. After using, clean with benzine, then coat
with a little armor oil, just sufficient to form a thin film in the barrel.
(14) M. E. R. asks how to get rid of A. Boilfour ouncesquassiachips gallon water, for 10 minutes, and add 4 ounces soft soap
This is said to be excellent for the destruction of black ants. Pulverized borax sprinkled over eaves of green wormwood, scattered amon, the haunt dislodging them.
(15) J. H. asks how to put a bright gloss on pearl, such as knife handles and other mother
of pearl articles. A. Go over it with pumice stone nely powdered, washed to separate the impurities and dirt, with which polish very smooth; then apply putty
powder and water by a rubber, which will produce fine gloss and good color. We understand that Vienna lime is likewise used, but the finish is produced by
(16) C. A. B. desires a good recipe fo ement for cementing glass to wood. The wood has an A. Melt resin and stir in calcined plaster until reduced
and to a paste, to which add boiled oil, a sufficient quantity
to bring it to the consistence of honey; apply warm or, dissolve glue in boiling water to the consistence of cabinet maker's glue, then stir in sufficient wood
ashes to produce a varnish-like mixture. While hot, ashes to produce a varnish-like mixture. While hot,
the surfaces to be united must be covered with this d together
(17) E. H. writes: The granite base to our soldiers' monument is badly stained by the coloring
matter from black cambric cloth which was used as drapery on the occasion of General Grant's death? Is here anything known which will remove the stain readily? A. We would recommend you to try the following: Mix one part by weight of American pearl ash with three parts quickstone lime, by slaking the lime in water and then adding the pearl ash, making the
mixture of about the consistence of paint. Lay the above over the whole of the work required to be cleaned let it remain 14 to 16 bours, when the coloring can easily
be scaped off. Either of the caustic alkalies might be ound to act very satisfactorily. Their efficiency would (18) J. H. F. asks: 1. What will take andch stains out of marble? A. Spots from sulphur
and phosphorus caused by lucifer matches can be exand phosphorus caused by lucifer matches can be ex-
tracted from marble by carbon disulphide; or take 2 parts of common soda, 1 part of pumicestone and part of finely powdered chalk; sift it through a fine
ieve and mix it with water; then rub it well all over the marble and the stains will be removed, then wash the marble over with soap and water, and it will be as cean as it was at first. 2. Recipe for making the so
called gloss paint (white paint having a smooth and lossy surface). A. This paint consists of French zinc xide ground in dammar varnish.
(19) C. F. S. asks (1) the composition of a liquid for mixing bronze, one that will dry quickly
and leave the work bright. A. The so-called gold and leave the work bright. A. The so-called gold
liquid, which can readily be purchased from dealers in Iquid, which can readily be purchased from dealers in
paints, etc.. consists of wax dissolved in benzine or paints, etc.. consists of wax dissolved in benzine
of a mixture of japan in turpentine. Both are used. Also the process of applying smalt to signs to give hem the sanded appearance? A. Any desirable pig to the surface, and before it dries completely the smalt is sanded on by means of a pepperbox-like vessel. 3 .
What is used by manufacturers of ready mixed paints What is used by manufacturers of ready mixed pain
to give the fine gloss which most of them possess? the farnishes are used.
(20) J. G.-The word "pitch" has many applications, and is not only used to denote the distance
betweenthreads of screws and teeth of wheels, but also he distance a screw travels without regard to its relations with any other thread, and in this sense is applied
to screw propellers, the measure of which is counted along the axis of the screw. The designation of mulified, as 11 screws should be, in all cos or as in finea, as $1 / 8$ inch pitch double or triple, or, as in
machine shop phrase, 8 thread single, double or triple hread. In your case the master was right.
(21) W. A. H. asks what the red machines, and what its use is. A. It is shellac varnish colored with vermilion. The varnish is applied to im-
prove the insulation; the vermilion is simply to impart prove the insulation; the vermilionis simply to impart
(22) W. A. P. asks: I am making the dynamo described in Supplement, No. 161, and I would
like to know what wind the electro-magnet with No. 19 wire instead of No 16? What number wire should I use on the armature,
if No. 19 was put on the magnets. A. The finer wire would increase the resistance of the magnet, so that have a higher electromotive force. To secure this, the armature should be wound with finer wire, say No. 20
(23) Electro writes: I am engaged in dark electro bronzing. I want to give it a green backturn with heat. The articles that I speak of are grate
fronts, the designs are deeply engraved, the raised part
to be left bronzed, background green, so as to have two
colors. A. It is difficult to suggest;anything that will fulfill all the conditions. Try a paint composed of fine green smalt and water glass.
(24) J. L. asks: 1. I should like to know the electro-magnet described in Supplement,
No. 161, should be soft or common cast iron? No. 16, should be soft or common cast iron? A.
Soft cast iron is preferable. 2. What sort of iron should thearmature be cast from? A. Soft gray iron.
