would wanifenily make a river race in twe directions unfair to the Atalanta; and since the disputed race came off on the Sound, the second trial would seem more cenclusiveif made \bullet ver the same course.

pNEUMONIA AND OZONE.

Dr. Draper, of the Mete•rological Observatory at Central Park, New York city, has called attention to the fact that during the pasteight years there has been an apparent connection between the death-rate from pneum๒nia in New York and the presence of ozone in the atmosphere. The epidemic has been particularly fatal during the present year, and it is stated on good authority that the death-rate from this cause has exceeded that from chelera in 1854. It has n七t been determined whether the connection between the disease and the ozone in the air is simply a coincidence, or whether there are scientific reasons for their joint appearance.
We kn॰w as yet but little about either the cause of the disease or of the modified form of ©xygen which we denominate as ozone. In pursuing an in vestigation t- discever their true relation, should any be found, twe cases are possible: either that the ezone, which in large quantities we know to be injurious to health, is the direct cause of the disease, or that the same atmospheric conditions which produce ozone are also favorable to the spread of pneumonia. We are inclined to believe that the connection is purely accidental, but of the two hypotheses, the latter seems the more tenable, though Dr. Draper has apparently given it n• censideration.

aspects of the planets for october

saturn

is morning star. He takes the leading part among his brethren, for a noteworthy epoch occurs in his long journey round the sun. He reaches perihelion, or his nearest point to the sun, on the 21st, at $70^{\circ} \mathrm{clock}$ in the morning. As this event occurs only once in nearly thirty years, it must rank as a high festival in the solar family.
The sun and the member of his family wh \bullet is second in size, and first in the surpassing beauty of his system, make their nearest appreach te each \bullet ther. It is $291 / 2$ years since their last meeting under similar conditions. During that time, Saturn has traveled more than five thousand million miles in making his vast circuit around the sun, and now looks the great luminary in the face from a standpoint $100,000,000$ miles nearer than when, fifteen years ago, he passed aphelion or his most distant point from the sun.
Figures give little idea of distances to finite minds when trying to form an idea of the space that intervenes between our planet and one that revolves in an orbit of vast circumference like that of Saturn. The difference even between his least and greatest distance from the sun is greater than the whole distance that separates us from the mighty orb on whom all the planets depend for life and light.
The reason for the varying distance of the planets is easily understeed. Each planet meves in an elliptical orbit, the sun being in one of the foci of the ellipse. There must be a point in each orbit where the planet is nearest to the sun, or in periheli•n, and als• a point where the planet is farthest from the sun, or in aphelion. Saturn illustrates the former condition and Venus the latter during the presentmonth. The ellipticity of the orbit, or the eccentricity, as it is called, varies greatly in the different planets. Mercury has the greatest eccentricity, Mars comes next, and Saturn takes the third place, while Venus has the least, her -rbit being nearly circular.
The perihelion of Saturn is an important astronomical event, and has been anticipated for years with eager interest. But why should the nearest appreach of this planet to the sun be of se much consequence to terrestrial observers? is a question that naturally arises to thoughtful minds. It is because when Saturn is nearest to the sun, he is, under certain conditions, nearest to the earth, and the appreach is easily perceptible in his increased size and greater brilliancy. There are three conditions that, when united, give the best pos-
sible views of Saturn. He must be in perihelion, his rings must be ©pen to their widest extent, and he must rings must be open to their widest extent, and he must
be in \bullet pposition, or Saturn, the earth, and the sun must be in a straight line, with the earth in the middle. These three conditions are nearly united in the present position of our magnificent brother in regard to the earth. He is in perihelion, his rings are open to their widest extent, and he is within twe months of opposition, as well as in high northern declination.
Nearly a whole generation will pass away before Saturn will again be seen under conditions as favorable as those he now presents. Instead of a dull, murky, and ill-omened star, he shines with a soft and serene light, that gives him a pre-eninence among the surrounding stars, and brings out the best aspect of the planet that ranks as second in the solar scheme. His proximity increases his size, and his wide open rings give hin an elliptical form to eyes blessed with excep-
tional visual power. It is field day with astronomers,
whe will eagerly impreye the rare occasion in search ing for new satellites, in seeking to find out what the
rinss are made of, and in tracing the shad \bullet wh belts \bullet rings are made
the planet's disk
N• guide will be needed to point out Saturn's position in the heavens. He rises on the 1st, in the northeast, about $10 \bullet$ 'clock, and cannot fail to be recognized by any \bullet bserver whe commands a view of the eastern horizon. He will rise about four minutes earlier every evening until the end of the month, when his beaming face will be visible seon after $8 \bullet$ 'clock. He is still classed among the morning stars, although he rises early in the evening. For according to astronomical law, planets on the western side of the sun rank as morning stars, those on his eastern side rank as evening stars. Saturn will be on the western side until pposition in December
He is in quadrature with the sun on the 1st, at 1 - clock in the morning, being 90° west of the sun, and half way between conjunction and epposition. He has been traveling eastward or in direct motion for several months, but is stationary about the time of perihelion. The right ascension of Saturn on the 1 st is 6 h .15 m .; his declination is $22^{\circ} 18^{\prime}$ north; his diameter is $17.4^{\prime \prime}$; and he is in the constellation Gemini.
Saturn rises on the 1st about a quarter after 10 - clock in the evening; on the 31st he rises a quarter after $8 \bullet^{\prime}$ cleck.

