NEW APPLICATIONS OF ELECTRICITY. Mr. Gustave Trouve has recently added twe new in ventions to the great number of creations of his fertile brain already perfected. We refer to two new applications of electricity which he presented to the Academy of Sciences, Monday, July 6, and which relate te the aiming and shooting of firearms at night Their originality induces us to reproduce the note e the inventor to the Academy.
The first of these inventions consists of a luminous electric button; and the second, of a pewerful pre jector. These devices are removable, and can be ap plied to any fire arms. Their eperation is absolutely automatic. The Trouve electric button is of the same size as ordinary metallic buttons, and consists of a fine thread of platinum intreduced inte a small glass tube, which is protected by a metallic tube. A small opening is left in the metallic tube, se that the luminous button is visible only to the persen using the weapen, to aissist him in taking aim, but is completely hidden from the enemy or any one whe is a few feet from the barrel of the gun. The device is operated by a hermetically closed pile of Mr. Trouve's. This pile, which is about as large as the little finger, can be secured on the barrel of the gun, parcan be secured on the barrel of the gun, par-
allel with the same, by two rubber bands. As allel with the same, by twe rubber bands. As
the pile \bullet perates \bullet nly when in a herizontal pesition, the button is illuminated as seen as gun is adjusted for firing; but when the gun is held upright, the pile ceases to operate, and the button becomes dark. It is easy to realize the great advantages offered by this device in taking aim in the dark.
The luminøus electric prøjector consists of a little incandescent lamp and parabolic reflector, or an incandescent lamp and a condensing lens inclosed in a metallic tube. The apparatus is easily secured on the barrel of a gun, parallel with the same, by two rubber bands. It is made to eperate by pressing the butt of the gun against the shoulder. By means of this device the desired object can be illuminated, and all its movements fellowed. The generator used is the same as that used with M. Trøuve's electric safety lamp, recently presented to the Academy by Mr. Jamin. It is carried in the belt, and its -peration is automatic.
The services which these twe apparatus are capable of rendering to the army and navy are very numerous. It is mentioned, for example, the advantages they will offer for watchmen on men- \bullet-war in helping to fire upen torpede beats at night, as well as in the daytime. They will alse be very useful to hunters whe wish to secure game at night.

Electricity and Dust.

With regard to the experiments made by Prefessor O. J. Ledge, it has been pointed out by a German paper that a similar experiment was described by C. F. Guitard, of Lendon, in the Mechanic's Magazine for November 2,1850 . The following is an extract: 2,1850 . The following is an extract:
"Some time since, in experimentalizing on the electric state of the atmosphere, I empleyed for that purpose a large glass cylinder, about 18 inches high and 9 inches diameter, open at bottom and having a neck at top. In placing the lower end of this cylinder in water, the more perfectly to exclude the air, and allowing small quantities of tobacce smoke to enter the neck at top, the smoke, after assuming various actions, according to, prebably, the hygremetric state of the atmosphere, would gradually spread itself inte a cloud filling the cylinder, and at length, as successive portions came in contact with the sides of the cylinder, condense. Sometimes half an hour would elapse before this effect took place. In now struck me that if I brought a wire from an electrifying machine inte the neck of the cylinder, the air would immediately become charged with electricity, which would cause each portion of the smoke to fly to the sides of the cylinder, and that thus more rapid condensation would take place. The effect produced was perfectly magical. The slightort turn of a small electrifying machine produced immediate condensation. It was astonishing te see how small a quantity of electricity produced a most pererful effect. I am not aware that attention has ever been drawn to this subject; and the question will probably ariseHas electricity anything to de with the condensation of steam in the condenser?"
For a harness blacking, use bセneblack, 4 ©unces; linseed oil, 2 •unces; sulphuric acid, $1 / 2$ ounce; treacle, 2 - unces; gum arabic, 1 •unce; vinegar, 1 pint.
give these \bullet pinions to sh॰w how little confidence can be placed upen the opinions of unskilled observers though, in justice to the men, it should be said that they were given in geod faith.
Quite a number of men had seen muskrats around the heaps, and Mr. Andrew Clerk, of Jersey City, with whom I was fishing when these investigations were made, suggested that the muskrats were after the chub spawn; and te show that not only muskrats but field mice are fond of it, he cited the following instance, that will be of interest to naturalists:
Some years age he \bullet wned a salmon river in the Previnces, and had unusual epportunities for many years of \bullet bserving the habits of salmon and \bullet ther fishes in the locality. Wishing to ascertain the natural feed of the sea trout, he directed his guide to save the stomachs of twenty or thirty. Examination of a dezen or se of thesesh๒wed that in each was a field mouse (Arvicola rutilus, I should judge from the description, etc.), and in one stomach were twe. It eccurred to Mr. Clerk that the mice had been caught while diving for spawn. This epinion he expressed to a friend connected with the New Jersey State fisheries, whe said that his eggs werese depleted by common mice, that would dive inte the water to obtain them, that he was obliged to protect the eggs by wire screens. Se it would seem that mice and muskrats are among the pessible enemies of the spawn of game fishes and others. The chub beds are found on gravelly or sandy shores on almost every island between Clayton and Alexandria Bay, and I found them in all stages of grewth. One of the best lecalities was in the entrance to the Lake of the Islands, where, on the north shore of an island belong-