3. If a machine of this kind would be good for electroplating; if not, for what reason? A. Yes, if wound with coarser wire, say Nos. 12 and 14 instead of 16 and
18. 4. What is vulcanite, or how could I find out how it 18. 4. What is vulcanite, or how could I find out how it
is made? If I cannot get it, what is the next best thing is made? If I cannot get it, what is the next best thing
to use? A. Vulcanite is hard rubber. It can be purto use? A. Vulcanite is hard rubber. It can be pur-
chased from any dealer in electrical supplies. Hard
ood will answer the purpose.
(25) W. A. P. writes: I am making the dynamodescribed in Supplement, No. 161, and would
like to know how many feet of wire I will need for like to know how many feet of wire I will need for
magnets and for armature? A. For the magnet, about magnets and for armature? A. For the magnet, about
500 feet; for the armature, about 40 feet.
2 . Could such a dynamo be driven by a weight and a clock movement? If so, how would it be best to regulate the
speed? A. It could bedriven in that way, but it would be impracticable. The weight would have to be large, and would require frequent winding. A governor, such
(26) F. A. R. asks how an electric wind ial can be constructed to show the direction of the done by providing a circular row of contacts to be touched by an arm carried by the vane. The contacts
will be connected each with one of a circular row of by the spindle of the index in the office. The cremain ing terminais of the magnets are connected by a wire the battery being electrically connected with the spindle of the vane. It would be better, if the arrange-
ment of your office will permit, to extend the spindle (27) W. A. M. writes: 1. Some time ago bought of a New York optician a crown glass ob ject glass, for a telescope, 8 iuches in diameter, and of
72 inches focus. I had a metal tube made and squared at both ends, and the object glass 1 had mounted, and bought me an eye piece of the same firm that made the
object glass. After setting up the telescope, I failed to get any view. It (in looking at the moon) seemed
blurred, and I c uld not make out anything. What is the trouble. Where have I gone wrong? I thought the trouble was in the length of focus, but I have trie give it up, after going this far. A. Although yo should get an image with your objectglass, you should
not expect first class results from a non-achromatic obnot expect first classresults from a non-achromatic ob-
jective. The eye pieceshould be of rather low power and you would probably gain considerably in definitio
by reducing the aperture. Possibly you by reducing the aperture. Possibly you may have
omitted to blacken the inner surface of your tube; any refiection from the innersurface of the your would im pair the efficiency of the instrument. 2. What is the best exterminator for cockroaches? A. Persian insect
powder blown into the crevices around the range an powder blown into the crevices around the range and
sink, if persisted in, will exterminate them. Phos phoric paste is also efficient. They may be trapped in an ordinary cuspidor, by placing some molasses in it, and providing some sort of an approach by which they
can climb to the top. They readily get in, but cannot escape, as they are unable to walk over the smooth inclined surface of the cuspidor. 3. The keys of my them bright again? A. Rub them down with fine
pumicestone and water, then apply a thin paste of chloride of lime, finally exposing the keys to the sun(28) W. H. writes: 1. I have a smal electro-magnetic battery; its cell is composed of a car-
bon cup an inch and a half diameter by three-quarters of an inch high, and about one-eighth inch in thickness, inside of which is a cast zinc ring one inch diameter
by seven-sixteenths inch high, and one-eighth of an inch thick. Fluid used is bisulphate of mercury and water This makes a very fair sort of a current, that lasts half an hour or so, but is not as strong as I would like.
Would a Leclanche battery connected by wires to the proper posts give a more powerful current, and how
long should or could it be run at a time? If the Leclanche would not do, is there any form of cheap bat tery that would? A The Leclanche battery is not adapted to continued use. Three or four cells of some
constant battery, the gravity or Daniell, for example, a battery in your cellar. 2. Would zincs, such as ar used in the Leclanche, do for the battery mentioned in A. Yes, but plates an inch or so wide would be bet ter. 3. How many of these batteries would it take to run
ten candle power incandescent light? A. It depend altogether on the resistance of the lamp-25 to 40 cells The battery referred to would be useful for experiment
only in electric lighting. only in electric lighting. 4. Are there any railroads
that run into New York that take young men to learn to fire, as it is called? I have tried a long while to get a place on the New York, New Haven, and Hartfora, but hand. Better write the officers of some of the roads. (29) \mathbf{y} W. B. R. writes: Would you please inform me how to make a gas bag for oxygen, for
calcium light purpose? Could I make it like an ordinary bellows of leather or rubber, and tacked around
the board as the large bellows are? Also, what would be a good cenent to bind the seams together? I would like it to hold about 35 or 40 gallons, and what size
would I have to make it? A. We would not advise the use of board sides for your gas bag. Better use rubber cloth throughout. Make the bag wedge-shape,
about 10 inches thick at the thicker end and $21 / 2$ by 3 feet square. Cement the sides and top and bottom
