A FEW NEW MICROSCOPE ACCESSORIES.

The annexed engravings represent three new and valuable accessories which afford great satisfaction to every microscopist who is fortunate enough to possess them. They are all new, and consequently may not have come under the observation of the reader, but the writer, speaking from his own experience with them, is able to say impartially that they are excellent and very desirable.
Ward's eye shade, shown in Fig. 1, is applied to the tube of the microscope, and permits of removing the eye pieces without changing the shade. This device permits of keeping both eyes open, and renders working with a mi croscope less fatiguing than
t would be were the unused eye exposed to the light or closed.
Fig. 2 shows an improved sub-stage condenser and two forms of mounting. The lenses composing this condenser are very large, and utilize almost all the rays which pass through the sub-stage ring. Its numerical aperture is about $1 \cdot 42$, so that it can readily be used with objectives of the largest angular aperture. The volume of light concentrated by it is quite sufficient with the highest amplication. The light may be concentrated at a single point, or it may be distributed

Fig. 2.-new sub-stage condenser.
over a larger space by varying its distance from the object. It may be used either dry or with the immersion fluid. The mounting represented in No. 1 is for oblique light. It is provided with a diaphragm, which is moved in a right line across the tube by turning the milled edge, thus giving all angles of light between central illumination and the extreme limit. The mounting shown in No. 2 is provided with a swinging diaphragm ring, in which may be placed various stops or diaphragms without disturbing the adjustment of the condenser. By means of these stops and diaphragms either a dark ground illumination or oblique illumination of any angle may be secured. The graduated blue glass light modifier shown in Fig. 3 consists of a disk of glass which revolves upon a sub-stage adapter, and gives all shades between white and dark blue, both transparent and translucent. The

Fig. 3.-GRADUATED BLUE C.LASS LIGHT MODIFIER.

PHOTOGRAPHIC NOTES.

Distortion in Photographs.-Some recent investiga tions conducted by the British Journal of Photography show conclusively that distortion in photograph prints is largely due to carelessness in mounting them. This was proved by taking strips of photograph paper some two feet long and a few inches wide, coating them on the back or plain side with the ordinary starch paste, and then laying them upon the heavy card mounts. If the paper was simply pressed down gently upon the mount and run through a pair of iron rollers the extension of the length was but one-eighth inch.
But if the surface of the print was rubbed in the di^{2} rection of its length on to the mount, the degree of extension was increased one inch. The conclusion reached was that prints should be pressed on the mounts with a soft pad of cloth, and not rubbed lengthwise. We have seen instances in portrait photographs where the distortion was so marked as togreatlychange the looks of the person. The negative was correct, but the paper in being printed and mounted had expanded, and distorted the picture
The Development of Paper Negatives.-At a recent demonstration made by Mr. David Cooper and S. C Jones before the Society of Amateur Photographers of this city, on the development of paper negatives made upon the Eastman bromo-silver gelatine paper an interesting point about their manipulation was brought out.
The strip of paper had upon it eight orten instantan eous exposures of marine subjects; the different views prior to development in the dark room were separated from each other, and one by one immersed for a few seconds in a water bath, and then placed in a very weak developer made up as follows:

After the tenth print had been placed in the above the first sheet commenced to show signs of developing, and it was curious, to one who is accustomed to de velop a dry plate, to watch Mr. Cooper handle each sheet as if the developer was a toning bath, that is, they were picked out, then dropped, and kept movin about in the solution
After a period of ten minutes it was noticed that the images had developed out very fully, but on examinin them by transmitted light they were quite thin and flat, looking apparently as if they had been overex posed.
At this point the following addition was made to the developer, from the solutions described below equivalent to
. 110 grans. Pyrozallic acid. 110 grans

$$
\begin{aligned}
& \text {.............. } 64 \\
& \text {............ } 360
\end{aligned}
$$

$$
\text { suppute so }=\mathrm{a} \quad \therefore \quad . \quad . \quad . \quad 360
$$

Which, it was stated, would act as an intensifier, and bring the negatives up to the proper strength. This it appeared to do quite rapidly, and as the negatives gained sufficient density they were, one by one, gradu ally removed from the developer, rinsed with water and placed in an alum and then in a hypo fixing bath As the paper was not as transparent as glass, it was necessary, in judging the density, to allow the negatives to appear $11 / 2$ times more dense than they would if on glass. The slow method of development was considered advisable, as it gave the operator more time to examine the negatives during development; and as they could be easily brought up to their proper density afterward by the addition of a stronger developer, the plan was a perfectly safe one.
The negatives produced at the meeting developed out as if fully exposed, and possessed fine, vigorous printing qualities.
Below we give the formula just as Mr. Cooper mixes the parts of his normal developer.