venus

is evening star. As we classify the planets in the monthly presentation according to the interesting incidents they supply for observation, Venus easily wins the second place on the October list. She grows more beautiful all the time as she recedes from the sun, while her increasing distance being now plainly perceptible in the longer time she remains above the horizon after his departure. When the month closes,she will set tw• hours and a quarter after sunset. She will be the gem of the early evening sky in October, wending her shining way in the southwest, and leaving but one regret, that her path is not further north while she takes on her present lovely aspect. She has passed near several first magnitude stars since she became evening star, paying her respects to Regulus in July, October, on the 16th, being 3° n•rth at the time.
Venus is in aphelion on the 16th at 10 -'clock in the evening. Her eccentricity, however, is se small that her \bullet rbit is considered circular for all ordinary purposes.
The
The right ascension of Venus on the 1 st is 14 h .57 m. ; her declination is 18° south; her diameter is $15 \cdot 2^{\prime \prime}$; and she is in the constellation Libra.
Venus sets on the 1st about 7 'clock in the evening; -n the 31st she sets at nearly the same time.

mars

is morning star. He rises abeut a half hour after midnight, and varies little in his time of rising during the month. He may be found at the close of the month a little way northeast of Regulus, and is visible as a small red star.
The right ascension of Mars on the 1 st is 8 h .48 m .; his declination is $19^{\circ} 3^{\prime}$ north; his diameter is 54°; and he is in the constellation Cancer.
Mars rises on the 1 st about a half hour after midnight; on the 31st he rises a few minutes after mid night.
is morning star. He is to॰ near the sun te be of much consequence at present. But he is making his way rapidly te visibility, and when the month closes, he risesmore than three hours before the sun.
He is in conjunction with Beta Virginis on the 21st, at $2 \bullet$ clock in the afternoon. Observers will nøt be much the wiser for this meeting of planet and star, but it takes place just as surely as if it were as plainly visible as the rising of the moon.
The right ascension of Jupiter on the 1 st is 11 h .29 m . his declination is $4^{\bullet} 26^{\prime}$ north; his diameter is $29 \cdot 6^{\prime \prime}$; and he is in the constellation Virge.
Jupiter rises on the 1st a quarter after $4 \bullet$ 'cleck in the norning; on the 31st he rises a quarter before 3 - 'clock.

mercury

is morning star until the 16 th , and then evening star. On the 16th, at 5 'clock in the morning, he is in supe rior conjunction with the sun, having completed one of his swift circuits from superior conjunction to supeor conjunction again in 115 days, his syn \bullet dic peried.
On the 4th at junction with Uranus, being $1^{\circ} 13^{\prime}$ north.
The right ascension of Mercury on the 1st is 12 h . his declination is $2^{\circ} 3^{\prime}$ north; his diameter is $5 \cdot 2^{\prime \prime}$; and he is in the constellation Virge.
Mercury rises on the 1st about a quarter before
-clock in the morning; on the 31st he sets at $5 \bullet$ 'clock in the evening.
is morning star. He is toe near the sun to be of any interest to students of the stars. His monotonous curse is, however, enlivened by a meeting with Mer-
cury on the 15 th .

The right ascension of Uranus on the 1 st is 12 h .14 m .; his declination is $0^{\circ} 49^{\prime}$ south; his diameter is $3 \cdot 4^{\prime \prime}$; and may be found in the constellation Virge.
Uranus rises on the 1st a quarter after 50 'clock in the vorning; on the 31st he rises at half past 3 o'clock. neptune

morning star.