ogether with rubber cement, such as may be pur by dissolving pure rubber in bisulphide of carbon or in naphtha. You will probably find it both cheape
and better to purchase a bag suited to your purpose.
(30) A. E. C. asks (1) how to make a hat the elements will not have to be removed from fiuid when current is broken. The above must be a on descent lamp. A. One cell of battery is insufficien o produce an electric light of any value. By means of a chloride of silver cell, or a Grove or Bunsen, you would be able to render a short piece of fine platinum . How are decalcomanie or transfer pictures made A. They are printed on paper heavily coated with soluble sizing. 3. What is the meaning of the charac-
er after these figures, $321 \pm$ A. It indicates that the number to which it is affixed may have either of the signs + or -. It signifies ambiguity. 4. What i
he Japanese shaku? A. Probably you mention a local name for something we do not know by that designa
toon. 5. Who is right in the following argument? and I were arguing upon the origin of cobwebs. B con-
ended that they were the work of spiders, and I that or about not, as it is seldom one will see a spider in or about them. A. B is right. 6. How to make a vest pocket size battery for scarf pin lamps, one that the
lements do not have to be removed whencurrent is shut off? A.Consult back numbers of the Supplement. Can one obtaina patentfor an electric bell, lamp, or any thing, whatsoever it is, and invent a new use fo same? Could I obtain a patent upon that new use? A If by the new application a new and important result secure, it is possible in many cases to secure a
(31) R. M. F. asks how to make a magic lantern out of a photographic camera. A. In the back of the camera, supported by a frame, insert a
inch double convex condenser. In the front remove the lens board, and in a special box made.to fit closely over the camera front, secure the lens. At the back of this box arrange a frame to support the lantern
slides, directly in front of the opening for the lens insert a "Leader" kerosene lamp, with the edge of the fiame toward the condenser. The box must have open ngs to admit air and places at the top to allow the fre escape of heat, and should be fixed to slip over the back of the camera. By closing the camera bellows he condenser will be brought close to the front and details to complete the lantern will be apparent to ever wishes to try it.
(32) Enquirer asks (1) how photographic paper is made which will give black lines on a white
ground at one operatiou. A. The paper is first coated with a solution of perchloride of iron and tartaric acid The light reducesthe perchloride of iron to the proto chloride. The print is then mmersed in a solution of gallic acid, which turns the coating of perchloride of ron, not acted upon by light, black, but does not affec the portions reauced by the light, hence, as the light
cannot go through the black lines of the tracing, the cannot go through the black lines of the tracing, the sensitized surface under them blackens under the
gallic acid. Lastly, the print is washed and dried. gallic acid. Lastly, the print is washed and dried.
Owing to the powerful action of the gallic acid, it is difficult to obtain clearwhites. 2. What is best mode of keeping leather of boots and shoes soft and pliable?
Can a substance be mixed with the blacking for thi purpose? A. In all tanned leathers, anything of the nature of currier's dubbing-or best cod oil and tallow, with perhaps a little resin-makes the best dressing for the leather to keep it pliable and help its lasting
qualities. Blackings which have much grease cannot qualities. Blackings which have much grease cannot ive a good polish, so it is best occasionally to thoroughly sponge off old blacking and rub the dressing well into
(33) H. W. H. asks how to make a small portable photographic apparatus. A. The simplest apng cover, and see that it is perfectly light tight. In over the outside of the hole glue a piece of brass as hin as a sheet of paper, then puncture as small a hole hrough; the sheet of brass as possible, with a fine
seel needle, twirling it to have the hole smooth. In he dark room insert the sensitive plate at the rear of he box, clamping it against the back by a small metal spring button. The cover is now closed, and
a cloth thrown over the front to keep the light from criking the pin hole. The box can rest light from oriking the pin hole. The box can rest upon a chair and the exposure of 5,10 , to 20 seconds made according to the light. Development will follow as success-
(34) W. C. B. asks: What is the formula for toning with chloride of platinum? A. Make a so-
lution of 1 grain of bichloride of platinum to 10 ounces Intion of 1 grain of bichloride of platinum to 10 ounces
of water. The solution should be neutralized \boldsymbol{w} ith carbonate of soda, and then slightly acidified with nitric with chloride of gold. The results are not superior nd in many cases are not equal, to those obtained ith ordinary gold toning solutions.
(35) J. C. B. asks: 1. How many feet of heating surface is in a tube of a vertical radiator 30
nches high? A. Iron pipe radiators with pipes from 30 to 31 inches long are rated at 1 square foot to a pipe.
2. Howmany feet of heating surface are required to heat 00 cubic feet of air, with thermometer at zero and oom to be heated to 70° ? A. One square foot or 1 ra-
diator pipe; if the room is favorably situeted 10 to 20 per cent less. 3. A good work published

