A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LIII.-NO. ${ }_{\text {[NEW }}$ SERIES.]

THE ATTOCK BRIDGE.

The bridge which we illustrate was built to carry the Punjaub Northern State Railway, and the trunk road between Lahore and Peshawar, across the river Indus, on the northwest frontier of India.
About thirty miles above Attock the river leaves the main ranges of the Himalayas, and spreads out into a wide, shallow bed, the average width being about two miles, to be again contracted by the ranges of hills which cross its course at Attock itself and further south. Through these latter ranges it winds its course for over 90 miles, the bed being sometimes narrowed to a width of a little over 100 yards and seldom exceeding 400 yards, until it finally debouches into the plains at Kala Bagh, the highest point to which the Lower Indus is navigable by steamers.

As a rule, the river is at its lowest from November until the early days of March; during this season the greatest depth of water in the contracted parts of the channel is about 30 feet, and of course less in wider places, but the highest floods have been known to rise as much as 70 feet above low water level.
A bridge of five spans, three being 250 feet and two 300 feet in the clear, was decided on, and contracts for the pier and girder work were let in England. Wrought iron was chosen as the best material for the piers, owing to the scarcity of good, sound building stone, and to the liability to extra heavy vibrations from earthquakes.

The surface of the rock at the site of the center pier being, for the most part, exposed to the action of a strong current, was swept clean, except for fine mica-

NEW YORK, FEBRUARY 7, 1885.
ceous sand which lodged in the crevasses; timber there fore could not be used to form a cofferdam. The founda tion was secured by inclosing the space required with a wall made of Portland cement concrete. In the absence of driving plant a commencement was made by filling small cotton cloth bags with fine concrete them by hand, the native divers first clearing the sand from the hollows in the rock, and then laying the bags in place.
The bags, capable of holding $11 / 2$ cubic feet, were about two-thirds filled with Portland cement concrete and were laid on the rock and rammed into the cavities and by this means the wall was gradually built up to water level. Cross walls were also putin of samemate rial, and ten compartments formed.
Pumps were then got to work, and some of the com partments emptied. It was then found, says Lngineer $i n g$, that the surface of the rock was not so sound as had been supposed, being honeycombed and cut up by small fissures which it had been impossible for the native divers, working without diving apparatus, to close up with the cement concrete. The influx of water through these holes and fissures was too great to allow of the cells for the shoes of the pier standards being unk into the rock
Each compartment was then in turn filled up with cement concrete, which was allowed to set for three or four days, then a cell was cut down through it to the surface of the rock, and continued into the rock until found sound and perfectly solid. In two cases, after excavating a few feet into the rock, small passages com-
[\$3.20 per Annum.
municating with the river outside were cut into, when the process had to be repeated over again. The cells were cut 7 feet square at top, or just a little larger than the shoes of the columns, and somewhat wider at the bottom. When all the eight cells were completed to the full depth required to insure a sound base, the bottom pieces of the column were cut to the necessary length, the shoes were riveted on, and each was lowered into its cell, and placed approximately at the proper level and position horizontally, resting on hard wood wedges. The next lengths were then bolted to them, and two tiers of horizontal braces with the intermediate cross braces were fixed in place with bolts. The whole base of the pier was now slightly raised by traversing screwjacks, and brought exactly into position both horizontally and vertically. Fine Portland cement concrete was carefully rammed under the shoes, also inside and around them, and the cells around the columns and also under them were filled with the same class of concrete up to the level of the top of the dam wall. This completed the foundation work ono. 3 pier, and the others were treated in a similar manner; there being, however, no water to contend with, they were set without difficulty of any kind.
For the two principal spans no intermediate supports could be erected, as they carry the main channel of the river, and the velocity of the water at its lowest exceeds five miles an hour in the third span, sweeping the rocky surface clean. The frequency also with which rafts of timber from the upper reaches pass, often without men to guide them, also large boats with produce, add to the

dangers a staging with intermediate supports would have had to encounter. Moreover, it was desirable that any staging should be practically clear of cold seasons, minor floods, and should allow of a rise in the river of at least 30 feet without causing any material obstruc tion to the waterway.
The perspective view shows the staging in course of construction. It consisted of a series of long struts springing from a point near the base of each pier, and spreading out in a fan to support a horizontal beam of double whole timbers on which the platform was laid for erecting the girders. The corresponding struts in the up and down stream fans (which were 19 feet apart center to center, the same distance as the girders) were connected by horizontal braces, each brace being a pair of half timbers bolted together with the struts between them, and with diagonal struts in the rectangle be tween each pair of horizontal bracings. At equal ver tical distances of 12 feet, ledgers of half timbers in pairs connected all the main struts of each fan with each other and with the main column of the pier with which they were in line, being clamped to the columns by heavy wrought iron straps. The outer main struts were built up of whole timbers clamped together, com mencing at the bottom with three, one of which eventu ally branched into a secondary strut. Similarly the vertical next the pier commenced with two whole timbers, and divided afterward into two struts. At the level of each tier of ledgers above the fourth, counting from the bottom, sets of one inch chain horizontal diagonal bracings were put in. These chains were drawn tight by ordinary wagon screw couplings, four hundred of which were got out from England specially for the work.
The two outermost struts from opposite sides were connected at top by a beam of the same section being dropped in before the sill pieces were laid. This beam was 63 feet long and of sal wood (the rest of the staging being deodar), and was trussed by three vertical struts, 10 feet deep, with rods of 2 inches round iron forming a queen truss of 63 feet span. When in place this trussed beam, together with the long struts which it connected, formed a gigantic strut and straining beam truss under the sill pieces.
During erection and until the straining beams were in place each fan was tied back to the main column of the pier with which it was in line by the ledgers, which for the time had to bear a considerable amount of tension.
The timber readily procurable on the Indus does not exceed an average of 22 feet in length, and the number of joints in the work was therefore very great. The stagings were built out from the piers piece by piece, beginning with the vertical struts next the piers, which were soon carried up to their full height. To facilitate the hoisting of the timbers into place, two pairs of Manila 9 inch hawsers were stretched across each span. from the top of the 250 foot completed girders at the shore ends and over a pyramid of sleepers placed on the top of the center pier. From these hawsers tackles were suspended at convenient points as the work progressed.
When the building out of the fan portions was completed, rails were laid on the sills, and two large temporary cranes made for the purpose were moved out to the extremities. The 63 foot trusses were then built on boats, were brought under the cranes, and were raised into place, the cast iron angle sockets at the ends of the straining beams being dropped over the ends of the long struts, which were sprung back slightly to allow of this being done. When these were in place, the sill piece was completed over the top and the platform laid on, a line of rails to the meter gauge being put upon it to bring out the girder material. These stagings proved very satisfactory; levels were taken daily at several points during the time the girders were being built, to test the stagings for settlement, and, notwithstanding the great number of joints, the maximum deflection of the platforms under the full weight of over 600 tons (in addition to the weight of the staging itself) was only $11 / 8$ inches. The stagings were by far the most difficult, a well as tedious, part of the work of the construction o the bridge.

Heating by Electricity.

A correspondent in The Electrician gives the following reasons why electricity for heating purposes cannot be economically employed, if a steam or gas engine is used to produce the current in the first instance.
In the first case, one-tenth of the heat of the coal only is recovered; then, say, 25 per cent of power islostin the dynamo; and finally, 25 per cent or more lost on conversion of the current into heat. Thus we get $0.1 \times$ 0.75×0.75 of the heat of the coal $=0.05625$, or say, at best, $\frac{1}{80}$ only. Even if coal were burnt in an open fireplace, not more than half the heat is lost. With a gas engine matters are not much better. In short, taking the expense of machinery, etc., into consideration, it is fair to assume that heating by electricity is at least 50 or 60 times more expensive than burning coal direct in the most approved stoves, and 25 to 30 times dearer than coal burnt in an open fire.

Sonimutifir gmmicaut.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year, postage included..
.8320
.160
18
Clubs.-One extra copy of THE SCIENTIFIC AMRRICAN will be supplied
ratis for every club of flve subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

The Scientific American Supplement

is a distinct paper from the Scientific ambrican. The SUPplement is issued weekly. Every number contains 16 octavo pages. uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates. $-T h e ~ s c i e v t r y i d ~$
Combined Rates.-The SClentific American and SUPpiement
papers to one address or difirerent addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.

Scientific American Export Edition

The Scientific American Export Edition is a large and splendid periaical, issued once a month. Each number contains about one hundred
large quarto pages, protusely illustrated, embracin: (1.) Most of the plate and pages of the four preeeding weekly issues of the SCIENTIFIC AMERICAN. With its splendid engravings and valuable information; (2.) Com mercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition. 85.50 a year, sent prepaid to any part of the world. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guaranteed cir culation in all commercial places throughout the world. Address MUN
C Coo., 361 Broad way, corner of Franklin Street, New York.:

NEW YORK, SATURDAY, FEBRUARY 7, 1885.

TABLE OF CONTENTS OF

the scientific american supplement

```
NO. 475,
```

For the Week Ending February $\boldsymbol{7}$, 1885.
Price 10 cents. For sale by all newsdealers.
I. Chemistr p.-Tannin.-By E. Dwight Kendall.-Bodiesincluded und
tannin
EnGing... 75
ENGINEERING AND MECHANICS.-New Express Engine,
Manchester, Sheffield, and Lincolnshire Railway--Full page enManchester, Sheffield, and Linco
graving..
Rattan Lubricators.-5 figures..

On the Influence of Sand on the Strength of Cement-Mortars. By H. Arnold..
A Thousand Foot Tower.--With
Dumping Car.-With engraving
Improved Shell and Mechanical
On the Remelting of Cast Iron
New System of Cleaning Sewers.-2 figures.
WECHNOLOGY.-Improved Burring Arrangement.-1 figure..... Wallich's Condenser. 1 figure. .
The Manufacture of Sugar of Milk in Switzerland................... J . KUNZ. -The chemistry and commerce of milk-sugar.-Manufacture of V. TELEGRAPHY AND ELECTRICITY.-Telegraphs.-Aerial tel-egraphy.-Optical telegraph apparatus.-Mance's and other hand heliographs. 9 figures..
Electric Railway of the Royal Coal Mines of Zaukeroda.- Full page of illustrations
GEOLOGY.-Drumlins, or Hills composed of Unstratiffed Glacial
Drift.-Abstract from a paper by W. M. DAvis. Drift.-Abstract from a paper by W. M. Davis...
Marble Cave, in Roark Mt., Stone Co., Mo.-Wit
 I. NATURALHISTORY.-Notesabout Lyre Bir

BELL.-Paper read before the Field Naturalists' 'Club, Victoria.... General Truths in Applied Entomology.-By Prof. C. V. RILEY.. 758 II. HORTICULTURE.-The Victoria Regia in the Gardens of Abraham Dixon, Esq., at Cherkley Court, Leatherhead..
VIII. MEDICINE, HYGIENE, ETC.-Ether Spray Freezing Micro-tome.-By WM. RUTHERFORD.-Preparation of the tissue.-Use of the microtome with ether spray and with ice.-2 engravings.........
Recent Scientifl Progress in Nervous Diseases.-By Prof. L. A. MERriAM.-Paperread before the Nebraska State Medical Society.
The Membrana Tympant.-By O. A. PALMER, M.D. 4 figures The Membrana Tympant.-By O. A. PALMER, M.D.-4 figures...... 755
The Cholera Microbe.- 6 figures................................. 75

ENCKE'S COMET

There is an excitement in the celestial court. Encke's comet has arrived, and star gazers are turning their telescopes to the skie's in eager haste to obtain a glimpse of the distinguished visitor. Our eccentric guest is not a prince among comets. It is not a cometa horrendae magnitudinis, like those members of the family that in the olden times swept over the heavens, and threw the beholders into an agony of superstitious terror. It does not burst upon the astonished gaze at noonday with a brilliancy akin to that of the sun; its tail is not curved like a Turkish cimeter, nor does it branch out into six tails, each $6,000,000$ miles long. It does not span the celestial vault from horizon to zenith; there is no danger of its being considered the harbinger of war, pestilence, and the day of judgment; and there will be no prayers read in the churches beseeching deliverance from "the Turk, the devil, and the comet."

Encke's comet is interesting chiefly for being the first known comet of a short period, for making the shortest circuit of any member of its class, for performing its revolution within the boundaries of the solar system, and for the reason that it seems to be more amenable to physical law than some of the more imposing members of the cometary family, those vast ethereal creations that visit our domain and then rush off into fathomless space,

"On the long travel of a thousand years."