The right ascension of Neptune is 3 h .33 m .; his declination is $16^{\circ} 22^{\prime}$ north; his diameter is $2 \cdot 6^{\prime}$; and he is in the constellation Taurus.
Neptune rises on the 1st about half past $7{ }^{\circ}$ 'cleck in the evening; on the 31st he rises about half past 5 'clock.
the moon.
The Octeber meon fulls on the 23d at 4 h .22 m . P. M. The meon is in conjunction with Saturn on the 1stat 6 h. $9 \mathrm{~m} . \mathrm{A}$. M., shortly before the last quarter, being at the time $4^{\bullet} 15^{\prime}$ south. She is in conjunction with Mars on the 3d, at 2 h .5 m . P. M.. being $5^{\circ} 4^{\prime}$ south. She encounters Jupiter on the 6th, at 11 h .49 m . A. M., being $1^{\circ} 25^{\prime}$ south.
There is a very close conjunction or an appulse between the moon and Uranus on the 7 th, at 6 h .56 m . A. M., the m•on being only 6^{\prime} north of the planet. She is in conjunction with Venus on the 11th, three days after new moon, at $6 \mathbf{h} .39 \mathrm{~m}$. A. M., being $6^{\circ} 23^{\prime}$ north. On the 25th, at 8 h .58 m. A. M., she is at her nearest point to Neptune, being $2^{\circ} 44^{\prime}$ south. She is in conjunction with Saturn a second time on the 28th, at 0 h . 4 m . P. M., being $4^{\bullet} 7^{\prime}$ south, and with Mars on the 31st at 11 h .7 m. P. M., being $4^{\circ} 15^{\prime}$ seuth.

осtober's

starlit sky presents one prominent subject for ebservation and study. It is the perihelion of Saturn. The sun and the most richly gifted of his sons are at their closest point of appreach, $100,000,000$ miles spanning the distance that intervenes between Saturn's perihe ion and aphelion. Fortunately the earth approaches that point of her orbit where her path lies almost between the sun and Saturn, and she profits largely by the proximity, for the increased size and clear radiance bear testimony to the nearer neighb \bullet rh \bullet d of the ringgirdled planet. It seems absurd, hewever, to speak of the nearness of an object whose mean distance from the sun is $881,000,000$ miles. We are at sea, without a ilit, in seeking to comprehend dimensions where a million miles is the measuring unit. But we can see results in the beauty and brightness of a planet that fifteen years hence will shine with a dull, murky light in striking contrast with his present serene aspect.
Astronemers whe make Saturnian investigation a specialty will improve the present favorable conditions. It will not be unexpected if they find out whether the dark spaces between the rings are merely shadings in or between the myriad satellites that make them up, or even if a ninth moon should be detected faintly gleaming among its brethren.
If twenty-five years exhausts an astronomer's highest p॰wer of \bullet bservation, before Saturn's return to peri-
helion in $1915 \bullet$ bservers whe are new in their helion in 1915 -bservers whe are n๑w in their golden prime will have lost their power to see clearly, observers whe are just entering the astronomical field will rejoice in the maturity of visual strength, and observers who are but children now will become aspirants for the laurels the heavens bestow on those who devote their life work to the study of celestial mysteries.
Nearly a generation of those wh n now tread the earth will sleep peacefully in its bosom, while this wonder of the skies traverses the vast path that forms his circuit round the sun. A generation of men lives and dies in one Saturnian year!
Well may it be said that the study of astron 0 m promotes humility, teaching, as n• other science can, the insignificance of humanity!
What is our earth with her one moon in the material scale by the side of the magnificent Saturn with his rings, moons, and belts? We may, h॰wever, find consolation for our littleness in the thought that the earth is in her perfection of development, while the primeval fires of Saturn still burn. When animate life reigns on this peerless planet, the earth, according to the law of nevitable decay, will be a dead w•rld, cooled down t• the condition of our satellite, where life and moisture are unknown. Mars and Mercury will perhaps succumb to the same law before the earth, on account of their smaller dimensions, while Venus will keep pace more nearly with her twin sister. The four great planets will then rejoice in physical perfection, and take the place n•w eccupied by theirmore insignificant brethren. But millions of years will be required te effect these changes, and the inhabitants of this little planet can meanwhile behold the process of world mak ing on the larger planets, and the process of decay on the smaller ones, while they wait patiently for what is \bullet come.

Vulean Hammers for sweden.

Wm. P. Duncan \& Ce., of Bellefente, Pa., have just shipped an 80 lb . Vulcan pewer hammer te Sweden, and are constantly receiving •rders in this country. This hammer is growing in favor every day.