e can mail for $\$ 2.50$

(36) T. H. P.-There appears to be no definite rule among engineers for the size of steam pipes to engines. Iron pipe being of certain definite
sizes, the practice for engines of small sizr, 20 horse power and under, is, area of steam pipe should equal pipe one-seventh indicated horse power; 60 h . p. and upward, onessixth indicated horse power. Areas to
be in square inches. For long distances, as 2,000 feet, be in square inches. For long distances, as 2,000 feet,
if well protected, one size larger may be safely used.

October 3, 1885.]
(37) J. E. H. asks (1) how to make the solution for a bichromate battery (one gallon size) using two carbon, and one zinc (carbons 21/2x43, inches). A
Dissolve bichromate of potash in warm water to sat distion. Pour the solution, while warm, into a vessel sulphuric acid slowly to this solution until one pound of acid has been added for every pound of the solution, and finally add a small quantity of bisulphate of mer
cury, say one drachm to the pound of solution. How to connect two or more such batteries together? A. If you want a "quantity " current, arrange the cells
in parallel circuit, i. e., connect all of the zincs with one conductor and all, of the carbons with the othe conductor. If you want an "intensity "current, arrange with the carbon of the connect the zine of one cell the first cell and the carbon of the last cell being connected with the circuit wires. 3. How many volt would one (gallon size) battery be? A. About 134. 4.
Would twolor more such batteries double the number o Would twolor more such batteries double the number of
volts in one? A. If connected in series, the electromotive force would be very nearly doubled. 5. How scent lamp 6 candle power? A. Five or
(38) W. H. S. H. writes: 1. I want to put horseradish in bottles, in its pure state. Is any thing pu in to keep it, such asj vinegar? A. The preparation
best made as follows: 6 tablespoonfuls scraped or horseradish, 1 tablespoonful white sugar, 1 quart vinegar. Scald the vinegar; pour boiling hot over the horse
radish. Steep a week, strain, and bottle. Exposure to the air will discolor. 2. Is there such a thing as making inks by machinery? A. No. See Scientific Ameri-
can Supplement, No. 157. 3. How is bluing made can Supplement, No. 157. 3. How is bluing made
by the barrel, 30 gallons, for the trade? A. Bluing in y the barrel, 30 gallons, for the trade? A. Buing and put in a convenient vessel with one gallon of clear rain water, and add 1 ounce of oxalic acid. A teaspoonful of this mixture is sufficient for a large
washing. 4. Give me a powder for horses and cattle. A. The following condition powder may be what yo desire: Resin and niter each 2 ounces, levigated anti-
mony 1 ounce; mix for 8 or 10 doses, and give one nigh mony 1 ounce; mix for 8 or 10 doses, and give one night
and morning. When it is given to cattle, add 1 pound and morning.
(39) C. J. P. writes: We have a pear ree which has small sweet pears; it is also an early pear, but for several years they have black spots, be
come cracked and hard, and some are so very small. Can you tell me what to do with the tree, that it may bear better frnit? A. Enrich the ground round the outer roots of the tree with aliberal dressing of unbleached wood ashes.
(40) J. H. M. asks for a fireproof paint A. Take a quantity of the best quicklime, and slake complete, _water or skim mills. or a mixture of both should be added to the lime, and mixed up to the con-
sistency of cream; then there must be added at the rate sistency of cream; then there must be added at the rate
of 20 pounds alum, 15 pounds of potash, and 1 bushel salt to every 100 gallons of creamy liquid. If the paint is required to be white, 6 pounds plaster of Paris or he above proportions of the other ingredients. All these ingredients being mingled, the mixture must be strained through a fine sieve and afterward ground in a color mill. When roofs are to be covered, or when mixed with the paint in the proportion of 1 pound sand to 10 gallons of paint; this addition being made with aview of giving the ingredients a binding or petrifying quality. This paint should always be applied in a hot sary to keep it from freezing. Three coats of this pay be obtained byadding the usual pigments to the composition
(41) N. B. P. writes: I have a 2 inch gallons of water per minute: and by attaching a pipe gallons of water per minute: and by attaching a pipe
to the top of tube in well, I find that the water will rise 8 feet above the top of the well. I wish to convey a portion of the water to higher ground, 100 feet distant and 25 feet higher. Can I attach hydraulic ram di-
rectly to the top of the tube in well. and have it do rectly to the top of the tube in well. and have it do
good work, or will it be necessary to set rams on a lower level? If so, how much lower, and what distance from well? A. You can attach the ram directly