CONSTRUCTIVE ABILITY OF FISHES,

NEW APPLICATIONS OF ELECTRICITY.

mission or whether it disappears with its first pessessor The ewner of the animal, Mr. J. H. Bray, has named it Young America.

CONSTRUCTIVE ABILITY OF FISHES.

In previeus numbers of the Scientific American the writer has shown the nest of the antennarius and paradise fish, the former being made of gulf weed wound in and out and bound together by gelatinous bands of somesecretion taken from pores in the abdemen; the latter formed of bubbles of air inclosed in a mucous envelope.
In the accompanying cut is shown a nest of an entirely different character, where the material is stone, and to accumulate which much have invelved a vast amount of labor and patience on the part of the finny workers. It has been my privilege during the present summer, spent on the St. Lawrence River, to examine a large number of the nests or heaps, and some of them for their great size almost challenge belief. The beatmen of the St. Lawrence know the heaps as chub beds,

in their \bullet pinions as to the makers. One man was pesitive that the piles were the work of the black bass (Micropterus salmoides), and that the stones were piled up with their tails. When asked for his reasons, he said that he had seen big bass on the heaps, and speared them there. Another man, born in sight of the nests, was positive that they were the work of muskrats (Fiber zibethecus), his reason being that he had speared muskirats swimming about the nest. I
ing to La Rue, are five or six large nests, all within a small area, and all visible from the beat at once. The largest of these was at least ten feet across the base, and, as near as I could judge, almost four feet high. The stones were all about the same size, and those that I could reach from the beat, and which brought the t \bullet p the heap t within a foet of the surface, weighed four eunces; and at the base were \bullet thers that I should judge would weigh twice as much. They were of all shapes, and the entire heap looked like a load of stones that had been dumped carefully, se that it retained a somewhat regular cone-shape. Some resembled hay nows, and were flat on top; others were pointed, and I found quite a number where the work was just comnenced; and, whether from design or accỉ̉ent I cannot say, there was a rude eutline, as if the builder had a definite plan, the stones having been dropped in a semicircle before any had been placed in the center. In these new nests there were generally numbers of shells, evidently a Unio.
As some of the large nests were some distance from gravel beds, and the stones numbered tens of thou, sands, each heap weighing perhaps a ton and a half, the amount of labor done by these fishes can well be inagined, especially when it is known that the stones are brought in the mouth of the fish.
I was net fortunate in observing them at work, but it is well known how they preceed, and Mr. Clerk was fortunate in knowing a gentleman whe had seen the chubs carrying stones. The largest nests were within a foot of the surface, and would undeubtedly form an obstruction t- beats drawing twe or three feet of water, should they run along shore. Exactly how high the chubs would build their nests it is difficult to determine, as every winter the nests are frezen in selidly, and during the breaking up in the spring are denuded of some of the stones. That the nests are renewed year afteryear is evident from their size, and again, the recks \bullet n the t \bullet p were usually muchf resher in appearance than those below, showing that they had been recently handled. The nests are constructed for the preservation of the eggs; in other words, to pre tect them from the eels, bull-heads, and varieus fishes that affect spawn.
The breeding time is in the last of May, June, and perhaps inte July, or about the same as black bass, and during this time large chubs are seen resting on the heaps. The eggs, when deposited, are washed int the crevices and interstices of the heap, and there find pretection until the young appear; and they undoubtedly remain near it until they are streng enough to care for them selves. I could nót find that the male remained near the nest, or exercised any care over the young. This, however, would be unnecessary, as the stone pile is quite protection enough.
The nests are undoubtedly the work of several chubs, how many, I have not been able te determine; but as fifty or more lamprey eels have been seen at work conjointly, it is not unlikely that the nests are the work
of a colony of fishes. Quite a number of fishes are knøwn as chubs, and several genera and species are called stone toters and rollers, from their habit of making heaps, theugh not as large as the above.
The chub in question is one of the Cyprinida, the Semotilus bullaris or Leucosomus cataractus, of Baird, a very attractive fish, attaining a length of twenty inches and a weight of twe and sometimes three pounds. The head is distinct from the body, as re-
gards absence of scales, and of a dark olive hue; the gards absence of scales, and of a dark olive hue; the
back brownish, with blue and sometimes green reflecback brownish, with blue and sometimes green reflec-
tions. The sides, when turned to the sun, flashed a beautiful silvery tint, and the scales being large, it was, all in all, a very attractive creature. Mr. Clerk and myself frequently took them on a fly, and agreed that, se far as making a desperate fight for liberty was concerned, they were not far behind the black bass. They were alse taken while trelling with a minnow bait; theugh this can hardly be considered their natural fゃed, the semewhat large, fleshy lips being seemingly adapted for a vegetable diet. They are extremely common in the St. Lawrence, frequenting clear water, and abound in New England streams and as far south as Virginia, and prebably have a much wider range to the west through the great lakes. In all lecalities they have local names, some of which are fall fish, dace, have local names, some
reach, horned dace, etc.