This comet has a history. It is known as Encke's comet because the distinguished German astronomer was the first to carefully investigate its motion. It was first detected in 1786 again by Miss Caroline Herschel in 1795 , again in 1805 , and finally by Pons, the great comet finder, in 1818. He found on calculating its orbit that it was identical with the comet of 1805 , but made no estimate of the length of the period. Encke then took up the task, and studied its movements with a thoroughness before unknown. He established beyond a doubt that the comet's orbit was an ellipse, that its period was about 1,212 days, and that it had made four complete revolutions between 1805 and 1818. These facts being sure, there was no difficulty in identifying it with the comets of 1786 and 1795 , and in concluding that in the intermediate returns to perihelion its position had been so unfavorable that it was not seen.
Encke predicted its return in 1822, pointed out the position it would occupy among the stars, and also announced that it would be visible only in the southern hemisphere. He had the happiness of seeing his predictions verified by the observations of an astronomer in New South Wales, who followed the comet during its whole visible course.
Since that time this eccentric visitor has not failed to return to perihelion very nearly at the computed time, although at some returns it has been visible only in the southern hemisphere, and at other returns it position has been so unfavorable that the closest scrutiny has been of no avail in picking it up. Encke's comet is a veteran among comets of a short period, reaching next January the centennial anniversary of its discovery. Why should not the event be celebrated? It deserves to be, for this eccentric member of the system is an exceptionally well behaved comet, except in the matter of yielding to the influence of a resisting medium or some other mysterious power. It has neither been turned into a new path by the disturbing form of Jupi-ter-sometimes its near neighbor-nor has it split in two parts like Biela's comet, nor is it disintegrating into meteors, like Tempel's comet and the second comet of 1862, that lead the long procession of meteors in the November and August meteor zones.
The orbit of Encke's comet is an ellipse, inclined at an angle of 13° to the plane of the earth's orbit. At perihelion it is $31,000,000$ miles, and at aphelion 377,000 ,000 miles from the sun. Its perihelion is between the sun and Mercury, and its aphelion is between Jupiter and the asteroids. Its motion is from west to east, and its revolution, in the days of its early history, was performed in about 1,212 days.
Encke's comet is by no means a remarkable one. It is a telescopic comet, and consists of a patch of circular light, somewhat condensed toward the center. Though usually visible only through the telescope, it has been seen by the naked eye. Such was its appearance in 1828, when it was in an exceptionally favorable position for observation, and its light was equivalent to a star of the fifth magnitude. At common times there is little trace of a tail, but, on rare occasions, a slight one has been detected, like a faint brush of light, and sometimes with a second appendage opposite the first. Its tenuity is so great that, at its return in 1878, the center of the comet passed directly over a star of the tenth magnitude lying in its path. The star was undimmed by the transit of the densest portion of the comet, and shone through the misty medium as brightly as it had before shone against the dark background of the sky.

This insignificant mass of nebulosity has been of use to astronomers. When at its nearest point to Jupiter, the mass of the huge planet was more accurately determined by means of its "excessive perturbations." In mined by means of its "excessive perturbations." In
the same way, when it was nearest to Mercury, it was
the means of detecting an error in the masso of the ferry little orb.
But the movements of comets, like " the course of true love, never did run smooth." This member of the family does not complete its revolution on time. Its periodic time is constantly diminishing. Its circuits round the sun grow less and less. The German astronomer did not fail to attack the problem, indeed, he may be said to have devoted the labor of his life to its solution. His conclusion was, that the comet met with a resisting medium in space, a medium too ethereal to disturb such masses as the planets are made of, but powerful enough to affect a body of extreme tenuity like a comet. This theory has it supporters and its opponents, but no other comet, as far as is known, is affected in the same way. The existence of a resisting medium in interplanetary space, and the cause of the retardation of Encke's comet, are still mooted questions that vex the astronomical soul. At any rate, the comet's period is now about 4 days less than it was at the time of its first computation in 1819. The effect of retardation will be to diminish the comet's velocity in its orbit, in consequence of which it will be drawn nearer to the sun. The final result will be that, ages hence, the comet will be precipitated into the sun.
Encke's comet, at its present return, was first seen on the 13th of December, by Herr Tempel of the Arcetri Observatory, Florence, and is described as a faint, nebulous looking object. It was seen on the 17th of December by Professor Young, of the Halstead Observatory. He describes it as extremely faintand somewhatirregular in outline. The best view, thus far reported, was obtained on the 5th of January, by Professor Brooks, of the Red House Observatory at Phelps, New York. He describes it as faint, slightly elongated, and with a small central condensation. It was then in the head of the Western Fish, and moving slowly eastward. It makes ts perihelion passage on the 7th of March, will grow brighter until that time, and will soon be visible in small telescopes. The comet was last in perihelion on the 15 th of November, 1881. Its period of revolution is now about $1207 \cdot 86$ days, nearly 4 days less than when its orbit was determined by Encke in 1819.

SHOP DRIVING.

There are men who get position by audacity, and not by merit. Such men are sometimes found in the workshop in the position of foremen or bosses, and they make trouble for men and expense for proprietors. Such a foreman appears, always, as though in a great hurry; gives short replies to questions, as though time and words were exceedingly valuable with him; rushes about the shop as though pursued by a constable with an uncollected debt against him; and turns from a possible customer at an important point in conversation to attend to a trifle that would more appropriately be left to a subordinate.
Among the workmen such foremen are troublous; they make quiet workers nervous, unfinished workmen apprehensive, and old stagers angry. They upset the plans of careful, systematic workmen, and induce the "green hand" to imagine that pretense of doing is as good as done. Such a foreman does other mischief; cial activity; he injures the self-respect of the workman, and impairs his usefulness. With the useless drive that comes with the foreman when he goes the rounds of the shop, comes the expectation of relaxation when he goes, and this letting down of workmanlike energy is a natural rebound from the pressure of a strain that is repulsive. This foreman never commends; he criticises and questions. "What! these studs not yet fit right; don't you knew how to do this job?" Such greetings do not put much force into a workman's muscles, nor increase his desire to excel.
These men are north winds or western gales with a notification to all to lie low. They impose for a while even on the workmen, but the workmen find them out sooner than do the shop proprietors.

asBestos in mechanics.

The incombustible and heat-enduring quality of the mineral asbestos has always recommended it for certain purposes; but it is not until within a comparatively recent period that it has come into extensive use in the mechanic arts. Forsheathingsteam pipes and for steam packing, preparations of asbestos are undeniably valuable, but recently it has been applied to the packing of cocks-plug cocks-for steam, hot water, and acids, with excellent results. The principle of its application is that of a packing, except that, instead of the packing being applied only at one or both ends of the plug of the cock, it extends its entire length. If the plug of a cock is ground to seat, it must be reground as often as it wears to a leak, and under the cutting influence of high pressure steam this wear is very rapid. The plug and and this causes either leaking or binding.
The asbestos, being in the form of disintegrated fibers, lacks the cohesiveness necessary for keeping in place as a packing, and therefore a small proportion of rubber is used as a cement. The proportion of rubber
to one to twelve by weight, and as asbestos is very light, the amount of rubber is only enough to unite the asbestos fibers. The prepared asbestos is tamped into longitudinal channels in the case or shell of the cock, the channels being four in number, equidistant, and cut in dovetail section, so that the packing may be retained in place. The tamping or driving in of the packing is done by means of set chisels or tamping pins and hammers while the plug is in place, and when the packing is completed, the cock, with its packing, is submitted to a heat of from 340° to 360° Fah. by means of superheated steam at 145 pounds pressure,
which vulcanizes the rubber, and makes a solid of the asbestos and rubber combined. This heat and pressure is greater than any steam cock will ever be made to bear so that the packing is practically indestructible by steam. From this description it will be seen that the plug of the cock has a bearing on four longitudinal packings, its entire length, instead of a solid circumferential bearing, metal to metal. The slight elasticity,of the packing allows for unequal expansion of the plug and case, keeping the plug always tight. The packing also reduces the friction of the plug in its case, so that a cock of four inches diameter can be opened and closed with very slight exertion. A ring or washer of the packing is also used at the top and bottom of the plug.
In connection with the Barff process of coating iron, indestructible cocks are made of iron with this packing at a much lower cost than those of brass or gun metal. The Barffed cocks cannot'rust, and their surfaces are like hardened cast steel for durability. This method of using asbestos is an English invention, but it has re cently been put in practice by a firm in Hartford, Conn., acting under the original English patents. They intend, also, to manufacture this packing in glands for pump and steam

The New Orleans Exposition.
Notwithstanding all the complaints that have been made, the grear Exposition is admitted on all sides to be wonderfully interesting. The exhibits, as they now stand, will compare favorably in extent, variety, and attractiveness with those of the Centennial Exhibition at Philadelphia in 1876, altbough some departments are yet incomplete. Visitors from the North seem never to be tired of roaming over the grounds, now that days of warmth and brightness have succeeded to the dismal weather which marked the opening weeks; the grass is of luxuriant growth, newly-planted shrubbery is sprouting, rose twigs from California are beginning to leaf, and tropical plants of almost indescribable variety contribute their portion toward making a scene of beauty which it would be hard at present to match in any other locality in our own country, if indeed its counterpart could be found in any part of the world. The feeling of uncertainty regarding the financial prospects of the enterprise, on which, of course, largely depends the smooth working of the show in a great many respects, has been almost entirely removed by the action of the N. O. Cotton Exchange. Director-Genpromptly raised, and the money used for indebtedness for current expenses, that had got in arrears, owing to delays in getting things in order and the restriction of attendance by the bad weather of the first few weeks. For the last week, however, the main building has been in quite a presentable condition, the boxes, crates, etc., in which goods were packed having generally been removed, while the workmen have put most of thefinaltouches on thestandsof the different exhibitors.
The main building, covering more than thirty-three acres, offers never-ending subjects of interest to the visitor, as those will appreciate who remember the amount of time required to obtain any adequate idea of what was contained in the principal structure at Philadelphia, which was only about half its size. Here is presented a representative panorama, through its broad vistas, of the productions and resources of the
United States and nearly all foreign countries. It is the greatest school for the dissemination of practical and useful knowledge in the world to-day; the me chanic, the engineer, the farmer-the producer in every walk of life-can here find food for study, with amplest exemplifications of the experience of others, and the would-be man of the world can, figuratively, go into all foreign countries and learn much of their produc tions and characteristics-all under the same roof.
One of the most complete industrial exhibitions in the main building is that of a Connecticut company making cotton thread. In this display is also included an automatic spool turning machine, where the workman puts armfuls of small cylinders of wood into a hopper, and they come out perfectly made spools. The cotton is taken from the bale here, and goes
throughall the processes of manufacture till it is finally wound on the spools-eight spools of 200 yards of thread each a minute-when these spools are put into a slide, the labels cut and pasted, and they are ready for boxing-the entire work requiring twenty machin
and the exhsbit taking up a space of 24 by 260 feet.