to a reservoir at a distance above the ground that will nsure a sufficient flow from the pipe, setting the ram ss low as will admit of draining the waste water off and in this way obtain" 5 or 6 feet fall from the reser voir to the ram witha length of from 15 to 20 feet of pipe in a straight line. With this device and a flowint
yourcistern of 6 gallons per minute you may expect to yourcistern of 6 gallon serminute you may expect to
discharge one gallon per minute into a reservoir 25 feet high. You cannot make the well pipe act as a ram pipe or feed. First find how much water will flow
at a height something less than the height that it rises in the pipe above the ground, or level at which you candrain the water away.
(42) R. asks the reason that cast iron when they contain air, whereas the a low pressure when they contain air, whereas the same pipes will
stand a very much higher.pressure if all the air is allowed to escape from then before the pressure is applied. A. Pipes of iron or any other material will stand the pressure of water. air and water, or air alone, to the same extent, provided there is no disturbance
to produce a water ram or hammer, which alone is the to produce a water ram or hammer, which alone is the cause of the cracking of castiron or other brittle pipes generates waves along the pipe that has been quicki generates waves along the pipe that has been known
(43) J. N. H. asks the proper proportions and materials for a good fireproof cement, which when hard shall be solid and flrm and not liable to
crush easijy. A. To 4 or 5 parts of clay, thoroughly dried and pulverized, add 2 parts of fine iron filings free from oxide, 1 part manganese dioxide, $1 / 2$ part of
sea salt, and $1 / 2$ part of borax. Mingle these thoroughly sea salt, and 13 part of borax. Mingle these thoroughly
and render them as fine as possible, then reduce them
to a thick paste with the necessary quantity of water
mixing thoroughly well. It must be used immediately nixing thoroughly well. It must be used immediately ally increasing to almost a white heat. This cement is very hard, and presents complete resistance to a red heat and boiling water.
(44) A. A.-Stenciling is done on glass in the same manneras on window shades and for fresco figures on ceilings. Cut the patterns in oiled paper or
bookbinders' press boards. Lay the pattern on the work, holding it firmly, and with a medium stiff brush inl in the spaces with the desired colors.
(45) T. W. B. writes: I have 59 tubes to portable boiler. To-day they all leak, to-morrow only a few, and in the course of two or three days they all stop, or nearly so. Then they commence leaking,
say two or three, at bottom; then change to oue side, where several will leak fortwo or three days, and then cease leaking on that side, and change once to the other
side of furnace. Can youexplain this? It is an enigma tie of furnace. Can youexplain this? It, is an enigma
to me. After expanding tubes, should the bedding be reset to flue sheet? What is the distance between cen-
ters of 5 foot 6 inch and 2 foot pulleys for 80 foot belt? A. The tubes that leak are not tight in the head, which allows a slight movement of the tube in its socket y pressure in raising steam, and also by variation of pressure in boiler during the day. The sediment in the
boiler tends to stop the leaks by percolation. Getting boiler tends to stop the leaks by percolation. Getting
up steam the next day will again spring the head and up steam the next day will again spring the head and
start some of the loose tubes leaking. The fact of their leaking on alternate sides we think accidental; much depends on the kind of expander that is used. A beaded over to insure stability of the head under pressure. Distance between centers or pulleys should be 34
ueet 1 inch.
(46) W. L. T.-It is a very difficult proess for anamateur to make good japan varnish. Bet. er buy the red japan from a varnish maker, and, thin it with turpentine to the proper consistency for
dipping. It will do for wood, but requires two dipwing. It will do for wood, but requires two
coats, as the first coat dries in and will not give a gloss. The hard japans require 260° for baking. There are japans that are not so tough, that dry at 212° upwara,
and others that are called air-drying japans.
(47) J. N.-Fresh brewer's yeast will cause bread to rise in 2 to 4 hours' time. The following recipe is used for aerated bread: Divide 3 pounds flour
into two portions; mix up the first with water, holding in solution 2 ounces bicarbonate of soda, then mix the second portion of flour with water, to which 1 ounce of muriatic acid has been added; knead each mass of the dough thoroughly. When this is done, mix both portions together as rapidly and perfectly as possible, form the mass into loaves, and bake immediately. This
bread contains no yeast, and is very wholesome. You can, if you prefer, use a baking powder such as the following:
Powd
wing:
Powdered cream tartar.......... 30 ounces.
Bicarbonate of soda...........15
Flour . $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .6$

