from the upper deck, are then brought into position, and the vessel is thus secured. Pumping is then con tinued until the vessel is raised clear of the water These adjustable bilge blocks are very bread, and form an unusually firm cradle, which cannot be displaced even when struck by a heavy sea. The lifting pewer of the deck is obtained from the pontoons only, the weight.
eight
The special feature of this deck, from which it has been named, is seen in the next eperation, viz., that of depositing the vessel on the staging. Fig. 3 shews an end elevation or section of the staging, which is formed of parallel rews of vertical piles of irøn or timber, capped by horizontal timbers. These rows of piers, which are erected at right angles to the shore line, are 4 or 5 feet bread, and from 12 to 15 feet apart. T• deposit the vessel, the deck is brought up to the staging, and its penteons passed between the piers. The keel of the vessel passes clear above the middle line blecks on the staging, the outer blecks being temperarily turned down. As seen as the vessel has been brought over the keel blocks on the staging the dock is lowered, the vessel takes her bearing, the bilge blecks are immediately drawn in in the dry, and the dock is withdrawn, ready to raise or lower another vessel. A few feet variation in the level of the water can always be accomm@dated by the use of m॰re or less blecking, and vessels of any breadth, h॰wever great, can be raised and deposited with the utmost facility. The operation of lowering a vessel from the staging int the water is necessarily the exact reverse of that of raising, which has been fully described.
It will be seen that the depositing dock is specially suitable for large commercial ports where many vessels have to be docked, as one dock can serve any number of vessels: the number of vessels that can be accommedated is, in fact, limited onlyby the length of staging provided. The dock is very economical in its working, and requires much less pumping to be done than an ordinary stone dock. When a vessel is on the staging, it is fully exposed to light and air, and is in an exceptionally favorable position for being painted or repaired. The depositing dock is constructed in two equal portions, each furnished with engines, pumps, etc., complete, se that each portion can be used as an independent dock for smaller vessels; each portion can alse at any time be docked on the other portion without any heeling ever, se that all parts are readily accessible for cleaning and painting, thus enabling the dock to be kept in the most therough preservation. The staging can be erected in comparatively shallow water, as it is not necessary te have a much greater depth than the draught of the dock with the vessel on it, say from 10 to 15 feet; but where the vessels are raised or lowered, which can always be done at the same spot, there must be a depth equal to the depth of the pontoons added to the draught of the vessel. Vessels can, with advantage, be built on the staging, and lowered into the water at a very small cost, without any rolling or sliding motion, and without running the risk of straining incurred by launching. The time eccupied in docking a vessel of any size need not exceed one hour, and in lowering half an hour; a vessel can, of course, be raised, sighted, and refleated in less than two hours. The following are among the chief advantages of the depositing system: 1. One dock can accemmedate any number of vessels by means of staging, which can be erected along the waste shores of a river or wet deck. 2. The deck can take a vessel of any size, and of a breadth toe great to en ter any other fixed or fleating dock. 3. Each half of the dock is complete in itself, and can be used as an independent deck for smaller vessels, and for docking the other half. 4. Each additional length of staging prevides the accommedation of an additional graving dock at a very small cost. 5. Vessels can be built on an even keel on the staging, and can be lowered int the water witheut any strain, avoiding the risk and cost of launching, and saving the space required for a slip. 6. The dock, either with or without a vessel, can be towed from place to place, for the purpose of docking and "depositing vessels at different points. 7. The dock cannot sink, even if all its valves be left open by accident or intention. 8. The dock can at any time be enlarged as occasion may require at the same rate per ton as its original cost. 9 . With sufficient staging, one of these decks can accommodate a very great number of vessels daily, and can, therefore, earn a very much larger dividend than any other form of dry dock.
We may add that in 1876 Messrs. Clark \& Standfield constructed for the Russian gevernment a large depositing deck. The firm have alse constructed a depesiting deck at Barrew, to deck vessels up te about 3,200 tons displacement, and alse another deck for the Russian gevernment, to dock vessels up to about 8,000 tons displacement. -Iron.

THE following is a geod remedy for burns: Mix 4 ©unces of the y olk of eggs with 5 ounces of pure glycerine. This forms a kind of varnish.