In cotton working and other machinery the Patent
development of many of our industries being shown by means of the models of labor-saving appliances. Perhaps the most historically interesting is the model of the original cottongin invented by Eli Whitney. There is also a model of a contrivance for lifting vessels over shoals, patented by Abraham Lincoln; and another of the Hoe cylinder printing press.
Of interest to those concerned in ship building will be the large collection of models furnished by the United States Government, while the Smithsonian Institution exhibit shows the styles of marine architecture prevalent in various eras and nations, and the Army Department exhibits craft adapted for hospital purposes. Pusey \& Jones, of Wilmington, Del., exhibit a handsome model of the iron steamship Hudson, built by them, and plying between New Orleans and New York. The hull is of iron, and the deckhouses, masts, spars, and trimmings are of silver with gold decorations. John Roach also has an expensive collection of models of merchantmen, passenger steamers, and war vessels.
The Chinese exhibit presents many novelties, some of which it is rather difficult for our citizens to comprehend. One of these is a model of a primitive irrigating pump, a hand pump showing one end in the water, and the power applied by a mian treading around on a series of handles that project from the top piece; there is also one worked by ox power, the animal turning a crank. One significant feature in this department is the display of cotton cloth of all grades, from the coarsest bagging to a quality so fine as to be more valuable than silk goods. This is a "cotton centennial," it is true, but more than two thousand years before modern industry found profitable employment in working up this fiber for universal use, cotton was largely used in the domestic manufactures of India; and two centuries before the Christian era cotton cloth was either paid in tribute or offered in presents to the Emperors of China as a thing rare and precious, and some of these gossamer filaments are on exhibition here by the side of the products of our modern factories.
The National Cotton Planters' Association will assemble here on February 10, and President Arthur has accepted the invitation of the president of the association to be present. Cotton men from all parts of the vorld have responded favorably to the invitation sent out by the association through Secretary of State Freinghuysen, and it will undoubtedly be the greatest asemblage of cotton men the world has ever seen.
The horticultural department of the exhibition reeived an immense impetus from the recent assembling here of the Mississippi Valley Horticultural Society, which had been given the especial charge of organizing such exhibits.
The society undertook to make a display which would give "large opportunity to study the effects of climate and soil, of latitude and longitude and altitude, in the modification of plant and tree growths, and upon the size, form, texture, quality, durability, and beauty of the fruits of the world," a task to which it has devoted the most earnest effort, and in which it has accomplished great results. Over 8,000 specimens of forest, fruit, and ornamental trees were planted in the exhibition park, the California tree exhibit alone including over 700 species. There is a valuable and complete classified collection of American grape vines, and one bed alone contains 20,000 hyacinths, the total planting of these bulbs by one house amounting to 230,000 .
The facilities for the accommodation of visitors and to promote their convenience in attending the exposition are now better than they were immediately after the opening. The buildings are about six miles from the heart of the city, and are reached either by the horse car lines or by steamboats on the river, but the work of getting to and from the grounds should, and probably will, be materially lessened with the coming of the additional crowds expected during February, March, and April. The managers have lately organized a department of information and accommodation for visitors, and are now furnishing lists of places where board and lodging can be had, with prices. The harge for furnished rooms, on the schedule thus made, runs from 50 cents to $\$ 2.00$ per day, and for board and lodging from $\$ 1.50$ to $\$ 3.50$ per day, with, of course, material reductions for weekly or monthly guests. Circulars are also issued giving other valuable information to strangers visiting the city.
New Orleans, January 29, 1885.

The Electric Light as a Scarf Pin.

Messrs. Stout, Meadowcroft \& Co., whose advertisement appears in another column, are now supplying these curious little electrical devices in first class style. It consists of a miniature Edison electrical lamp, at tached to a pin, which is fastened in the scarf or neck tie. A couple of fine wires lead from the lamp to a small battery, made in the form of a book and carried in the pocket. By touching a button, also arranged in one's pocket, the necktie lamp is instantly lighted, and continues as long as the button is pressed. The battery becomes exhausted after considerable use, but may be easily replenished. This is a device of genuine excellence, and well illustrates the progress of practical cellence, an
electricity.
binding eyelet for papers, magazines, etc.
A thin, narrow strip of metal, Fig. 2 , is formed a its middle with two projecting ears, one of which is provided with an aperture. The sheets to be bound are placed within each other, and at the fold are perforated to permit the passage of the apertured ear; the

JOHNSON'S BINDING EYELET FOR PAPERS ETC.
strip rests within and between the sheets, against which it bears as a brace. A number of magazines or packages of sheets, being provided with the binding eye, are placed together, and a cord or wire passed through the several apertures, and its end tied to prevent it from being withdrawn. If the packages to be bound are large, two eyelets for each may be employed, as shown in Fig. 1. The ears which are not perforated serve as handles by which to insert the strips. The ears of the several signatures or packages of sheets must be in straight lines. Signatures can easily be added as may be necessary, or can be quickly removed. The books thus formed are flexible, and firm. The binding eyes cost but little, and can be used for bind ing ordinary writing paper, printed matter, etc., to preserve them for rebinding in permanent form.
This invention has been patented by Mr. E. A. John son, of 104 Fayette Street, Allegheny City, Pa.

ANCHOR STAKE FOR CHEGK ROW WIRES. In planting corn with a machine provided with a check rower, the wire is anchored at the ends of the field,

CLAY'S ANCHOR STAKE FOR CHECK ROW WIRES.
and the anchors are shifted as the planter reaches the ends of the rows, so that the machine can be turned and started on a new row. In this shifting of the wire it is almost impossible to reset the anchor so as to give the wire the same tension each time, especially when the field is a long one, and the result is usually that the rows are not planted correctly. To obviate this difficulty is the object of an invention lately patented by Mr. William H. Clay, of Paris, Ky.
The anchorstake consists of a straightshank portion, fitted with a cross handle at its upper end, and carrying at its lower end a blade formed with a lengthwise slot just wide enough to pass freely over the wire. At the top of the blade is a cross piece, forming foot rests for use in pressing the blade into the ground. Jointed to the upper end of the stake is a brace, in whose outer end is a hole to receive a pin by which the end of the brace is fastened to the ground. The use of a stake with a planter is illustrated in Fig. 2. Suppose i to represent the fastening of the wire at the end of a row; when the planter reaches that point, the stake, A, is to be placed at a point half way between the points i and k, and a short distance from the end and behind the planter.

Thus located, the stake will hold the main portion of the wire stretched while its end is carried to and anchored at k, and the machine turned around. The stake, A, being removed, the wire has the same tension as before, and the planting will be done correctly.

A Sanitary Canal for Paris.

A project for a sanitary canal between Paris and the sea has been brought before the French Academy of Sciences by M. A. Dumont. The author points out that although the experiments of the city of Paris engineers at Gennevilliers appear to show that irrigation is the best means of disposing of the drainage of Paris, it is very doubtful if the space available at the forest of St . Germain is sufficient for the purpose-the drainage waters of Paris amounting to over 100 million cubic meters per annum. Hence his idea of a canal to the sea to carry off the daily accumulation of 300,000 cubic meters of sewage. The starting point of the proposed canal would be a covered reservoir at Herblay on the right bank of the Seine. From Herblay to a point on the coast between Dieppe and Treport the canal would be 152 kilometers long, and covered throughout. The route of this canal would be by Eragny (crossing the Oise by a viaduct 25 meters high), thence to Serifon taine, Neufchatel, St. Martin, and Greges, to the Chan nel at a point 7 kilometers from Dieppe, and 17 kilometers from Treport, where the current and trend of the coast would prevent any nuisance to these ports. Pumping would be resorted to at some points; but at the outfall motive power could be obtained from the waters.
A more important point in connection with the new scheme is that it would admit of the water being utilized for irrigation purposes en route, and during two-thirds of the year probably all the sewage would be thus disposed of. The estimated cost of the canal is 60 millions, and the expense of pumping would be largely covered by the sale of the waters along the track of the canal. The section of the latter would per mit the flow of at least 500,000 cubic meters per diem. The scheme is well worthy the consideration of other crowded centers, since it unites the utilization of the sewage at separate districts along a considerable length of country together with the advantages of a covered drain. It is, in fact, virtually a means of distributing sewage waters for irrigation purposes. For Paris the work would be highly beneficial on the score of health.

IMPROVED CAR COUPLING.

In the top of the drawhead of a car coupling patented by Mr. Aaron L. Sanders, of F'alcon, Tenn., is a longitudinal slot, in which the piece, B , is pivoted. The rear end of the piece is pressed upward by a spring, and the front end is provided with a crosspin, D , to prevent it from being pressed down too far. On the forward end of the piece is a staple, to which is secured the end of a chain, F, leading to a lever on the roof of the car, or it may be connected with levers extending to the sides of the car. In the end of the piece is the longitudinal slot, G. Pivoted in the drawhead is the coupling-pin tum bler, H, one shank of which forms a hook, K, and the other has a slot that carries a bar to form a support and guide for the link, and which is supported by spiral springs. The spring strip, L, rests against the bottom edge of the tumbler, and holds it in place.
As the link enters the drawhead, Fig. 1, its end strikes the hook, K, and swings the slotted shank upward; the end of the shank strikes and lifts the end of the piece, B, and enters the slot, G; the cars are now coupled, as shown in Fig. 2. When the cars are to be uncoupled, the end of the piece, \mathbf{B}, is lifted to release the upper end of the slotted shank, which swings down as the link is drawn out. The spring, L, holds the tumbler in either of its two positions.

POST HOLE AUGER.

On a shaft journaled in two uprights on top of the frame of the machine is a beveled cog wheel engaging with a pinion mounted on the upper end of a square shaft held between uprights united at the lower ends by a cross piece; these bars form the holder for the auger bit, and slide vertically on the square shaft. Thebarspass through a horizontal cog wheel, mounted to revolve on a platform, and between the bars is a U-shaped piece, secured to the under side of the wheel, which receives the end of the stock holding the bit. Engaging with the center cog wheel at diametrically opposite points are two wheels rigidly mounted on the ends of screw spindles, the upper ends of which pass through an intermediate platform and through the top of the frame. Two rack bars, hinged to jaws projecting upward from the lower platform, engage with cog wheels mounted loosely on shafts journaled in uprights on the intermediate platform. On the inner end of each shaft is a beveled cog wheel engaging with a wheel through which the two bars pass, so that the latter will revolve with the wheel. Each of the cog wheels engaging the rack bars is provided in its outer flat surface with two ratchet teeth (shown in Fig. 2) which engage with corresponding teeth (Fig. 3) on the end of a sleeve formed with

ROBINSON'S POST HOLE ATGER

wo longitudinal ribs on its inner surface, which pass nto grooves on the shaft, as indicated in Fig. 3. The outer end of each sleeve is flanged, and is held so as to revolve in a block provided with a threaded aperture, and forming one-half of a nut for the corresponding vertical spindle. One of the blocks constituting the nut is rigidly mounted, and the other is movable. A screw having a right and left thread works in the blocks, or half nuts; by turning the screw, the block and the sleeve to which it is attached will be moved toward or from the corresponding rack-bar cog wheel The lower platform is held at any desired height by means of two hook latches pivoted to the sides of the rame. In each leg of the frame is a toothed bar terminating in a triangular foot, Fig. 4. A prong on one end of a spring latch engages with the teeth of the rack. This construction permits of the leveling of the machine and holding it any suitable distance from the ground.
When the upper shaft is revolved, the square shaft and two parallel bars are also revolved, causing the bit or scoop to form a hole in the ground. It is necessary to press the lower platform downward continually, as the center cog wheel is mounted upon it. This is accomplished by the vertical screw spindles, which are revolved from the center wheel, the nut sections, or blocks, being locked together. When it is desired to withdraw the auger, the nut blocks are separated by turning the hand screw. This will throw the sleeves into engagement with the shaft by means of the tongue and groove, and with the rack-bar cog wheel by means of the teeth formed in the end of the sleeve and side of the wheel. The beveled wheel on the two bars will then turn the two shafts and cog wheels, and the rack bars will be moved upward, thereby raising the lower platform.
This invention has been patented by Mr. Isiah Robinson, and further particulars can be had by addressing Mr. J. W. Sublett, of Mansfield, Tex.

A "SocIETY of Mechanic Arts" has been started in the brisk manufacturing center of Worcester, Mass., including in its membership members of firms and young mechanics of intelligence. Each member is in turn to present papers on subjects of interest at the monthly meetings. H. W. W yman is President, H. C. Hastings Vice-President, and E. H. Park, Secretary.

A NEW ELEATRO MAGNET

The ordinary electro magnet has the inconvenience of ceasing to exert an influence upon the armature at a short distance (generally a quarter of an inch) from its poles.
Mr. Stanley Currie has recently devised a new form, whose field of attraction is much greater, since it acts at a distance of $31 / 2$ inches. This new magnet is a com

Fig. 1.-CURRIE's ELECTRO MAGNET.
bination of the horseshoe electro magnet and the solenoid. As shown in the engraving, it consists of a vertical bobbin with a tubular soft iron core. The wire which is wound upon the bobbin is surrounded by an envelope of soft iron of the same weight as the core, with a soft iron tube at the end of the bobbin that connects the core with the external envelope. The top of the bobbin is covered with a brass disk. The copper wire used is No. 18, Birmingham gauge, and 0.048 inch in diame gaug
ter.
The armature consists of three parts, viz., of an iron rod inclosed in a brass tube, which i onged beneath it so as to guide it in its upward and niward motion in the tubular core, and of a soft iron er fixed to the top of the central rod, and connected with the cylinder which forms the external envelope of the bobbin. This cover is preferably made with two or more layers of flat plate, so as to facilitate demagnetization, but it must be thick enough not to be saturated by an ordinary current. The cylinder has a rim that enters the field of attraction of the external envelope as soon as the lower extremity of the central rod enters the tubular core. When the effect of such attraction has made itself felt, the upper flat plate is in the field of attraction not only of the envelope, but also of the internal core, and the field of attraction of the magnet is, so to speak, prolonged.