11 well dried; mix thoroughly and keep dry
(48) T. W. writes: I have an opera glass $41 / 2$ inches focus. Can I use it for making stereoscopic views with camera? A. You can, but with a limited views with camera? A. You can, but with a limited
field; it needs two sets for a proper arrangement for a stereoscopic lantern.

INDEX OF INVENTIONS

or which Letters Patent of th

United States were Granted,

September 15, 1885,
AND EACH BEARING THAT DATE.

Seenoteat end of listabout copies of these
Alarm. See Feed water alarm. Low water alarm.
Amalgamator, F. L. Downend
Animal trap, W. T. Moore......................... 326,513
Animal trap, R. M. Tate............................ 326,
Anvil, drill, and vise, combined, H. Childers...... $3 \div 6,402$.
Auger blades, machine for shaping post, C. L. Carter.
Automatic sprinkler, A. K. Rider.................. 326,155
Axle box, car, W. D. Coop
Axle box, car, S. R. Hughes....................... 326,
Axle lubricator, car, D. Ross
Axle, vehicle, G. M. Forbes
Bag. See Feed bag.
Barrel cover holder, S. E. Vincen
Barrel crozing and howeling machine, G. J. Miller..234
Basket, H. P. Gross 326,499
Bed bottom, C. Bigeon 326,
Bed bottom, folding, J. Ainslie, Jr................. 326,
Bed, folding, H. \& E Williams..................... 3
Bed screen frame, G. D. Marsh
Bedstead, invalid, A. J. Goodwi
Bedstead, wardrobe. R. Mitchell
Binder, twine, W. S. Davey
Blast furnace, Weimer \& Euston
Blind, J. G. Wilson.
Board. See Wash b
Bolting chest, R. M. True.
Bolts, locking, N. H. Bro
Boot or shoe sole and heel, G. F. Butterfleld....... 326,
Boot or shoe soles, attaching, F. F. Raymond, 2d.. 325,150
Boot or shoe soles, tool for piercing holes in, Seaver \& Mork.
Boot strap, J. M. Will
Boring machine, S. F. Cohin........................ 326,20
Bottle stopper, G. W. Canter
Bor. See Knockdo
Boxes, etc.. composition of matter for lining or coating, A. Hollner.................................. 326,11
Brick kiln, W. N. Gr
ick machin
ck machine, hyd