Srinemtitit Ammicam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN

A. E. BEACH.

TERVS FOR THE SCIENTIFIC AMERICAN.

 ne copy, one year, postage included....ne cops, six months, postage included. \qquad
Clubs.- ©ne extra copy of The Scientific Ampicican will be supplied atis for every club of flve subscribers at $\$ 3.20$ each; additional copies at
ame proportionate rate. Postage prepaid. Remit by postal order. Address
MUNN \& C©., 361 Breadway, corner of Franklin Street, New York.
The Scientific American Supplement is a distinct paperfrom the SCIENTIFIC AMERICAN. THE SUPPLEMENT with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all newsdealers throughout the country. newsdealers throughout the country.
Combined Rates.-The Scientific american and Supriement
will be sent for one year, postage free, on receipt of seven dollars. Beth will be sent for one year, postage free, on receipt of seven dollars. Bot The safest way to remit is by draft, postal order, or registered letter.
didress MUNN \& C 0. . 361 Broad way, corner of Franklin Street,New Y Scientific American Export Edition.
\qquad -dical, issued once a month. Each number contains about one hundred laree quarte pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERICAN. with its splendid engravings and valuable information; (2.) Com-
mercial, trade, and manufacturing announcements of leading houses. Tercial, for Expert Edition, $\$ 5.00$ a year, sent prepaid to any part of the wor.d. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost. The SCIENTIFIC AMERICAN Export Edition has a large giaranteed cir \& C \bullet., 361 Breadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, OCTOBER 3, 1885.

Contents.

(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT

INO. 509 ,

For the Week Ending October 3, 1885.
Price 10 cents. For sale by all newsdealers.
Chemistry and metaidturgy.-Rapid Determination of page Nitrogen.-By A. Heuzeau
Detection of Nitric Acid in Air, water, and Soils............ al and h. Lajouex.
Reducing Properties of \bullet xygenated Water
A Cellular Structure in Cast Steel.-By ©sMund and w•Rth...
Principle of Maximum Work.-Phenomena of Chemical Change
engineering, etc.-on the Construction of Rolling Cams.Pref. C. W. MacC \bullet RD.-With full page of illustrations............... 81 Sinclair..

Microscopic Gleanings.

Prof. Leonhard Weber's Photometer.-By B. Redwood.-1 fig

ure.

Plates for Lantern Projection

Eliectricity, ETC.-Progress of Telephone Litigation. Ravaglia's Hydrometrograph.-With engraving.

effects.-By C. Decharme.-19 figures

- cean and Air Currents.

ARCHITECTURE, ARCHE@l@GY, ETC. - A Louis XIV. Cradle. An engraving
Chat of St. Mark's, Venice
A Mayax,", from Dr. Le Plengeen's New Book, "Monument The Ruins of the of the Probable origin of the Egyptians.... rravings................. Madras Presidency.-Full page of en

Miscellane ds.-H•w te Mount Iarge Insects.
M.D.