As long as the central rod is exterior to the core of the bobbin, the attraction to which it is submitted is always in ratio inverse the square of its distance from the bobbin; but, as soon as the extremity of the iron rod enters the aperture in the core, the part that rests therein loses its power of attraction. The same diminution of attractive power occurs in the rim of the armature's disk as soon as its lower edge passes under the upper edge of the bobbin. The power of attraction likewise varies directly as the mass of the body attracted, and these two effects have been combined in order to regulate the attraction so that it shall be approximately uniform across the field of $31 / 2$ inches. This is effected by cutting the lower end of the rod of the armature, as well as the rim. If necessary, the thickness of the upper disk and the width and thickness of the rim may be varied. The latter may also have its edge scalloped (Fig. 2), so as to prevent a sudden increase of attraction in measure as the disk approaches the bobbin. The result of this arrangement is to increase the stress upon the disk in measure as the latter approaches the pole of the magnet, when the force of the stress upon the armature rod and rim is diminishing. In this way, and by the combination of a counterpoise, there may be obtained a sufficiently uniform stress with considerable travel, and a violent contact be avoided when the disk reaches the pole of the magnet.

The stress or range of the attraction may be doubled with a pair of these magnets placed at a certain distance apart, and having the same armature rod. The lower armature is fixed to the rod, and the other simply bears against it through a projection. The upper armature is first attracted, and, when it has placed itself upon its own bobbin, the lower one has come
into the field of attraction of its bobbin, and may be at tracted to it, so that, by this process, the travel is doubled.-La Lumiere Electrique.

AUTOMATIC FIRE ESCAPE

A simple automatic fire escape, recently patented by Mr. Frank A. Bone, of Lebanon, O., is shown in the accompanying engraving. It consists of an axis fastened to the center of a governor-shown in cross section in Fig. 1-and passed through the center of a frame. Passing through the bottom of the frame and over a roller on the axis is a rope of cotton or other suitable material, on each end of which is a belt provided with a snap"catch. When not in use, one end of the rope is drawn up to the frame, and the other is coiled as shown in Fig. 3. The escape can be kept in any convenient place, and since it weighs but about 12 pounds, it can be carried easily to the place it is to be used, where a stronghook is provided to attach it to. In large buildings these hooks should be placed on all sides, so that escape could be made in any direction.
The escape having been attached to the hook, it is only necessary for the person who wishes to descend to snap the belt (the one which is at the top) about his body, and then swing out of the window, when he will descend at an easy and regular speed to the ground. The opposite end of the rope will then be at the top ready for use by a second person. The governor for regulating the descent is formed with a star shaped center, A, the rapid revolution of which forces the pieces, B, outward, causing them to press against the fixed band, D, which acts as a brake.

AN AZTEC WARRIOR.

Mr. Eugene Boban, an antiquarian and traveler, well known to anthropologists and ethnographers, recently invited us to visit his establishment on Boulevard Saint Martin, in order to see the curious restoration he has made of the costume of a young Aztec warrior, a chevalier of the army of Montezuma (Moctheuzoma). The personage figures as a very skillfully executed manikin, which we represent in the accompanying cut. This truly remarkable object is designed for one of the largest ethnographic collections of Mexico. The Mexican warrior of the epoch of the conquest (1521) was, as may be seen, clad in a material spotted to resemble the skin of a tiger, and wore a helmet shaped like the head of that animal. This extraordinary costume is assuredly one of the most remarkable that can be mentioned among military uniforms. The numerous voyages that Mr. Boban has made to Mexico, the innumerable documents that he has collected upon the antiquities of that interesting country, and the ability that the persevering antiquarian has acquired through study and research are so many guarantees of the accuracy of the restoration.
The warrior's mask was moulded upon the head of a

AN AZTEC WARRIOR OF MONTEZUMA'S ARMY.
living native of the valley of Mexico. The head of the tiger (Ocelotl in Aztec) is made of wood, just as it was by the ancient Mexicans. It is armed with long teeth, and is intentionally enlarged so as to form, through the open jaws, a true helmet. This latter not only served to protect the head of the combatant, but also to strike terror among the enemy. This idea of frightening the enemy was one of the principal studies of the military

BONE'S AUTOMATIC FIRE ESCAPE.
orgarizers of antiquity, and it has prevailed up to our own epoch, for otherwise we could not explain the presence of tufts of hair and large plumes upon modern helmets. The object of these is assuredly to increase he height of the soldier's head, and make him more imposing in the eyes of those whom he is attacking.
In Græco-Roman times we find that there were soldiers in the armies who were muffled up in lion and tiger skins for the purpose of giving themselves a formidable aspect. This usage still obtains to a high degree t present in the extreme East, among the Chinese and Japanese.
The young Mexican warrior whom we picture wears the tentetl in his lower lip. This was a cylindrical piece of rock crystal (teuilotl), known in Spanish as sombrerito, " little hat." In fact, the object somewhat resembles our high hats. The tentetl was introduced into a perforation previously made in the lip. This custom of perforating the lips and inserting ornaments of varying size into them exists over the entire American continent, from Cape Horn to Behring Strait, and also in the equatorial parts of Africa.

The rock crystal tentetl was the badge of the officers of the Emperor's house, and was generally given as a reward to those who had taken prisoners.
Mr. Boban, like the old Mexicans, has used a spotted fabric for manufacturing the warrior's costume, the only difference being that the material is of linen, while that of the Mexicans was of cotton. The warrior is resting his right hand upon his sword-a sort of club armed with thin pieces of obsidian. This was moulded on a specimen brought by Mr. Boban from Mexico with his great collection, that is now on exhibition at the Ethnographic Museum of the Trocadero.

In his left hand the warrior carries a circular shield covered with buckskin. In the center of this is figured a hieroglyphic characteristic of the order of the Chevaliers of the Tiger. Around the wrists and ankles of the warrior are fixed enormous tiger's claws, and his feet are shod with cactli, a kind of sandals that are still in use among the aborigines. Hishead is surmounted with a plume of long, brilliant feathers.-La Nature.

Meteoric Dust.-A metallic substance in powder or small granules has been sent to the Science News laboratory for examination. It proves to be meteoric dust, largely composed of iron, nickel, and silica. Dr. Batchelder, of Pelham, N. H., who sent the specimen, states that he collected the dust on the walk in front of his house after a smart thunder shower. It is probable thatlarge quantities of this material fall upon the earth, but remain unnoticed. Much of the iron found in soils is due to precipitation from interstellar spaces, the particles becoming entangled in our atmosphere,-Pop. Sci. News.

Durable Timber

One of the properties conducive to durability in timber is its odoriferousness; woods which are so being chiefly the most durable. Close and compact woods, which make the most charcoal, are more permanent than open and porous qualities. The chestnut has rather more carbonaceous matter than oak, and, there fore, by reason of it, is more durable. Experiment has, however, shown the error of relying too much on these broad theories. One writer alludes to an experiment made to determine the comparative durability of woods. Planks of trees $11 / 2$.inches thick, of from 30 to 45 years' growth, were exposed to the weather 10 years. Cedar and chestnut were perfectly sound, spruce and fir sound, larch sound in heart, silver fir in decay, Scotch fir decayed, beech sound, walnut in decay, sycamore much decayed, birch quite rotten.
We must accept even these facts with caution. The questions whether the planks had been cut the same length of time, how they had been dried or seasoned, and the position they had occupied, are pertinent to the inquiry. The same wood often shows varying degrees of durability, owing to the position of the tree. If grown in moist and shady parts, the wood is inferior to that which grows in an exposed situation open to the sun and air. Some timber is more durable in wet ground or immersed in water; such are elm, beech, alder; while others, such as ash, oak, and fir, are more durable in dry situations. The increase in strength due to seasoning of different woods is given as follows: White pine, 9 per cent; elm, 12.3 per cent; oak, 26.6 per cent; ash, 44.7 per cent; beech, $61 \cdot 9$ per cent
The comparative value of different woods, showing their crushing strength and stiffness, is: Teak, 6,555; English oak, 4,074; ash, 3,571; elm, 3,468; beech, 3,079 mahogany, 2,571 ; spruce, 2,522 ; yellow pine, 2,193 ; sycamore, 1,833 ; cedar, 700 .
Regarding the relative degrees of hardness, shell-bark hickory stands highest; calling that 100 , white oak is 84; white ash, 77; dogwood, 75; scrub oak, 73; white hazel, 72; apple, 70; red oak, 69; beech, 65 ; black wal nut, 65; yellow oak, 60 ; white elm, 58; hard maple, 56 ; wild cedar, 55 ; yellow pine, 54 ; chestnut, 52 ; white pine, 30.
For furniture, hard birch, ebony, mahogany, maple, sycamore, and walnut are commonly used; while for turnery, acacia, hard hawthorn, holly, hard laurel, lignum vitæ, poplar, sassafras, sycamore, and yew are employed. For very great hardness, ironwood, hornbeam, almond, hard beech, teak, thorn, are serviceable. Myrtle, lime, box, olive, pear-tree, sycamore, kauri wood, pine, and holly are also very even, close grained, and hard.-Building News.

Electric Cables.

The attempts which are made to devise a practical and cheap system of undergound telegraphs continue to be numerous, but the actual progress which is made is not very marked. A history of underground telegraphs would indeed be a long list of failures, commencing in 1837 with the so-called "fossil" telegraph of Wheatstone, which consisted of bare wires placed in grooves in lengths of oak scantling. Most of these failures have not been due so much to actual defects in the inventions as to the inability of the inventors to push their commodities, owing to force of circumstances. The use of gutta percha shows no signs of falling off, and no substance has yet been broughtinto the mar which has been proved to be a substitute for it.
Great attention is now being paid, says the Electrical Review (London), to lead-covered cables, the insulation of the latter, as in the Berthoud-Borel system, being due to resinous substances, which are far cheaper than gutta percha. Provided the lead covering remains intact, there is no reason whatever why such cables should not remain good for an indefinite period. In certain soils lead is practically imperishable; but, again, where clay is present, rapid decay occurs. About ten years ago a cable consisting of a cotton-covered wire placed in a lead pipe, the latter being filled with paraffine wax, was laid in Windsor Park in a clay soil; in a very short time this line became defective, and on examination it was found that the lead covering had been eaten into holes, which, by admitting moisture, rendered the wire useless; in this case the paraffine wax was not able to effectually coat the copper core. Excellent as paraffine wax is as an insulator, it has the great defect that it shrinks very considerably on cooling, and is therefore extremely liable to crack; indeed, most substances of this nature possess this element of uncertainty, and when used as insulators they practi cally can only be relied upon as "separators" to pre vent metallic contact between a number of wires, or between the latter and a metal sheathing, the sheathing being the medium which keeps moisture out.
Lead, as a protecting covering, necessarily means considerable weight, and as a means of preserving single wires could hardly be adopted to any great extent. Multiple cables would have more chance of suc cess, though the fact that the units of which they are built up are practically inseparable is a disadvantage and, moreover, if moisture does penetrate, it means that nearly all, if not all, the wires will become defective.

For very special purposes, however, the lead-covered cables should prove to be all that can be desired. The use of paraffine oil as an insulator in the Brooks sys tem has yielded excellent results, and is an undoubted success, but we are inclined think that more satisfac tory results might be obtained from a semi-fluid material, i. e., one which would not be liable to become dispersed by leakage; but which would at the same time have the property of settling down if by any chance it were disturbed, and thus sealing up accidental faults. There seems at present but little chance of India rub ber or gutta percha being superseded for submarine
purposes, but the employment of a cheap yet efficient substitute for either of these materials would probably give a renewed impulse to such telegraphy, and would richly reward the inventor.

IMPROVED SHAFT SUPPORT

Attached to the forward part of the body of the ve hicle is an angle plate or casting, from the outer angle of which project two lugs, between which the end of the fork is bolted. The plate may be secured to the center of the front of the body or to one corner, and can be fitted to vehicles having bodies of different forms. Each shank of the fork-shown detached in Fig. $2-$ is provided with a bend forming a recess for receiving clamping plates which have their adjoining faces serrated. A right and left hand screw is passed through the plates, between which is held a longitudinally slotted bar serrated on both sides to corre-
spond with the serrations on the plates. The free end of the bar is ormed with a downwardly pro-
jecting hook. When the shafts are to be held in a raised position, his hook enters a pocket (Fig. 3) se-
cured to the
shafts. The fork is pressed upward by a powerful spring, one end of which is held between the lugs projecting from the angle plate, while the other end bears against the under side of the fork. The length of the shaft support can be varied by moving the slotted bar in or out, the latter being firmly held in any desired position by the clamping plates. When not in use, the support is held in a vertical position in front of the dash board.
This invention has been patented by Mr. James F Pace \& Feibleman, of Simsboro. La.
aUTOMATIC DOUBLE-POINTED PEN HOLDER.
The pen herewith illustrated is specially adapted to the use of bankers, architects, bookkeepers, etc., and with it two lines can be ruled at once with different colored inks. Although expressly designed for ruling purposes, it gives most satisfactory results when used for ornamental or fancy writing. From the side of each holder projects a plate, the ends of the plates being pivoted together. Each of the adjoining
ear, one of which
ends of the plates is formed with an ear, one of whic means of which the pens can be adjusted to rule lines of any desired distance apart up to three-quarters of an inch. The pen holders are held pressed toward each other by a spring that permits the writer to separate the pens and take ink as quickly as with the com-
mon pen. Any kind or size of gold or steel pen can be used
The inventor and manufacturer of this pen holder, Mr. C. R. Arnold, of Wellsville, Ohio, has designed a two-well inkstand, shown in the engraving, and a three fourths-round ruler for use with the holder. Most fa-
vorable testimonials have been received from those who have used these holders.