PHOTOGRAPHIC NOTES

How to Remedy Flure or Ghost Spots in Lenses.In an interesting paper read before the Buffale Phetographers' Cenvention by Mr. J. Traill Taylor, editor of the Photographic Times, we find the following practical directions for disposing of the fare spet frequently met with in combination lenses of the symmetrical or rectilinear type:

Concerning flare spets," he says, " they are never seen when the lenses are used in the studie, but only when a bright sky forms part of the included subject, and only then when a very small stop or diaphragm is used.
T• ascertain whether a lens has a flare spet. it should be screwed on to the camera and brought inte a reom lighted by a gas flame or eil light.

G• te a distance of
The image will be sharp, bright, and inverted, now move the camera slightly, se as to cause the inverted image to be a little to one side of the center of the focusing screen, and in nine cases out of ten there will be seen a ghostly image at the opposite side of the center.
This secondary image is nen-inverted, and upen retating the camera it moves in the opposite direction t• the primary image. The nature of this secondary image or ghost, and the cause of its formation, may be exam-
ined in the foll wing way: Move the camera se that the ined in the fellowing way: Meve the camera se that the
ghost shall be near the margin, and then, placing the eye inthe line of that image and the lens, withdraw the ground glass, when the posterior surface of the lens will be found to be quite luminous. That the false image is, in this case, caused by a reflection from the back surface of the anterior lens is demonstrable by unscrewing the cell containing it until it almest dreps out of the tube; and then, keeping an eye upen both the primary and secondary images on the ground glass, move or slightly wriggle the front cell, which by its being nearly unscrewed may now be easily done, when it will be seen that while the primary or legitimate image of the flame remains motionless, the ghostly image caused by the reflection from the front lens dances about all ever the plate
But observe further, there is a certain distance
between the front and back lenses at which this secbetween the front and back lenses at which this secondary image is sharp and bright, and in propertion as either the frønt or back lens cells is screwed in or
out, s• does the image become more attenuated and eut, se dees the image become more attenuated and while all this time the real image is not seen to suffer in any way. This tendency of the ghostly image to pass eut of fecus with such extreme rapidity, upen separating the lenses by a few turns of the screw, orby making them come nearer each other, provides the means by which this evil may be cured.
The most perfect mount for lenses of this class would be that in which the privilege was afforded the user of making an adjustment to suit work of any nature by the separation of the lenses to a very limited extent, so as to be used under the most perfect conditions for
the special work in hand. With a lens of about eleven inches focus, a sliding adjustment of half an inch has been adepted with beneficial results.'