Brick machine mould and frame therefor, W. N
Graves.. Bridge system, railwa
Broiler, A. Pillautt...
Bromm and tool rack, Brom and tool rack, combined, J. H. Barbe
Brush and broom holder, D. D. Lavery Brush and broom ho
Buckle, R. M. Dillard.
Buckle, C. A. Drape
Buckle, C. A. Draper................................
Buckle and cup. combined belt, W. R. Johnston.
Buckle attachment, w. P. Tinsley
Buckle attachment, W. P. Tinsley
Buckle, hook, v. Berthelot......
Buckle, hook, V. Be
Bullet, F. Manning.
Bung and
Bunet, F. Manning........
Bung and bush, C. Kuhne
Burner. See Gas burner.
Burner. See Gas burner.
Button, C. V. Goddard.
Button and button fastener, c. Ritter
Button fastener feedin \geqq machine, F. H. Richards,
326,153
Button fasteners, stock for making, F. H. Rich
Can. See Creaming can. Milk can.
Car brake, G. L. Adams.
Car counlin
Car coupling, F. A. Casey
Car coupling, J. Fish...
Car coupling, J. G. Gammon
Car couphng, E. N. Gifford
Car coupling, Horsley \& Jul
Car coupling, C. D. Meigs
Car coupling. C. D. Meigs...
Car peding. J. G. Williams
Car pedestal, Briody \& McHale
Car, street railway, T. B. Stewa
Car ventilator, W. E.
Car wheel, R. W. Jess
Car wheel, N. W. Washburn
Cars, propelling rain
Cars, propelling railway, G. Pard......................14.
Cards, manufacturing show, J. Thoubboron....
Carriage runner attachment. D. E. Roche......
Carrier. See Cash carrier. Cash and parcel

Cart, road. A. P. Ferguson.. Cash and parcel carrier, Lam

Cash carrier, D. Lippy..
Cash carrier, Lippy \& Ot
Caster, M. Schwerin...
Casting steel and other metal bars,
paratus for, Pielsticker \&
paratus for, Pielsticker \& Muller.................
Allen... Cellulose, making solid compounds from soluble
nitro, Hyatt \& Everding......................... nitro, Hyatt \& Everding.
Center or other table, W. T.
Centrifugal reel, B. Kniffler
 Convertible chair. Dentist's or photographer's
chair. Nursery chair. Photographer's chair. Rocking chair.
Chair, G. Short.
 Check rein hoon, Hobart \& C
Chest. See Bolting chest.
Clasp. See Corset clasp. Spring clasp. 226,35
Clasp, J. J. Unbehend........ Clasp plate, J. J. Unbehend....... Clevis and link, plow, L. Gibbs.
Clinometer, J. F. Borchardt....
Clock pendulum escapement, W. Hart...
Clod crusher and pulverizer, T. F. Emans
Clothes line, Savoye, Jr., \& Searing.......
Clothes line, Savoye, Jr., \&
Cutch, friction, A. B. Bean.
Coal elevator, W. Lawton..
Coffee, coating and coloring, W. S. Long.
Coffin, J. C. Meyer
Collar fastener, hors
Collar fastener, horse, J. D. Ian
Con vertible chair, J. Preston.
Convertible chair, J. Preston.
Corset clasps, B. J. Malone..........................
Corset steel fastening, Alcorn, Jr., \& Blake..
Coupling. See Car coupling. Pipe coupling.
Coupling. See Car couplin
Creaming can, H. Haak...
Crusher. See Clod crusher
Crusher. See Clod crusher.
Crushing and grinding mill, w. C. Stiles.....
Culm conveyer, R. Y. Mitchel...................
Culm, transporting and sorting, R. Y. Mitchell.
culm, transporting a w se.......
Cultivator, G. W. Forber
Cultivator, wheel, w. P. Brown.
Cutter. See Hay and straw cutter. Vegetable
cutter.
Dentist's or photographer's chair, o. C. White..
Desks, seats, etc.. to floors, device for detachab
securing, W. F. Young...
Disger. See Potato
Disger. See Potato disger..................
Disinfectant, F. y. Cromwell........... Disinfectant, F. Y. Cromwell.
Door, check, J. E. Newcomb..
Door, check, J. E. Newcom b....................
Doors and shutters. operating, E. Perkins...
Doubling and twisting silk and other thre
Doubling and twisting silk
chine for, J. E. Tynan.
Drill., See Ratchet drinl. Rock drinl.
Drill rods, safety jack for holding, A. Bal
Drin rods, safety jack for holding, A. Ball
Dust collector, P. Van Gelder...................
Ear rings, ear wire catch for, S. F. Merritt
Ear rings, ear wire catch for, S. F. Merritt.........
Electric machines, automatic sto aparatus for
motors driving dynamo, o. F. Jonsson.
Electric signaling apparatus, F. G. Sargent.
Electro-magnetic log. Favor $\& ~$
Elevator. See Coal elevator.
levator brake mechanism, 'J. A. Hurley............
End gate, wason, , A. Gale................
Engine. See Steam engine.
Engines, electrical apparatus for controlling

```
Evaporating pan, J. F. Porter..
Excelsior machine, G. Brooks.
Excelsior machine, G. Brooks
Exercising machine, J. B. Root
```