Pyronaphtha.

According to the Organ fur Oelhandel, an interesting trial was lately made in.St. Petersburg with a new il luminating material, which is destined, it is considered, to take the place of kerosene. This is a new illuminat ment was made as to the power which pyronaphtha has of extinguishing fire; and it was found that burning kerosene was easily put out by it. Pyronaphtha can, however, itself be extinguished by water. It is a pro-
duct of the distillation of naphtha residue, of which large quantities remain from the Baku distillation of
petroleum. From these illuminating gas is produced, and likewise pyronaphtha. The idea would seem to have hitherto been 'carried out only by the firm of Ragosin \& Co., of Baku. The celebrated Russian chemist, Prof. Beilstein, has examined pyronaphtha, and has expressed his conviction that it has a brilliant future before it, and that it must eventually replace American and Russian kerosene. The specific gravity of pyronaphtha is 0.864 , and it ignites only at $230^{\circ} \mathrm{Fah}$. It burns without smoke and vapor at 257°; gives a better light than kerosene; is consumed less rapidly; while its prime cost is less. At St. Petersburg it is being adopted for domestic use; and a special burner has been constructed for the purpose.

Habits of the Scorpion.

A writer in Land and Water relates his experience with scorpions as follows:
A few years ago, while in the island of Jamaica, it was my fortunate chance to have an opportunity of observing some very curious facts in connection with that genus of the Arachnida class commonly known as the sorpion, and the curious traits of character in these insects. Turning over some old papers in my office one day, I suddenly came upon a large black scorpion, who promptly tried to beat a precipitate retreat. Having read or heard somewhere that if you blow on a scorpion he will not move, I tried the experiment, and was reatly astonished to find that it had the desired effect? The scorpion stopped instantly, flattened himself close to the paper on which he had been running, and had all the appearance of "holding on" for dearlife. While I continued to blow even quite lightly he refused to nove, though I pushed him with a pencil and shook the paper to which he clung so tenaciously. Directly I ceased blowing he advanced cautiously, only to stop again at the slightest breath. I was thus able to secure him in a glass tumbler which happened to be within reach, and then I determined to try another experiment as to the suicidal tendencies which I had heard ran in the veins of the Pedipalpi family.
On the stone floor of the kitchen attached to my office I arranged a circle of burning sticks about three yards in circumference, the sticks being so placed that thoush there were no means of exit through the fire, it was not intense, but small and quite bearable as regards heat within a few inches, so that the central part of the cir cle was perfectly cool. Into this center I accordingly dropped my scorpion, who, on touching terra firma darted off in a greathurry, only to be quickly brougn to a halt on reaching within a few inches of the periphery of the circle. After a short pause of reflection he deviated to the right, and ran once completely round the circle as near to the fire sticks as it was prudent to venture. This he did three times, often approaching the burning sticks quite closely in his anxious endeavors to escape. In about a quarter of an hour, finding that his efforts were useless, he retired almost into the exact center of the circle, and there in a tragic manner raised his tail till the sting or spur was close to his head, gave himself two deliberate prods in the back of the neck, and thus miserably perished by his own hand. As I placed the body of the suicide in a bottle of spirits, I almost regretted that I had not let him escape before he had resorted to such an extreme measure.
My last experience is even more curious than the preceding, as it shows a remarkable provision of nature that is almost incredible. All I have ever read on this point is contained in the following words:

The young scorpions are produced at various intervals, and are carried by the parent for several days upon her back, during which time she never leaves her retreat."
I was playing a game of billiards in a small village in the Blue Mountains; there was no ceiling to the room, the roof being covered, as is the universal custom in Jamaica, with cedar wood shingles. My opponent was moking a large pipe, and suddenly, just as I was about to play a stroke, what I thought was the contents of my friend's pipe fell on the table close to the ball at which I was aiming. Instinctively I was on the point of brushing it off with my hand, when, to my amazement, I saw it was a moving mass, which on closer inspection turned out to be a very large female specimen of a scorpion, from which ran away in every direction a number of perfectly formed little scorpions about a quarter of an inch in length. The mother scorpion lay dying upon the billiard cloth, and soon ended her feeble struggles, the whole of her back eaten out by her own offspring, of which. as they could not escape over the raised edge of the billiard table, we killed the astonishing number of thirty-eight. They had not only been "carried by their parent," but they had lived on her, cleaning out her body from the shell of her back, so that she looked like an inverted cooked crab from which the edible portions have been removed. She had clung to her retreat in the shingled roof until near the approach of death, when she had fallen and given us this curious spectacle. I was told by the attendant that the young scorpions always live thus at the expense of their mother's life, and that by the time her strength is exhausted the horrid offspring are ready to shift for themselves.

Curious Experiments in the Transfusion or Blood.
The transfer of blood from the bodies of healthy per sons to those of the sick for the purpose of sustaining the strength and prolonging life has been practiced by physicians, with limited success, for several centuries.
Some very curious experiments in this direction have been lately made in Denver, Col., by Mr. G. A. Armi tage, an account of which, written by his assistant, Mr James L. Finch, was given in the Denver Daily News from which we quote the following:
The subject operated upon was a medium sized ter rier dog. It was securely tied, and an incision made in an artery in his neck, by which the animal was bled to death. He certainly passed through all the symptoms of dying, and soon after the last blood issued from the wound his frame beoame fixed and rigid, and his eyes showed the senseless glare of death. The room was kept at a temperature of 70° Fah., while the dog lay for three hours dead. By this time he had become very stiff and cold. He was now placed in a warm water bath that was constantly maintained at a temperature of 105°, and was continually and thoroughly rubbed, and as he became pliant his limbs were gently worked about and his whole body rendered supple. A half pint of hot water was now passed into his stomach
through a hard rubber tube that was forced down his through a hard rubber tube that was forced down his oesophagus. When this was accomplished, the mouth
of a rubber tube, attached to a bellows, was introduced of a rubber tube, attached to a bellows, was introduced with a double valve, by which the air could be withwith a double valve, by which the air could be well
drawn as well as inhaled, the dog's nose was securely fastened up.
A large and powerful Newfoundland dog that had been obtained for the pur pose had been tied near by, and was now bled, while the attending surgeon pro ceeded to adjust the transfusing apparatus, and began to slowly inject the live dog's blood into the dead one. Simultaneously Mr. Armitage began slowly working the respiratory bellows, while I kept rubbing the animal and bending his limbs and body to facilitate circulation. We could not have been more anxious about the issue of our efforts if they had been made on a human being instead of a dumb brute. When a pint of fresh blood had been injected, I could see some change about the eyes of the dog. But no one spoke. One thought was common to all-would life come back? In a few moments more there was certainly a convulsive tremor noticeable in the body. Mr. Armitage in undisguised excitement said to the surgeon, "Press the blood." In a minute or two more the dog gasps, and soon attempts to eject the respiratory tube, which was accordingly withdrawn. This was followed by gasps and a catching of the breath, while the eyes
grow brighter and more natural. The rubbing and grow brighter and more natural. The rubbing anf
blood injecting were yet applied, and the dog was struggling as if in a fit. But his efforts soon became less violent, and he begins a low whine. A compress was now placed on the artery, and in twenty-two minutes after the first blood was injected, he sits up, after having been dead three hours and twenty minutes. The dog then drank a broth that had been prepared for him in case of his revival, and soon got up, and walked about. He was furnished a comfortable bed near the stove, and from this time forward his recovery was so rapid that in two days he was turned out to run the streets. He is now a rugged character in good health, with seemingly no bad remembrance of his resurrec tion.
The second case was tested on the second day of December. The subject selected was a calf six weeks old. The details of treatment were similar to the foregoing, except for greater convenience a hot vapor bath was substituted for the warm water immersion. The calf after being bled to death, was left for twelve hours be-
fore its resuscitation was undertaken, asit was desirable fore its resuscitation was undertaken, as it was desirable
to see if a longer death interval could be successfully passed over. The fresh blood injected into its circulatory system was drawn from a yearling steer. It re quired thirty-five minutes to restore the calf to life after the transfusion of the first blood. The calf then drank some warm milk, and has since grown and thriven with out perceptible interruption or ailment.
The next experiment was of a different character, and was made with a view to see if a drowned animal could be restored to life. A small dog was forced under water, and drowned. He was then taken out, and laid with his head inclined downward to drain hislungs of water, and left for four hours in a warm room. It will be noticed that this was quite a diffcrent and more hopeless case than the preceding, as the dog had all his own blood yet in his veins. After an hour in the warm bation and constant rubbing and working, his veins were opened at three different points to admit of the escape of any blood that might issue from them, and the in jecting apparatus was vigorously applied to the arterial syystem. After fifty minutes of anxious labor, signs of revivification were observable. The poor beast whined piteously as life was being once more enthroned within him. Notwithstanding great care was taken of him, he remained weak for several days, but seems now to be in good condition.
A fourth case was recently tried, in which the subject was a dog that was strangled and afterward frozen - as
he could not be frozen without strangling-was unsuc cessful. After four hours of labor, no signs of re turning life were notable. It is believed, however, that this experiment may yet succeed, and the life of a frozen animal restored.
It is proper to add that, in the first cases, after the blood ceased to flow from the wound, measures were taken to prevent air entering the circulatory system as the animal cooled, and in all the cases the respiratory apparatus was nicely adjusted to the capacity of the animal. If the lungs in any case had been ruptured or overstrained, hæmorrhage would have subsequently en ued.
The first dog operated upon is now in the possession of Mr. George Woodside, No 831 Champa Street, and the calf is in the stock lot of Mr. Boyd, west of the Platte, near the Thirtieth Street bridge. Any one having the curiosity to see animals that have once been dead, and afterward scientifically restored to life, can do so by calling at these places.

a letter from mr. armitage

To the Editor of the Scientific A merican:
Please find inclosed herein a relation of my assistant, Mr. J. L. Finch, in regard to some experiments instituted by myself in this city on revitalizing dead animals. The account was published in the Denver News five days ago. It is proper for me to add to this account that since then I have successfully restored life to a dog that had been dead eighteen hours-his death having been effected by blood-letting. After he became un-
conscious, he was treated similarly to the dog first conscious, he was treated similarly to the dog first
mentioned in the article inclosed, except that the tem perature of the room in which he lay wasmaintained at 40° Fah., to prevent any probable change of tissue taking place. This case was brought to a successful termination last night. The dog is doing well, has eaten ome to-day, but seems somewhat weak.
The results of these experiments appear most mo mentous to me, and I am desirous of having them repeated by others, and my own work corroborated. I believe they will be of value to mankind, and in order to introduce them to more general attention I submit them for your consideration, or for such a publication of the facts as may seem proper.
G. A. Armitage.

Denver, Col., January 22, 1885.

Medical Notes.

Oxide of Zinc in the Treatment of Wounds.-Socin Deutsche Med, Zeitung) speaks highly of this substance s an antiseptic in surgical practice. For the irrigation of deep wounds he uses a one per cent mixture with
water; superficial open wounds should be washed with a ten per cent mixture. Large raw surfaces, burns, contusions, etc., are dusted with the powder. As a per manent dressing, the writer recommends a paste composed of fifty parts, each, of water and oxide of zinc and five parts of chloride of zinc. It forms a dry coating, beneath which healing takes place with unusual rapidity. Stress is laid on the fact that zinc is of little service in the case of a wound that is already septic.
Aseptic Silk for Sutures.-Partsch (Ibid.) recommends that ordinary silk be soaked for two days in a ten per cent solution of iodoform in ether, and then dried by wrapping it in blotting paper. The advantages are said to be that it can be kept for a long time without deteriorating, and that it does not cause sup puration when left in a wound. It is consequently useful
uteri.