Photographing the Interior of Guns.-Experiments have been made at the Royal Gun Factories, Woolwich, in order te test the application of a new electric
lamp designed for making examinations and photgraphs of gun interiors. The system of somburizing the bores of guns by means of electricity has only been a short time in use, and has proved of great value; but the want of an electric dynam has prevented its general adeption at many places where it would have been of considerable use, and the authorities have now taken

Johnson \& Phillips for the purpese of supplying the
place of a dyname in such cases. The battery, with place of a dynam• in such cases. The battery, withaccount of its constancy, as it can maintain a light of unerring brilliancy for inspections with all the leisure they may desire. The experiment was te try the battery and a dyname in competition. Twe 8 inch guns were placed side by side in the new boring mills, and photegraphs were taken of their interiors by beth precesses, the results as far as could be judged being
equally satisfactory.
Rendering Paper Prints Translucent.-At a meeting. of the Lenden and Previncial Photegraphic Asseciation, we take from the report published in the British Journal of Photo. the statement of Mr. G. H. E. Sutton, of how he makes paper prints translucent by means of burnt linseed oil. He first raised the oil to the boiling point, then taking it to an open field where there was no danger of fire, he burnt it until it reached the stage desired; this he found by testing from time te time with a knife. The eil, when well burnt, was always green and of the consistence of treacle. It was mixed with litharge, sugar of lead, and seap, and when of rag. It dried quickly on the prints, which did not cockle. T• ©ne pint of oil was added litharge and acetate of lead each equal in bulk to the size of a walnut. In place of making the burnt linseed oil, it is suggested by the editor of the British Journal of Photo. that it can be purchased already made of three different consistencies, "thin," " middle," and " streng," under the title of "burnt oil," from all dealers in printing materials.
walter bentliey woodeury.
The well known inventor of the Weodbury precess of phete-printing died suddenly from an everdose of laudanum at Margate, England, an English watering|
place, on the 5th ult., and was buried in Abney Park place, on the 5 th ult., and was buried in Abney Park
Cemetery, near the remains of other departed notables in phetegraphy.
Says the Photo. News: " Mr. Weedbury, whe was fifty--ne years of age at the time of his death, had practiced phetography as a profession since he was seventeen years of age, he having then commenced work in Australia. Seon after this he established a studio in Java, and produced excellent work under very trying circumstances. Seme of his views taken in Java were
published by Negretti and Kambra about twenty-five years age.
Abeut this time he came te Lendon, but shortly returned to Java, and established himself on a somewhat larger scale in Batavia, but seen afterward he came te London and intreduced the precess
under the name of Weodburytype.
Since then he has been actively engaged in devising. and perfecting many precesses bearing ©n phetography, and in writing in such a way as to pepularize science. Among his inventions may be especially mentioned -setting aside his very notable invention, the Weod-burytype-the phete-filigrave, the Goupil methed of phote-gravure, and various block precesses; but he
made a host of miner inventiøns, and since 1864 took made a host of minor inve
From the above brief sketch it will be seen that Mr. Weodbury largely contributed by his industry and perseverance to the successful working of many of the phote-printing precesses in use at the present time, and it was in acknowledgment of the fundamental character of his invention of the Woodbury type in its relation to photography that he was awarded one of the seven gold medals issued in the Phot
graphic Department of the recent International Inventions Exhibition, held in London.
His first patent taken out in this country was in 1866 , followed by three in 1868 , one in 1882, and one uring the present year.
Briefly described, the Weodbury precess consists in naking a solution of gelatine prepared with a slight admixture of lndian ink and potassium bichromate,
then spreading the same upen a leveled glass plate, letting it dry.
The film may be stripped from the plate and exposed - the light behind a negative in the usual manner, or time is re printed on the plate. An unusual length of slow sensitiveness of the bichromated film.
Development is made by hot water, as in the carbon process. The film when dried possesses a streng relief and is exceedingly hard and tough, and when compressed against a seft metal, like lead, acts as a die,
making a corresponding reverse in the same. It was the capability of the tough, hardened gelatine film to resist great pressure that Mr. Weodbury made use of Accordingly, he devised a special hydraulic press arranged to prevent the film from spreadinghorizentally, but at the same time subjecting it to a contact pressure of several hundred tons upen soft type metal. The metal impression was then placed in a peculiar printing dia ink, and a sheet of hard pressed smoeth paper laid upon it; a plate of heavy plate glass now comes down upen the back of the paper, pressing it agairst the metal mould, and after a pressure of two or three the
utes is raised; upen lifting the paper, a beautiful impression in permanent printing ink is seen.
The ink may be varied in color, permitt
The ink may be varied in color, permitting a large variety \bullet c celored impressiøns to be made. Theusands of copies may be pulled from one metal impression, and the number obtainable from a single gelatine relief is almest incredible.
In 1880 Mr . Weodbury further impreved and simplified the precess by dispensing with the heavy hydraulic press and adopting instead the pressure of twe -llers.
His methed is as follows: A pesitive is made upen a glass plate instead of a negative; from this a relief mould of bichromated gelatine is produced as before, which is attached to a heavy, smeoth plate $\bullet \hat{f}$ glass, - that its level charactermay be depended upen.