A NEW PHASE IN THE TELEPHONE LITIGATIONS, It will be seen from an interesting article, with details, given in our this week's Supplement, that a new and peculiar form of attack has been commenced against the Bell Telephone Company, being a suit brought in the name and at the cost of the Government of the United States to break and annul the original Bell patent. One peculiarity of the case is that the Bell patent. One peculiarity of the case is that the
Attorney-General, by whose authority the suit is Attorney-General, by whose authority the suit is
brought, is, or was lately, deeply interested in the stock of a rival telephone company that will shortly be enoined and probably ruined, unless saved by this new legal dodge. Another curious feature is that, in this new suit, the Attorney-General has appointed as the lawyers te represent the G•vernment the same lot of lawyers wh \bullet have heretofore defended and been paid y the Attorney-General's telephone company. Thus, y favor of the Department of Justice, the lawyers of the Attorney-General's telephone company will continue te battle for his interests, but will in future draw pay from the Treasury of the United States.
We are among these whe regard the Bell patent as an illegal monopoly. We believe the lower court, through some misintrepretation of evidence or failure in its presentation, awarded to Bell a disc॰very that, in truth and justice, belonged to an七ther man. Phillip Reis, in 1860, was the original and first inventor of the electric telephone; he gave the invention to the public in several forms many years before Bell's device was made; hisinventi•ns were kn•wn t• Bell; and n•w, at this late day, to have the inventions of Reis wrenched from the eople and converted int a vast monepoly for the en richment of private individuals seems like a mockery of justice.
The manner of its accomplishment is about as $f \bullet l$ - ws: In the first suit judge number \bullet ne, on the mea ger evidence then presented, concluded Reis' telephone to be geod for nothing, and held Bell's patent to be valid. In the second case, judge number two would not hear additional evidence concerning Reis, as the subject had been already decided. In the third case, judge number three declined to hear the evidence for similar reasons. In the fourth case, judge number four reaches the same result; he agrees it would not be polite to the other judges to rule differently. Thus the several judges, although only one investigation of evidence has been made, have ranged themselves like se many fences, one behind the other; and the Bell people, in addition to their patents, practically control the art of transmitting speech to the ears of the judges of the lower courts.
Unsatisfactory as this state of things appears, it is, nevertheless, strictly in accordance with legal forms and precedents, and aff॰rds n• shadew of justification for the scandalous spectacle which the Department of Justice is now making of itself.
Patentees are interested in this matter without regard te what they may think of this particular patent of Graham Bell. If the United States will lend its wealth and influence to carry on litigation and encour age infringement of a patent sustained by all the cir cuit courts, and de this upon alleged defenses which have been passed upen, and in faver of those whe can avail of them in actually pending suits, but whe hap. pen to have special persenal relations with the Attor-ney-General, and do this on ex purte presentation of the case, invention and a patent will n longer confer rights, and decisions of the courts can n• longer, sustain rights, and decisie
nor protect them

STILETTO AND ATALANTA

It will be remembered that early in July it was announced that the Stilett• had won the race ever the ninety mile course from Larchmont to New London 121 The race was very close, but it was supposed that she 3121 had beaten the Atalanta by several minutes. Mr. Geuld promptly protested against the decision on the ground that the Stilette, probably by mistake, had left the prescribed course, and near the finish had gone inside in stead of outside of a certain buey. A committee was appointed by the American Steam Yacht Club to in vestigate the charge, and after hearing rather a volu119 minøus testimony on the subject, decided in Mr 3119 : Geuld's favor, and awarded the challenge cup to the Atalanta.
This decision has called forth a challenge from Mr. Herreshoff for another race between the twe steam yachts, ©ver a hundred mile course on the Hudsen, 3126 from New York fifty miles up river and back again. ${ }^{127}$ The proposed stake is a new championship cup t be held by the winning beat until her record is sur 3128 passed. Mr. Gould has intimated his willingness to ${ }^{3132}$ accept the challenge, if an open water course, such as that on the Sound, over which the disputed race took place in July, be selected instead of the Hudson, as 121 the Atalanta, it is stated, is only allowe to run at three-fourths speed on the river, on account of the 30 , numereus craft encountered, and in passing a flotilla \bullet of beats is \bullet bliged to slow down or even to come
t a full stop, while the smaller yacht circles around - a full stop, while the smaller yacht circles around
them at full speed. Moreover, the Atalanta, on account of her size, requires fifteen minutes to turn about while the Stilette can turn in two. These conditions
would waniferily make a river race in twe directions
unfair to the Atalanta; and since the disputed race came off on the Sound, the second trial would seem more cenclusive if made \bullet ver the same course.

pNEUMONIA AND ozone.

Dr. Draper, of the Meteorelogical Observatory at Central Park, New York city, has called attention to the fact that during the pasteight years there has been an apparent connection between the death-rate from pneun๒ in in New York and the presence of ozone in the atmosphere. The epidemic has been particularly fatal during the present year, and it is stated on good authority that the death-rate from this cause has exceeded that from cholera in 1854. It has not been determined whether the connection between the disease and the ozone in the air is simply a coincidence, or whether there are scientific reasons for their joint appearance.
We kn॰w as yet but little about either the cause of the disease or of the medified form of exygen which we denөminate as ezøne. In pursuing an in vestigation to discover their true relation, should any be found, tw• cases are possible: either that the ezone, which in large quantities we know to be injurious to health, is the direct cause of the disease, or that the same atmospheric conditions which preduce ozone are alse favorable to the spread of pneumonia. We are inclined to believe that the connection is purely accidental, but of the tw• hypotheses, the latter seems the more tenable, though Dr. Draper has apparently given it ne consideration.