Jaborandi in Erysipelas.-Dr. Sydney Thompson Therap. Gazette; Edinburgh Med. Jour.) suggests the following formula: Fluid extract of jaborandi, 24 parts laudanum and glycerine, each, 4 parts. This mixture is to be painted over the affected surfaces every four hours.
Oil of Peppermint in Burns.-Brame (cited in the Lancet) recommends this drug as an external application in cases of burns. The burned surface is moistened with water, and then painted over with the oil, the effect being to relieve the pain very quickly.
Verbena as a Sudorific.-Verbena hastata is recommended by Weber (Ibid.) as a valuable sudorific, when given in

Application for Painful Dentition.-According to the American Journal of Pharmacy, Hager recom (Spanish crocus, half a drachm; honey, half an ounce; glycerine, 1 ounce. To be rubbed on the gums, to allay irritation.
Valoid of Coca is mentioned by the Lancet as a "new and reliable preparation," and is specially recommended for nervousness and sleeplessness from mental causes.
Cold in the Treatment of Sciatica.-Debove (Prog. Med.) recommends the direct application of cold along the course of the sciatic nerve, and especially over the painful points, by means of a spray of chloride of methyl. He reports several successful cases. The atomization is continued until the patient complains of burning pain over the seat of the application.-N. Y Med. Jour.

The Novorossick Railway.

The Russian Minister of Railways has completed his preparations for the Novorossick line, the first sod of which will be cut, it is expected, in a few weeks' time. The railway is, says Engineering, of a highly important character, and, from the rocky nature of the country traversed, will afford plenty of opportunities for a display of skillful engineering. Novorossick is one of the best ports on the Caucasus coast, if not indeed the best. In importance it ranks after Batoum and Poti. These two ports serve as outlets for the region south of the Caucasus ridge, which region-Transcaucasia-is traversed by a railway passing from the Caspian to the Black Sea, and uniting Baku with Poti and Batoum. The line proposed will ultimately unite the Caspian and the Black Sea north of the Caucasus ridge. The Caspian terminus will be Petrovsk, and the Black Sea one Novorossick.
At present the whole of the vast fertile region lying north of the Caucasus ridge is devoid of good outlets. The Rostoff-Vladikavkay Railway runs through the middle of it, from the Caucasus to the mouth of the Don, but it throws out no branches right or left. The consequence is that the produce of a region larger than the United Kingdom flows into a shallow port at the mouth of a river which is frozen over three or four months every year. The railway now sanctioned will put an end to this condition of things. Starting from a point about midway between Vladikavkay and Rostoff, it will proceed straight to the Black Sea, where it will find a terminus in Novorossick, which is never frozen over, and possesses a capacious bay fifteen miles in circumference, capable of accommodating the largest possible amount of shipping. Thus the outlet will be one that will meet in every respect the requirements of a region remarkably rich in corn and oil. The Novorossick Railway will be $1721 / 2$ miles long, and will cost, with $£ 150,000$ for improving the port, $£ 1,400,000$ sterling. The gauge will be 5 feet, the line will be single, and the rails of steel, manufactured in Russia.
The Koubon region, which it will traverse close to the coast, is one of the most inaccessible parts of the Caucasus, being so mountainous and embedded in forests that it is traversed by only one or two military roads, constructed during the wars with the Circassians at an immense cost. The engineers will thus have many difficulties to overcome, although they anticipate completing the line in a couple of years. When it is finished, perhaps even before then, a branch will be commenced on the opposite of the Rostoff-Vladikavkay Railway, and run to Petrovsk, on the Caspian. This will be a little longer, but it will be easier than the Novorossick line, and will be completed in about the same space of time. Thus, in about four years Russia will have a new railway from the Caspian to the Black Sea, to the north of the Cauaasus, and being linked with the European system, people will be able to go from Calais to the Caspian all the way by railway. These considerationsgive special importance to the new undertaking, but there is another which will interest Europe still more. The Novorossick Railway will traverse the Black Sea petroleum region, and open up a country known to be as rich in oil as America, and which on examination may prove to be still richer. Already there is a refinery at Novorossick with a pipe line 60 miles long running to the wells in the interior, so that a start has been made with an industry which would have long ago assumed larger proportions but for the generally inaccessible character of the Koubon region.

A Novel Temperance Society.

On the night of December 31, 1883, three young men sat around a tavern fire in Georgetown, a little village in Connecticut. They were intoxicated, and were watching the old year out. As the clock struck twelve, one of the young men said: "Boys, the new year is here; now let's swear off, and form a temperance society." The others, in a spirit of fun, agreed. The articles of association were then and there drawn up. They were similar to the rules of other temperance organizations, with one exception. The clause containing the pledge had the following penalty attached: "And any one of us who shall drink any intoxicating liquor, for any purpose whatsoever, between now and midnight of December 31, 1884, shall be tarred and feathered."
This clause becoming known, gained the club the name of "The Tar and Feather Temperance Society." Meetings of the society of three were frequently held. Gradually applications for membership began to pour in, and before six months had passed the society numbered thirty members. The year of abstinence expired on new year's eve, and a grand ball was given by the society, to which a large number of the best people of the place were invited. The hall was filled. At midnight the president announced that the pledge had expired. By a unanimous vote it was renewed for another year, and some twenty names were added to the roll. The peculiar penalty proves an attractive advertisement, and the matter is the talk of the neighborhood. Nearly every resident wears the society's badge. The badge is a blue ribbon, with a lump of tar filled with chicken feathers attached.

REGISTERING THERMOMETERS AND PRESSURE GAUGES.
We illustrate herewith two apparatus which have the one feature in common of inscribing their indications in ink and in a continuous manner upon a sheet of paper which is carried along by a clockwork movement.
These apparatus are very portzble, and can be ap plied everywhere without the necessity of having re course to special employes to attend to them. They are constructed after the same pattern, and consist of a glass case which contains the mechanism and permits the tracing pen, as well as the paper band, to be seen from the exterior. The system of registering is identical in the two apparatus, and this accounts for the moderate price of them. The registering apparatus consists of a movable, yertical drum containing wheel wofk. The top of this contains two apertures for the insertion of the keys for winding, and which are closed by slides, and the bottom is traversed by an axle which carries externally a toothed pinion that gears with a fixed wheel. This latter is keyed to a rod mounted on the base of the apparatus and serving as a rotary axis for the drum. The toothed pinion performs the role of a planet wheel for bringing about a general a whole, is drum. This registering mechanism, as rest of the apable of being easily separated from the a button in order toeing only necessary to unscrew a button in order to disengage the drum without touching the other parts. By merely varying the proportions of the radii of the two planet wheels which regulate the final motion, the constructor can readily modify the velocity and consequently the duration of the revolution.
The bands of ruled paper that cover the drum are pointed beforehand, and the spacing of their horizontal lines, which are formed by circumfer ences parallel with the base of the drum, is regulated according to the nature of the instrument. The vertical lines measure the time, and their spacing is regulated according to the velocity at which the clockwork runs.
In the majority of cases, the duration of one revolution of the cylinder is one week and a few hours, so as to permit the bands to be changed every eight days at a given hour. The generatrices traced upon the ruled paper are spaced two hours apart, and are distributed in groups that represent an entire day. The names of the days of the week and the numbers of the hours are inscribed at the upper part. An interval of two hours is represented by a spacing of 0.12 of an inch. One can easily see by the eye half the distance between two linesthat corresponds to the odd hours, and even a quarter of such interval.
Apparatus are likewise made in which the ban must be renewed every day.
Were the lines exactly rectilinear, it would be necessary to give the pen a very accurate vertical motion, which would involve the necessity of making the mechanism complicated, and, by creating passive resistances, destroy the sensitiveness. This is one of the principal difficulties in the construction of registering apparatus. The Messrs. Richard, who are the manufacturers of the instruments under consideration, suppress this inconvenience very happily. They so arrange the apparatus whose indications are to be registered that the vertical plane described by the long movable style shall be tangential to the cylinder, and they mount the pen of the style in such a way that it shall come exactly against the generatrix of contact of the cylinder and plane when the style is in its mean position of oscillation. Owing to this arrangement, and to the transverse flexibility of the style, the pen, in its vertical motion does not leave the surface of the cylinder upon which it is tracing a slightly inflexed line. The error which might result from this inflexion is corrected by arranging the ruled lines according to the curve thus described upon the cylinder.
In practice these lines are confounded on the paper with successive portions of circumferences that have a constant radius equal to the length of thestyle. In fact, this arrangement, which is so simple, renders the transverse motion of
the style possible, and permits of receiving directly upon a rectangular tablet the tracings of all those registering apparatus whose indications are furnished by the motion of a needle over a dial.
Each sheet of ruled paper is fixed to the cylinder in the simplest manner, the overlapping edges being merely held by the pressure of a flat spring, and the
different types of these registering apparatus, and that is the arrangement of the pen. This latter is simply a small receptacle in the form of a triangular pyramid made of thin sheet metal. One of the faces of this is applied to the style, and fixed by a small socket. The opposite end grazes the paper, and the corresponding edge is split like the point of a pen, so as to bring about through capillarity a flow of ink. The ink used is made of aniline mixed with glycerine. A drop of this is placed in the reservoir of the pen. It is well to employ gelatinized paper in order to obtain sharp and fine lines, notwithstanding the prolonged contact of the pen upon the same points of the paper. The ink must be renewed every eight days, at the moment the paper is changed, and the clockwork wound up.
Fig. 1 represents a metallic thermometer whose operation is based upon the use of a bent Bourdon tube of copper having a flat section. This tube is filled with alcohol. It measures three-fourths of an inch in width and four inches in length. At first, it was, like the rest of the pparatus, covered with a metallic box.
An equilibrium of temperature between the interior of the lat-
 cylinder, so as to secure a parallelism of the horizontal two windows provided with wire gauze, and ralines with the base of the drum. When the drum is pidly enough moreover to obtain diagrams repthus covered, it may be turned by hand in any direction whatever, because the clockwork movement is connected with the cylinder by a socket with friction mounting, as in the wheelwork of clocks. This permits

Fig. 2.-RICHARD'S REGISTERING PRESSURE GAUGE. resenting exact thermometric means; but the curves produced by sudden variations in temperature were not rendered with all their instantaneousness. In order to obtain greater accuracy in the indications, the thermometer tube has been placed externally to the metallic box, so that it shall be in immediate contact with the atmosphere. This arrangement gives very satisfactory results as regards sharpness of the diagrams.
The dimensions of the levers are made such that a variation of one degree in the temperature shall be represented by a three-fifths inch displacement of the pen, this corresponding to the spacing of the divisions of the ruled paper.
These thermometers are very sensitive. The motive tube, by reason of its material, is an excellent conductor of heat. It has a large surface in contact with the air, and has but a slight capacity, thus permitting the alcohol to put itself quickly in equilibrium with the surrounding temperature.
Fig. 2 represents a registering pressure gauge, which is likewise formed of a Bourdon tube connected with a vessel containing steam. The motion of dilatation that results therefrom is transmitted directly to the needle that carries the pen charged with ink. There is constructed after the same type a gauge for measuring infinitesimal depressions, and in which the motor of the style consists of an extremely sensitive diaphragm. This instrument renders great services in the controlling of the pressure of gas or the draught chimneys, through diagrams.-Revue Industri-
of bringing the point of the needle exactly opposite that of division of the paper which corresponds to the hour a the apparatus to itself in order to have it begin the revolution, during which the divisions of the cylinder pass successively before the pen.