When dry, a sheet of tin foil is placed upon the gelaine mould, and, to force the thin metal securely inte very crevice, mould and tin foil are sent through an ordinary rolling press. The mould with its tin foil lined surface is now removed from the glass plate and putint the Woodbury printing press, from which impressions equal in every respect to those taken from hydraulic pressed lead relief are readily turned out. This simple precess is the subject of an American patent taken eut during the present year, and, we may say, is one of Mr. Woodbury's last imprevements.
We refer those of our readers whe are interested in \bullet btaining further details te the Scientific American SUPPLEMENT, Nos. 213 and 243 . A beautiful example of a Woodbury print may be found in the British Journal Photegraphic Almanac for 1884.

Trout Killed by Mosquitoes.

Mr. C. H. Murray, of Denver, writes te Prefesser Baird the following:
In the middle or latter part of June-I think it was -in 1882, I was prospecting on the headwaters of the Tumiche Creek, in the Gunnison Valley, Col. About nine \bullet clock in the morning I sat down in the shade of some willows that skirted a clear but shallow place in the creek. In a quiet part of the water, where their movements were readily discernible, were some fresh hatched brook or mountain trout; and circling about ver the water was a small swarm of mosquitees. The trout were very young, still having the pellucid sac puffing out from the region of the gills, with the rest of their body almost transparent when they would swim inte a portion of the water that was lighted up by direct sunshine. Every few minutes these baby trout -for what purpese I de not kn॰w, unless te get the benefit of more air-would come to the surface of the water, se that the top of their head was level with the surface of the water. When this was the case, a mosquite would alight, and immediately transfix the trout by inserting his proboscis, or bill, inte the brain of the fish, which seemed incapable of escaping. The mosquite would hold his victim steady until he had extracted all the life juices; and when this was accomplished, and he flewaway, the dead trout would turn over on his back and float down the stream. I was se interested in this before unheard of destruction of fish, that I watched the depredations of these mosquitees for more than half an hour; and in that time over wenty trout were sucked dry, and their lifeless shells sent fleating away with the current. It was the only eccasion that I was ever witness to the fact, and I have been unable by inquiry te ascertain if others have \bullet bserved a similar destruction of fish. I am sure the fish were trout, as the lecality was quite near snow line, and the water very cold, and n• other fish were in the stream at that altitude. From this ebservation, I am satisfied that great numbers of trout, and perhaps infant fish of \bullet ther varieties in clear waters, must come te their death in this way; and, if the fact has not been heretofore recorded, it is important to those interested in pisciculture.

The Seal Fishery.

burrug the past menth the steamers frem previncial ports engaged in the seal fishery have been returning home, having had one of the most successful seasons ever made in that business. Full returns will be given ever m
later.
The

The foll•wing from the 1 sland Press is of interest:
"The seal fishery has been unusually successful this year. Many steamers have returned from the sealing grounds loaded down almost to the water's edge. Steamer Ranger, with over 200 men on beard, returned to St. J॰hn's with 35,600 prime young harp seals, the largest catch f ω her tonnage ever taken int any port in the world, every nook and corner of the ship being jammed full. She was compelled to steam slowly from the time of leaving the ice, to prevent upsetting, and had to creep home inch by inch. Fortunately the sea was calm all the way. Her deck, covered to the top of her rails with 7,100 seals, was a sight never before seen in St. J॰hn's. The companion-way was covered in, only room enough being leftfor a man to squeeze himself inte the deerway. The lazaret contained 720, and 250 were stowed under the bunks in which the men slept. Eight puncheens were filled with oil, and the rest was stowed in the hold."