ASPECTS OF THE PLANETS FOR OCTOBER

SATURN

is morning star. He takes the leading part among his brethren, for a noteworthy epoch occurs in his long journey round the sun. He reaches perihelion, or his nearest point to the sun, on the 21 st , at $7 \bullet$ 'cleck in the morning. As this event eccurs only once in nearly morning. As this event occurs only once in nearly
thirty years, it must rank as a high festival in the solar thirty y
The sun and the member of his family whe is second in size, and first in the surpassing beauty of his system, make their nearest appreach to each other. It is $291 / 2$ years since their last meeting under similar conditions. During that time, Saturn has traveled more than five thousand million miles in making his vast circuit around the sun, and now looks the great luminary in the face from a standpoint $100,000,000$ miles nearer than when, fifteen years age, he passed aphelion or his most distant point from the sun.
Figures give little idea of distances to finite minds when trying to form an idea of the space that intervenes between our planet and one that revolves in an orbit of vast circumference like that of Saturn. The difference even between his least and greatest distance from the sun is greater than the whole distance that separates us from the mighty orb on whom all the planets depend for life and light.
The reason for the varying distance of the planets is easily understeod. Each planet møves in an elliptical orbit, the sun being in one of the foci of the ellipse. There must be a point in each orbit where the planet is nearest to the sun, or in perihelion, and alse a point where the planet is farthest from the sun, or in aphelion. Saturn illustrates the former condition and Venus the latter during the presentmonth. The ellipticity of the orbit, or the eccentricity, as it is called, varies greatly in the different planets. Mercury has the greatest eccentricity, Mars comes next, and Saturn takes the third place, while Venus has the least, her -rbit being nearly circular.
The perihelion of Saturn is an important astrøn \bullet mical event, and has been anticipated for years with eager interest. But why should the nearest appreach of this planet to the sun be of se much consequence te terrestrial ebservers? is a question that naturally arises to thoughtful minds. It is because when Saturn is nearest to the sun, he is, under certain conditions, nearest to the earth, and the appreach is easily perceptible in his increased size and greater brilliancy. There are three conditions that, when united, give the best posrings must be open to their widest extent, and he must rings must be open to their widest extent, and he must
be in opposition, or Saturn, the earth, and the sun be in opposition, or Saturn, the earth, and the sun
must be in a straight line, with the earth in the middle. These three conditions are nearly united in the present position of our magnificent brother in regard to the earth. He is in perihelion, his rings are open to their widest extent, and he is within twe months of eppesition, as well as in high northern declination.
Nearly a whole generation will pass away before Saturn will again be seen under conditions as faverable as those he now presents. Instead of a dull, murky, and ill-omened star, he shines with a soft and serene light, that gives him a pre-eminence among the surrounding stars, and brings out the best aspect of the planet that ranks as second in the solar scheme. His preximity increases his size, and his wide epen rings give him an elliptical form to eyes blessed with excep tional visual pewer. It is field day with astronomers,
whe will eagerly impreye the rare eccasion in search ing for new satellites, in seeking to find out what the rings are made of, and in tracing the shadowy belts on the planet's disk.
N• guide will be needed to point out Saturn's position in the heavens. He rises on the 1st, in the northeast, about $10 \bullet$ cleck, and cannot fail to be recegnized by any ©bserver whe commands a view of the eastern horizon. He will rise about four minutes earlier every evening until the end of the month, when his beam-
ing face will be visible soon after 8 ,'cleck. He is still ing face will be visible seon after 8 ॰'clock. He is still
classed among the morning stars, alth early in the evening. For according to astron \bullet mical law, planets on the western side of the sun rank as morning stars, those on his eastern side rank as evening stars. Saturn will be on the western side until pposition in December.
He is in quadrature with the sun on the 1 st, at 1 -'clock in the morning, being 90° west of the sun, and half way between conjunction and opposition. He has been traveling eastward or in direct motion for several mønths, but is stationary about the time of periheliøn. The right ascension of Saturn on the 1st is 6 h .15 m his declination is $22^{\circ} 18^{\prime}$ north; his diameter is $174^{\prime \prime}$ and he is in the constellation Gemini.