Water...

Heretofore one ounce of Nos. 1 and 2, mixed with one ounce of water, has been advised as the normal de veloper, and in it the image should appear in twenty seconds. A few drops of a restrainer, composed ofWater 6 ounces,
1 ounce,
Bromide of potassium 1 ounce,
is used if the picture appears too quick and is flat.
When several negatives are to be made at one tim When several negatives are to be made at one
the former method of development is preferred.
A Large Photograph.-We were recently shown one of the largest instantaneous marine photographs that has probably been made in this country, taken, it is stated, with a Dallmeyer rapid rectilinear lens and an extra quick improved camera shutter, upon a
ley gelatino-bromide plate, 17×22 inches in size
The subject is the English yacht Genesta under full ail; every detail is brought out, and not a single de fect observable upon so large a surface, which illus trates how perfectly plates can be made. The size of the image is over 11 inches each way. We are indebted to Messrs. E. \& H. T. Anthony \& Co., of this city, for a copy of this fine picture.

IMPROVED STEERING APPARATUS FOR RUDDERLESS SHIPS.

We are idebted to Captain John P. Roberts, of Shanghai, China, a seafaring commander of long and varied experience, for the accompanying diagram and description of an improvised steering gear that enabled him to round the Cape of Good Hope in a gale with a high, confused sea, and bring his rudderless ship safely into a narrow and difficult harbor.
We quote from Captain Roberts' log as the clearest nethod of placing his steering apparatus before the readers of the Scientific American
'China Sea, July 1, 1875.
'Finding that a heavy sea had carried away our rudder, took a four inch line from each bow, brought the ends aft to midships, and bent them to spar buoys four feet from the forward end each, the spars being ten feet long. Bent ratline stuff to the forward ends for tripping lines, and put the contrivance overboard with the tripping lines shortened in and made fast on deck to keep the spars alongside (the steamer lying in the trough of the sea, pitching heavily); started ahead at full speed, and slacked away the port tripping line.
"The spar shot out until its tow rope formed an angle of about forty-five degrees with the central line of the steamer, pulling her head round rapidly. When nearly up to our course, hauled the spar gradually alongside, and by slacking away and hauling in on ach side of the steamer, steered quite as well as could be done with a rudder."
This simple contrivance of Captain Roberts' would seem to solve the problem as to how ships may be steered, having lost their rudders, the means being at hand on board all steamers to be quickly utilized and put in operation.
Referring to the diagram, a clear understanding of this apparatus and the manner of applying will be readily obtained. A, steamer; B, spar; C, strong rope; D, small tripping line. Slacking away B from the starboard side is equivalent to porting helm, and vice versa.

A NOVEL CLOCK.

The flying pendulum clock shown in the engraving exhibits a curious application of a phenomenon observed by almost everybody, but never before suspected of availability in a clock escapement. The boy who first whipped saplings and hitching posts with his string carrying at the end a horse chestnut, had the crude principle which the inventor has ingeniously embodied in this clock.

The central vertical spindletends to revolve continuously by virtue of its connection with the driving gear of the clock, but when the arm which it carries swings half way round, the little spherical weight, suspended from it by a thread, is thrown outward by centrifugal action ; and when the thread touches one of the fixed vertical wires at the side of the clock, the momentum of the spherical weight causes it to wind the thread around the vertical wire and stop the arm and spindle. As soon as the thread is wound upon the spindle, the spherical weight unwinds it by its own gravity, and in so doing receives enough momentum to rewind the thread and still prevent the spindle from revolving. Then the thread winds and unwinds once more, when the arm is released, and makes a half revolution, when the thread is wound on the othervertical wire, and the operation just described is repeated. Made by the New Haven Clock Company, 16 Park Place, New York city.