HYDRAULIC ACCUMOLATORS FOR LOADING AND

 unloading carsThere are at present few persons who have not had an opportunity of seeing what a series of maneuvers the loading and unloading of freight cars give rise to at the stations of large railways. The making up and breaking up of trains, and the loading and unloading of them, are so many operations that necessitate the shunting of cars from one track to another by means of switches and turntables. For all such maneuvers horses are employed. In ordinary weather a single animal will suffice to haul a car, but when the ground is slippery through rain or snow, it becomes necessary to employ two, three, and sometimes more. At large stations, where it becomes a question of shifting from 1,000 to 1,200 cars per day, it proves difficult, as may seem, to maneuver the number of men and horses necessitated by such work, without accident and loss of time, within a relatively contracted space. For this reason the

Company of the North (France), abandoned the use of this primitive system a few years ago at its La Chapelle station, and, for horses, substituted machines analogous to those that have for a long time been employed in England. These apparatus, which are giving very satisfactory results, will themselves be replaced before long by more improved ones in which the transmission of power to a distance through electricity will perform the greatest role. The matter is now under study, and it is here again that the Railway Company of the North is at the head of such progress.
Our readers will be informed in due time as to the re sults of the experiments, and, in the mean time, we shall merely endeavor to describe and make understood the system at present in use.
Since the number of cars to be shifted varies at every instant, it requires considerable power at some mo ments, and not much at others. Under such circum stances, if, for example, a powerful steam engine were located at some central point, a portion of the power that it developed would not be utilized most of the time. If, on another hand, smaller engines were placed at different points around the station, the result would be the same-not economical-since it would often hap pen that one or several of the engines would not beem ployed. This, in addition, would be attended with the grave drawback that the number of enginemen and stokers would be multiplied.
The problem has been solved in another way, and that is by the use of an accumulator. This word is not used here in the sense of reservoir of electricity, that we have become accustomed to attribute to it since Gaston Plante's admirable discovery, for the apparatus under consideration are in no wise electrical.
Everybody knows, moreover, that "accumulator" is a general name for apparatus that are designed for the storage of any force whatever that cannot be utilized directly, and for restoring it at the moment desired, either all at once, if we need a powerful and momentary stress, or slowly and continuously (as in clockwork movements), or, finally, by fractions as smail as may be desired, and at any intervals of time whatever. This sort of apparatus was therefore fully indicated for the particular case that occupies us.

Our engraving (Fig. 3) represents the central works in which force is accumulated. The accumulator consists of a series of cast iron disks of large dimensions, placed one upon another and resting upon the head of a plunger, as may be seen in the engraving. A 15 H.P. steam engine continuously actuates a pump whose gearings are seen to the right, and which, sucking water from the reservoir above, forces it under the plunger. In this way, the relatively low power that the engine develops is constantly employed in lifting the accumulator, and the latter is always ready to descend again, either wholly or partially, according as the water imprisoned under the plunger that supports it is allowed to escape for a greater or less length of time. When we state that its weight is 88,000 pounds, it will be understood that the force that we have at our disposal is considerable. In order to transmit this to the different points where it is to be utilized, and which are now twelve in number throughout the station, the hydraulic method was adopted, since this adapts itself to every circumvolution possible. At each of the twelve points selected there was accordingly arranged a cap stan actuated by a hydraulic motor of the Brother hood system ; and there was laid a line of cast iron piping for connecting the pump chambers with each of the motors, to which latter the pressure exerted by the accumulator is thus directly transmitted. In these motors, the cock that admits water into the distributing slide valve is actuated by a pedal placed alongside of the capstan, thus permitting of setting them in motion and stop ping them at the moment desired, without the aid of the hands. Both the pip ing and the motors are 30 inches beneath the surface,
so as to place them out of the reach of frost. There is a special conduit provided for leading the water back to the reservoir after it has been utilized in the motors. The water used is therefore always the same -an economical provision that in certain cases is not o be despised.
The pressure conduit is circular; that is to say, start ing from the accumulator and running to the right, fo example, it returns to the left after passing in proximi-

Fig. 2.-arrangement of the brotherhood hydrad LIC MOTOR.
ty to the motors, with which it is connected by branch pipes. This arrangement permits of isolating any point whatever for repairs without interrupting the service. With this same object, and to avoid a standstill, the machinery is double. In Fig. 3, the second accumulator may be seen at rest behind its mate.
Fig. 1 shows the arrangement of two maneuvers effected simultaneously on tracks at right angles with each other. In one of them, shown in the foreground, we see a man who has just wound a rope around the capstan, and is putting his foot upon the pedal. This rope may simply make two revolutions, and the adherence be sufficient to move the car attached to its other extremity as soo as the capstan is set in motion. The latter is stopped by ceasing to press upon the pedal as then is stoped by ceasing to press the pedal a
it continue its course by virtue of the velocity acquired. As soon as it reaches its destination, it is stopped by a man who has followed it for that purpose.
Each capstan is capable of doing duty for four or five turntables and all the tracks within a radius of 325 feet around it, either directly or by means of guide pulleys. Fig. 2 shows the arrangement of the Brotherhood motor that actuates the capstans.
It will be seen that with such arrangements it is possible to shift a car quickly from one extremity of the station to the other, and in any direction whatever.
One is struck with astonishment upon seeing the ease, rapidity, and safety with which these maneuvers are performed by a number of men which is relatively small in comparison with the large number of cars handled. The estimates made by the Company of the North establish the fact that loading and unloading effected in this way is three and a half times quicker than when horses are used.-La Nature.

Bleaching with Gaseous Chlorine.

M. Albert Scheurer, at a recent meeting of the Societe Industrielle du Mulhouse, presented a note on the employment of gaseous chlorine as a discharge on indigo.
Chlorine, even when moist, destroys indigo but slowly. But if we print a thickened caustic alkali on an indigo ground, the discharge by means of gaseous chlorine is immediate. The same is true of Turkey-red. By this process colored discharges on blue and on red grounds may be produced. If we print a mixture of oxide of lead and oxide of chromium dissolved in soda, we produce by synthesis the chromate of lead; the blue is destroyed, and we obtain a yellow discharge.
To produce red discharges on indigo, we print with very alkaline aluminate of soda and expose to chlorine, then dissolve out the gum or thickening, and dye with alizarine.

The allen Ice Machine on Shipboard

In the Scientific American of June 14, 1884, we illustrated and described the Allen Dense Air Ice Machine. One of these machines, having a capacity of about 1,000 pounds of ice per day, has been placed upon Mr. James Gordon Bennett's yacht Namouna. One peculiarity of the invention is the small space occupied by the machine, which in this example is only 7 feet long, 4 feet wide, and 4 feet high. The residual cold air over and above what is needed for freezing the required ice is employed for cooling two refrigerating rooms, the larger of which is placed in the hold of the vessel, and is designed to be used as a store room; the other is located on the lower deck, and is intended to receive temporary supplies. The machine is worked with steam from the main boilers.
These machines are particularly applicable to service on board ship, since they are compact, they require but little attention, and all the working parts can beeasily reached. They are manufactured by the Allen Dense Air Ice Machine Company, Delamater Iron Works, foot of West 13th Street, New York city.

Building a Bridge Over

 the Jordan, in Palestine.U. S. Consul Merrill, at Jerusalem, reports that, during the 'past summer, an attempt has been made to build a bridge over the Jordan at Jericho. It has progressed slowly, however, as the lumber furnished had to be brought from Europe, and carried on the backs of camels from the port of Jaffa to the river. The Consul suggests that there might be some market in Palestine for American lumber, as the Austrian and Turkish lumnow used there is of poor quality and high priced, but the country is probably too poor to make much of a market for anything at present; the whole yearly imports at Jaffa, which is the Mediterranean seaport for Jerusalem, amount to only about $\$ 600,000$.

The Pileated Woodpecker.

 (Hylotomus pileatus.)

 (Hylotomus pileatus.)}To those of the readers of the Scientific American who have never been in Florida, before describing the habits of the pileated woodpecker, let me first attempt to describe as near as possible a genuine Florida swamp. Imagine, if you can, a vast wilderness extenảing for miles in every direction, made up of tall cypress trees and water oaks, draped with a profusion of Spanish moss, which lends a gray aspect to the whole scenery, interspersed here and there with a maple, and the cabbage palmetto in profusion, and the whole interwoven with a strong network of creeping vines, thorn bushes, roots, and fallen trees, with anywhere from six inches to two feet of water covering the whole, and broken here and there by some deep creek or inlet, then you have before you some faint idea of a tropical swamp.
It is in such a place as this that the pileated wood pecker may be found most abundant, and where I have been for the past week closely studying him. To one who has spent an hour in trying to obtain a shot at a golden winged woodpecker, and at length given it up with the opinion that that Colaptes was "something more than mortal," let me say that he cannot be compared with my pileated woodpecker; for he is the very essence of cunning and craft in his maneuvers. I have sometimes spent an entire afternoon in trying to get near enough to one to observe his habits, and at dusk found myself as far away from the object of my pursuit as when I started. But rather than weary you with a detailed description of my long crawls on hands and knees through mud and water, with repeated failures, let me put before you the bird himself, clinging to the side of the decayed trunk of a tree a few yards in advance, and entirely unconscious that my untiring efforts to reach this coveted spot have at last been crowned with success.
There he is, hammering away as though his life depended on hisgetting that one grub. Suddenlylhe stops, turns his ear to the tree, and listens attentively for the sound of his prey crawling through the wood; soon he hears him, and uttering a low, guttural cluck of satisfaction, he proceeds with his work of excavation. All at once he stops, throws his head back from the tree, and gives utterance to a long, loud, piercing call, similar to that of Colaptes auratas, but in a much stronger and louder tone, best represented by the syllables "Wa-wa-wa-wa-wa-wa-wa-wa-wa," very rapidly and loudly repeated, and then pursues his work again. I have heard his call answered by a distant one, sometimes continuing it for two or three minutes, it evidently being a source of communication between the two, for several times on this occasion I have seen one that was near me suddenly leave his position and fly away in the direction of the call. Their hammering is unlike that of the smaller species of woodpeckers, for instead of the rattle of P. pubescens, for instance, it is a steady thump, thump, thump, and may be heard a long distance. When pecking on a decayed trunk, it is hollow and muffled; but when on the live tree, it is moresharp and loud. Strange as it may appear to some, I was misled several times on my trip into believing that a woodsman was near by chopping, when in reality it was only one of these forest birds at work on some hard stump or limb.
But to return to the one in front of me: He has tired of his present location, so off he flies to another. How heavily he flies, and with what a rushing noise! Another quarter hour's careful crawl, and I am near enough to watch him again. At first he does not find a place suitable for his work, but runs up the tree, then drops down, swings himself around, first to one side, then to another, when all at once he commences work, and I know that he has found the spot where he will make a meal. How the chips fly! big ones, too, and the ground is soon covered with evidences of prowess. The slight noise I make startles him, and in an instant he is off for safer quarters. Notice when alarmed how swiftly heflies, and after the usual woodpecker fashion. Soon I hear him at work where he has alighted, and after careful maneuvering, again obtain a position near enough to observe him. This time he is on a log, and, from his manner, evidently has found a rich harvest there. How hard he hammers away! One would think that he would knock himself to pieces instead of the log; but should you dissect his head, you would find it supplied with muscles that are very strong and hard, and admirably adapted to just such work. He pauses occasionally in his work to give utterance to his call, and how it does ring through the silent woods, silent save what bird life there is in it!
At my right stands an old dead tree, with a large excavation in it that some brother woodpecker has made. Examining it, I find it measures over two feet long, about eight inches wide, and six inches deep, in a tree scarcely one foot in diameter. On another near by is more of the same work-a ring extending half way around it, two inches wide and three deep, and the ground under it covered with chips. This bird does not depend entirely upon what he is able to find within the tree he pecks at; but I find him on a small knoll covered with decaying leaves, where he is alternately pecking and scratching for the grub or worm he first
listened for, and then commences his work to get him. Occasionally he pauses to listen as he turns his ear to the ground, the same as when on the tree, only to renew his pecking and scratching; but I judge his success in finding food rather poor, for he soon flies to a tree, and is hard at work again there.
Moving on cautiously, I come upon a company of six of these birds all hard at work, but from their maneuvering conclude that the mating season is at hand; for suddenly one leaves his perch and darts at another, and away the pair go through the woods, with loud screams, rapid flight, sharp turns, and loud whirring noise, but are back again soon, and renew their work ashard as ever for insects, only to repeat the same maneuver again and again, until the pair goes chirping away together, leading me to believe that each has found a•mate, and the selection of some hollow tree for its nest will soon follow. This "hollow" is usually at a great height in some almost inaccessible tree, standing in the loneliest and thickest part of the swamp. I am told that the breeding season commences before long, in which case I hope to be successful in finding the much coveted nest and eggs. On dissecting the stomachs of a number of these birds, I find the food to consist of grubs, insects, larvæ, small beetles, etc., and in one case I found two immense caterpillars in the stomach of one bird, besides thousands and thousands of the above mentioned lepidoptera.
Description.-Male: 18 inches in length, $281 / 2$ inches in extent. Iris yellow. Upper mandible plumbeous blue; lower mandible the same, but lighter at base. Tarsus black. Toes and claws black. Top of head, including the whole crest, scarlet; a long cheek patch of scarlet. General color dull black; a large space at the base of wing quills white, more or less tinged with sulphur yellow; the feathers of the sides and belly of ten edged with dull white, and sometimes some of the primaries and tail feathers are tipped with the same; a long white stripe from nostrils extending along sides of the head and neck, spreading on sides of breast; also tinged more or less with sulphur yellow, ending in a large patch of white under the wings, decidedly tinged with the same color. Nasal feathers white. Female differing from the male in having the forehead for about an inch a yellowish brown color instead of scarlet, but the whole crest extending from between and back of the eyes is bright scarlet, and in my specimens the crest is handsomer than that of the males. It also lacks the red male.
E. M. H.