Saturn rises on the 1st about a quarter after 10 - cleck in the evening; on the 31st he rises a quarter after $8 \bullet$ 'cleck.

venus

is evening star. As we classify the planets in the monthly presentation according to the interesting incidents they supply for oloservation, Venus easily wins the second place on the October list. She grows more beautiful all the time as she recedes from the sun, while her increasing distance being now plainly per ceptible in the longer time she remains above the horizon after his departure. When the month closes, she will set two hours and a quarter after sunset. She will be the gem of the early evening sky in October, wending her shining way in the southwest, and leaving but one regret, that her path is not further north while she takes on her present levely aspect. She has passed near several first magnitude stars since she became eve ning star, paying her respects to Regulus in July, Spica in September, and she will be near Antares in October, on the 16th, being 3° north at the time.
Venus is in aphelion on the 16th at 10 'clock in the evening. Her eccentricity, however, is se small that her orbit is considered circular for all ordinary pur peses.
The
The right ascension of Venus on the 1 st is 14 h .57 m .; her declination is 18° south; her diameter is $15 \cdot 2^{\prime \prime}$ and she is in the constellation Libra.
Venus sets \bullet n the 1 st about $7 \bullet$ 'clock in the evening; on the 31 st she sets at nearly the same time.

MARS
is mørning star. He rises about a half hour after mid night, and varies little in his time of rising during the month. He may be found at the close of the month a little way northeast of Regulus, and is visible as a small red star.

The right ascension of Mars on the 1st is 8 h .48 m. ; his declination is $19^{\circ} 3^{\prime}$ north; his diameter is $54^{\prime \prime}$; and he is in the constellation Cancer.
Mars rises on the 1st about a half hour after mid night; on the 31st he rises a few minutes after mid night.
is morning star. He is tee near the sun te be of much consequence at present. But he is making his way rapidly to visibility, and when the month closes, he ises more than three hours before the sun.
He is in conjunction with Beta Virginis on the 21st,
t $2 \bullet$ 'clock in the afternoon. Observers will not be much the wiser for this meeting of planet and star, but it takes place just as surely as if it were as plainly visible as the rising of the moon.

The right ascension of Jupiter on the 1st is 11 h .29 m . his declination is $4^{\circ} 26^{\prime}$ n॰rth; his diameter is $29^{\circ} 6^{\prime \prime}$; and he is in the constellation Virge.
Jupiter rises on the 1st a quarter after $4 \bullet$ 'cleck in the morning; on the 31st he rises a quarter before 3 -'cleck.

MERCURY

is morning star until the 16th, and then evening star. On the 16th, at 5 o'clock in the morning, he is in supe rior conjunction with the sun, having completed one of his swift circuits from superiør conjunction to supe-
riør conjunction again in 115 days, his syn \bullet ic peri•d. On conjunction again in 115 days, his synedic period. junction with Uranus, being $1^{\circ} 13^{\prime}$ north.
The right ascension of Mercury on the 1 st is 12 h . The right ascension of Mercury on the 1st is 12 h .;
his declination is $2^{\circ} 3^{\prime}$ north; his diameter is $5 \cdot 2^{\prime \prime}$; and he is in the constellation Virge.
Mercury rises on the 1st about a quarter before
$5 \bullet$ 'cleck in the morning; on the 31st he sets at $5 \bullet$ 'cleck in the evening.

URANUS

is morning star. He is toe near the sun to be of any interest to students of the stars. His mon \quad ioton $\bullet u s$
course course is, hewever
cury on the 15 th .

The right ascension of Uranus on the 1st is 12 h .14 m .; his declination is $0^{\circ} 49^{\prime}$ south; his diameter is $3 \cdot 4^{\prime \prime}$; and may be found in the constellation Virge.
Uranus rises on the 1 st a quarter after $5 \bullet$ 'clock in the lorning; ©n the 31 st he rises at half past 3 o'cleck. NEPTUNE

morning star.

The right ascension of Neptune is 3 h .33 m .; his declination is $16^{\circ} 22^{\prime}$ north; his diameter is $2 \cdot 6^{\prime}$; and he is in the constellation Taurus.
Neptune rises on the 1st about half past 7 •'cleck in Neptune rises on the 1st about half past $7 \bullet$ clock in - 'cleck.

THE MOON.