Faucet an
ing....
Fucetan
Feed bag
Fee
Fee
Fee
eed water heater, H. Cummings
encer, automatic boiler. W. H. Page
Fence, wire, W. J. Adam.

326,289	Furnace. See Blast furnace.
	Furnace for the corr bustion of lig
,322	Selwy
. 328	Furnace grate, S. H.
326,183	Furnace grate, c. M
326,225	Furnaces, fllling, Weimer \& Eust
326,410	Furnaces, steam and air injector
,279	Mat
326,296	Gauge. See Saw table gauge
326,350	Garment supporter, c. C. Shelby
	Gas, apparatus for the manufacture of illuminat-
326,231	ing, F. Egner
326,127	Gas burner, A. Vree
$326,211$	Gas from escaping, means for holding and preventing, T. Prosser
326,211 326332	Gases, apparatus for utilizing wood, H. M
$326,246$	Gases for metallurgical purposes, utilizing wood, H. M. Pierce.
	Gate. Seed End gate. Railway gate.
	Gate, W. G. Stone
	Gates, mechanism for operating road crossing, J. H. Clayton.
	Generator. See Steam gen $\mathrm{ratar}^{\text {a }}$
326,421	Glove holder, self-closing,
326.28.5	Governor, L. \& A. Y. Gray
326,218	Governor, steam, J. D. McR
	Governor, steam engine, J. Be
326,188	Grain adjuster, H. Tuttle
326,394	Grain binder, J. C. McLac
326,527	Grate, IL. L. Culver
326,411	Grinding mill, W. H. B
326,433	Hame, C. H. Field
	Hammocks, net attachment for, A.
	Hand and arm rest, A. C. Per
	Hanger. See Lamp hanger.
	Harness support, J. E. Ri
	Harrow and cotton planter, combined, W. A. Dobb.
	Harvester and binder, grain, G. F. Messinger......
326,123	Harvester, cotton, E. F. O'Have
326,11	Hat forming machine, D. Almond
326,131	Hay and straw cutter, w. Barrett
326.159	Hay rake, horse, P. F. Fleming
	Headlight signal, locomotive, W. W. Richar
	Heater. See Feed water heat
	Holder. See Brush and broom holder. Sad iron holder. Sash holder.
	Hook. SeeCheckrein hook.

Injector, steam, J. Desmon
Inkstand, M. J. Hughes.... 326,408
326,118
326,368

Matherson...366,455
 Journal lubricator, w. Row
Kiln. See Brick kiln.
Kiln. See Brick kiln.
Kitchen dresser, J. F. Roth..........................
Kinife handles, machine for inserting rivets in
 Lamp, electricic. J. Du Shane...
Lamp, electric arc, R. F. Jones

Griftin...
Lamps, bulb case for incandescent electric. S. H.
Lamps, overfow device for pump, T. W. Hamil
Lantern, F. Meyrose........................
Latch, woodrich \& Lang bein..............
Lifting jack, J. C. Silsbee.........................
Lithographic stone, artificial, w. Van Pittler.
Lock A. Kelly....
Log turner, J. Wve

cator.
Lubricator, J. Powell..................326,517 to 326,51
Malt floors, sprayingapparatus for, O. Bothner... 326.19
Milk can, E. Slaght... 526,3
Milk can, E. Slaght.................................... 26,341
Milk cans, non-conducing covering for, T. Wil-
Iliams......................................36,189
Mill. See Crushing and grinding mill. Grinding
mill.
Mould. See Brick machine mould.
Moulding as an article of manufacture. interlock-
ing spiral, M. Y. Ransom...........................326.329
Money drawer register, W. G. Hennings........ 326,114
Motive power by aid of air and hydrocarbon oils,
apparatus for manufacturing, using, and
furn