The Oct॰ber meon fulls on the $23 d$ at $4 \mathrm{~h} .22 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. The meon is in conjunction with Saturn on the 1st at 6 h. 9 m. A. M., shortly before the last quarter, being at the time $4^{\circ} 15^{\prime \prime}$ south. She is in conjunction with Mars on the $3 d$, at 2 h .5 m . P. M.. being $5^{\circ} 4^{\prime}$ south. She encounters Jupiter on the 6th, at 11 h .49 m . A. M., being $1^{\circ} 25^{\prime}$ south.
There is a very close conjunction or an appulse between the moon and Uranus on the 7th, at $6 \mathrm{~h} .56 \mathrm{~m} . \mathrm{A}$. M., the moon being only 6^{\prime} north of the planet. She is in conjunction with Venus on the 11th, three days after new m•on, at 6 h .39 m . A. M., being $6^{\circ} 23^{\prime}$ north. On the 25th, at 8 h . 58 m . A. M., she is at her nearest On the 25 th , at 8 h .58 m. A. M., she is at her nearest
point to Neptune, being $2^{*} 44^{\prime}$ south. She is in conpoint to Neptune, being $2^{\circ} 44^{\prime}$ south. She is in con-
junction with Saturn a second time on the 28 th, at 0 h . 4 m . P. M., being $4^{\bullet} 7^{\prime}$ south, and with Mars on the 31st at 11 h .7 m. P. M., being $4^{\circ} 15^{\prime}$ seuth.

october's

starlit sky presents one prominent subject for •bservation and study. It is the perihelion of Saturn. The sun and the most richly gifted of his sons are at their closest point of appreach, $100,000,000$ miles spanning the distance that intervenes between Saturn's periheion and aphelion. Fertunately the earth appreaches that point of her orbit where her path lies almost between the sun and Saturn, and she prefits largely by the proximity, for the increased size and clear radiance bear testimeny to the nearer neighborhoed of the ringsirdled planet. It seems absurd, however, to speak of the nearness of an \bullet bject whose mean distance from the sun is $881,000,000$ miles. We are at sea, with七ut a pilot, in seeking to comprehend dimensions where a million miles is the measuring unit. But we can see results in the beauty and brightness of a planet that fifteen years hence will shine with a dull, murky light in striking contrast with his present serene aspect.
Astron mers whe make Saturnian investigation a pecialty will impreve the present faverable cenditions. It will not be unexpected if they find out whether the dark spaces between the rings are merely shadings in or between the myriad satellites that make them up, or even if a ninth moon should be detected faintly gleaming among its brethren.
If twenty-five years exhausts an astronomer's highest power of ©bservation, before Saturn's return to perihelion in 1915 observers whe are now in their golden prime will have lost their power to see clearly, observers whe are just entering the astronomical field will rejoice in the maturity of visual strength, and observers whe are but children now will become aspirants for the laurels the heavens bestow on those whe devote their life work to the study of celestial mysteries.
Nearly a generation of those whe now tread the earth will sleep peacefully in its bosom, while this wonder of the skies traverses the vast path that forms his circuit round the sun. A generation of men lives and dies in -ne Saturnian year!
Well may it be said that the study of astron $\bullet m y$ promotes humility, teaching, as n \bullet other science can, the insignificance of humanity!
What is our earth with her one moon in the material scale by the side of the magnificent Saturn with his rings, moons, and belts? We may, however, find consolation for our littleness in the thought that the earth is in her perfection of development, while the primeval fires of Saturn still burn. When animate life reigns on this peerless planet, the earth, according to the law of nevitable decay, will be a dead world, ceeled down te the condition of our satellite, where life and moisture are unknown. Mars and Mercury will perhaps suc cumb to the same law before the earth, on account of their smaller dimensions, while Venus will keep pace more nearly with her twin sister. The four great planets will then rejoice in physical perfection, and take the place now eccupied by theirmore insignificant brethren. But millions of years will be required te effect these changes, and the inhabitants of this little planet can mean while behold the process of world making on the larger planets, and the precess of decay on the smaller ones, while they wait patiently for what is - come.

Vulcan Hammers for sweden.

Wm. P. Duncan \& C•., of Bellefonte, Pa., have just shipped an 80 lb . Vulcan power hammer to Sweden, and are constantly receiving orders in this country. This hammer is growing in favor every day.