Palatka, Fla., Jan., 1885.

$$
5
$$

THE HYPNOSCOPE.

Sir William Thomson, in a lecture to the Midland Institute delivered some months ago, on the Six Gateways of Knowledge, pointed to the possibility of a

the hypnoscope.
magnetic sense, which might give a sensation of magnetism quite different from the sensations of heat, force, and so on. Soon afterward Professor W. F. Barrett recounted some experiments which came under his
notice, and which tended to prove that certain persons were capable of feeling the presence of magnetism as developed by the core of a powerful electro-magnet. Dr. J. Ochorowicz has investigated the subject still further, and observed that all persons sensitive to the magnet are hypnotizable in a corresponding degree. In studying the matter he uses an instrument termed a hypnoscope, which is simply a tubular magnet slit up the side, the edges of the slit forming the poles, which are preserved by an oblong armature. Such an apparatus need only be 3 or 4 centimeters in diameter, and 5 or 6 centimeters long; weighing 150 to 200 grammes. Made of Alvar steel, it is very strongly magnetic, and
will sustain twenty-five times its own weight. Figs. 1 and 2 show the magnet without and with it
armature, and Fig. 3 illustrates the way in which it is used. After , the armature is drawn off, the index finger of the person to be tested is thrust into the tube of the hypnoscope in such a way that the latter hangs from the finger by its poles, which are connected through the finger. After two minutes the magnet is drawn cff, and the finger examined. Dr. Ochorowicz states; of a hundred persons chosen at hazard, and examined in this way, seventy will observe no change, but thirty will experience changes of two orts, subjective and objective. For example, 20 per cent. declare they feel a pricking sensation as of needles entering the skin; 17 per cent., a cold air or a sensation of heat and dryness. These two sensations may coexist, one being felt in the right arm, and the other in the left. The cold air resembles that felt in front of an electrostatic machine. Some 8 per cent. of the total will probably feel disagreeable sensations, and a smaller number of sensations of swelling, heaviness of the hand, and irresistible attraction. The objective changes are either involuntary, insensibility (anæsthesia), paralysis, contraction of the muscles. - These changes disappear after a few minutes by light friction, but without that will last several minutes, or even hours. Subjects of his class can be hypnotized in a single séance. Whether these effects are really magnetic, Dr. Ochorowicz considers doubtful. Magnetism, he thinks, does not explain all. It is only the substratum of another action so feeble from a physical point of view that it is not discoverable by our instruments of research. What this other action is, whether a new force or a new manifestation of force, he does not in the present state of our knowledge venture to say.

Gaseous Fuel and Smoke Prevention.

Under the title of "The Smoke Nuisance in Towns, and its Prevention," Herr R. Weinlig read a paper, at Magdeburg, last September, of which an interesting summary lately appeared in Engineering.
The whole question, says our contemporary, is treated in detail. Some statistics are given to show the enormous increase in the quantity of coal produced during ate years; England being stated to have doubled and Germany to have quadrupled their output in the last 4 years. In dealing with the subject of smoke prevention, the author stated his opinion that very decided legislative interference is necessary; but he does not consider that this can be extended to domestic fires, though their importance as large contributors to the evils upon which he dwells cannot be denied or underrated. He considers that the one great cure for smoke from this source will be found in the introduction of gas firing, gas being supplied cheaply from central stations. This will certainly come to pass in due time, as it is well known that a suitable gas can be produced at a price of 3 to 5 pfennige per cubic meter (about 20 to 35 cents a thousand feet); and at such a price, firing with gas is fully as cheap as firing with coal.
Tests made by Dr. Fischer, of Hanover, show that in the ordinary domestic stoves in use not more than 20 per cent of the fuel consumed is really utilized for warming the rooms; whereas, with stoves bnrning gas, 80 per cent and more of the possible effect is obtained. In a certain sugar manufactory at Elsdorf, no steam engines have been used for several years. Gas is made at a cost of about 20 cents per thousand feet, and is used for lighting and for driving gas engines. At the iron works of Herren Schultz, Knaudt \& Co., in Essen, water gas is made at a cost of about 8 to 16 cents a thousand feet, and serves both for fires and for lighting. For the latter purpose a ring is fixed over the burners, having rods or pencils of magnesia attached. These are made glowing hot by the non-luminous gas flame, and emit an excellent light.
These and other examples prove that cheap gas production is not any longer a mere experiment, and that we may reasonably hope to see its universal introduction. But we shall never be free from the smoke nuisance till we have no more burning of coal direct in grates. The use of gas, which has already done so
much in some directions, will probably gradually do much in some directions, will probably gradually do the rest. Large works of all kinds will more and more take to producing gas and using it for all purposes. Smaller works and private houses will, in due course, have gas supplied to them at such a price as shall render it cheaper than solid fuel under any conditions. Domestic heating and cooking appliances for use with gas have made enormous advances of late, chiefly by the untiring ingenuity and invention of Mr. T. Fletcher, of Warrington. It remains only to "educate" the public and the gas companies a little further, and some day we shall have cheap gas laid on everywhere, and our descendants will hardly realize that we once had loads of dirty coal shot into our houses, endured no end of dust and dirt inside, and poisoned the air outside. If ever the difficulties are practically solved which at present prevent the introduction of electric lighting into our houses, then, when the gas companies find their present occupation gone, they will turn all the sooner to the other great field that awaits them; and so all the sooner will our smoke nuisance disappear by a much more satisfactory method than government interference and compulsion.

ENGINEERING INVENTIONS.

A car coupling has been patented by Mr. John G. Ogden, of No. 46 Jackson Street, Chicago Ill. The invention relates to means for automatically
coupling and uncoupling railway cars without going coupling and uncoupling railway cars without going
between them, and to this end covers novel details of between them, and to this end covers
construction and arrangement of parts.
A car truck has been patented by Mr. Charles E. Candee, of New York city. The principal feature of the invention lies in the equalizing bars hich are the frome inderendently of the wheels and of the truck frame independently of the wheels and axles, together with boxes of novel construction, and
holders for the supporting springs, by which the spring are held upright in any position of the truck.

A car coupling has been patented by Mr. Frank D. Root, of Cortland, IIl. A drawhead i held in hangers, and has at its rear end a neck passed
through the rear hanger, a large nut being screwed on the end of the neck; a spring is held in the transvers cavity in the free end of the drawhead, the spring act ing on a tongue on the inner end of a coupling hook, pivoted in the outer end of the drawhead, the coupling pivoted in the outer en by a chain with a plate having a quadrant edge, and the plate secura
of a vertical shaft on the platform.

agricultural inventions.

A side hill sulky plow has been patented by Mr. Addison D. Sewell, of Colton, Washington Ter. It is made with two plows rigidly connected in
Eversed positions, and pivoted to a plow beam having Eversed positions, and pivoted to a plow beam having
I locking mechanism, there being a spiral spring on the A locking mechanism, there being a spiral spring on the
beam, and a foot lever connected with the beam and the beam, and a foot lever connected with the beam and the
locking sleeve, whereby the (plows will be locked automatically and can be readily released, with other nove eatures.

MISCELLANEOUS INVENTIONS.

A machine for threading screws, bolts, and nuts, has been patented by Mr. Edmond P. Baville, of Brussels, Belgium. It is for threading screws in
general and especially screw bolts, and has for its object to impart to the manufacture greater rapidity, considerable economy, and greater accuracy. The universal adjustable cutting tool consists of a mere piece
of flat steel bar, in one side of which are triangular or rect gular grooves, that may be cut on a planing ma chine, according to the thread Ito be made, this cutting tool allowing the pitch of the screw being varied at
will; by means of its peculiar adjustment in the screw will, by means of its peculiar adjustment in the screw
stock, this tool also cuts the thread on the cylindrical stock, this tool also cuts the thread on the cylindrical
surface of the rod or stera without compressing the lat surface of the rod or ster without compressing.the lat-
ter or squezing it between the tools, the tool cutting as well at the heel as at the top of ithe thread. With as well at the heel as at the top of the thread. Whe die sthe machand and four taps, it is said that eight to
thousand bolts can be made in a day of ten hours.
A neck yoke clamp has been patent ed by Mr. Elihu Woif, of North Vernon, Ind. This in
vention covers a novel construction and arrangement of vention covers a novel construction and arrangement of
parts constituting a clamp for holding a neck yoke on the parts constituting a clamp for holding a neck yoke on the
end of a pole in such a manner that it can easily swing vertically and laterally on the end of the pole.
A fence wire strainer has been patented by Mr. Sydney W. Fulton, of West Taieri, near Dune din, New Zealand. The invention consists of a ring or
frame carrying two pairs of clamping jaws and a wire straining shaft or roll disposed on side of the line o the jaws, with certain novel details of construction.
A tricycle has been patented by Mr. Carl G. E. Hennig, of Paterson, N. J. Combined with
four pairs of treadles are two rocking arms, connected four pairs of treadles are two rocking arms, connected
to the cranks of the axle by rods, two pairs of said to the cranks of the axde by roxs, two pairs of said
treadles being connected to the axle, and the two other pairs of said treadles being connected to a tube arranged upon the axle, with other novel features
An improvement in the construction of of Sea Cliff, N. Y. This invention covers a special man ner of construction, especially in the joining and mor ising of the stuff, whereby a house may be made very
strong and tight, and so that it can be easily, quickly, strong and tight, and
and cheaply built.
An automatic weighing scale has been patented by Mr. Henry C. Keeler, of Ogden, Utah Ter.
This invention relates to scales having a revolving dial and a stationary pointer, so the record of the weight may always be seen at one place through a small glazed opening, instead of having to follow the pointer around
its range, and covers several novel features of construction and arrangement.
A lifting device has been patented by Mr. Eugene Paul, of Norwich, N. Y. It may be mad of wood or metal, and is for lifting heavy articles, suc
as logs, for sawing or loading, and combines, with legs nd a center piece, a lifting lever held by links on th center piece and carrying a shackle, through whi ch a
toothed lifting bar passes, which latter also passes through a shackle on the top of the center piece.
A combined desk pad, portfolio, and calendar has been patented by Mr. William R. Cole, of Pottsville, Pa. The calendar is fixed to the head or top
of the pad, and has a roller indicating the months and of the pad, and has a roller indicating the months and
days of the month, and another indicating the days of the week, the days showing through slots in the calendar case, and the portfolio being fixed to the back of

Improved suspenders form the subject of a patent issued to Mr. Frank E. Flagg, of New Yor city. The end of the shoulder strap has a cap with a
tubular sccket to receive a rubber rod, upon which is a regulator to which the suspender ends are attached,
and which is made with a tubular aperture smallert than the rod, whereby the rod is securely connected with the shoulder strap, and the regulator can be readily adjust ed and held in place.

A measuring, sacking, and registering Itachment for grain separators has been patented by nvention consists in a peculiar construction and com bination of parts to facilitate the work for which it is designed, and so the grain will all the time be covered during its passage from the discharge spout of the sepa
rator to the sacks, and thus kept clean from chaft, dust, rator to the
straw, etc.

A shirt and necktie fastener has been patented by Mr. Sigmund Fechheimer, of New York city By this improved device the shirt, scarf, or necktie, and fastener, are all combined and connected to make
of the whole one article, dispensing with studs or buttons for closing the shirt in front, and the device at the same time servingto form an ornamental clasp for the ends of the tie or scarf at the neck, or other point down the bosom of the shirt.
A handle for pot and other covers has een patented by Mr. George E. Palmer, of Horseheads N. Y. This invention relates to ring or loop-shaped
handes, and covers a novel construction and means of hancles, and covers a novel construction and means of
attaching it to the cover; it may be held in its place ataching it to the cover; it may be hela in its plac ways occupy an upright position, thereby keeping comayratively cool whena applied as a handle to a stove or
par
other pot cover.
A street lamp has been patented by Mr. George Schuette, of Manitowoc, Wis. The inven-
tion covers an elevator contrivance within a hollow ton covers an elevator contrivance
lamp post for suspending an oil lamp, and arrangement for lowering the lamp to an opening in the side of the oost for filing and trimming the lamp without climbing or protection from snow and ice, and from wanton
A two wheeled vehiclehas been patent d by Messrs. Ruben F. Taliaferro and Edward P. Mit chell, of Hueneme, Cal. Spring holders, clipped o otherwise, are secured upon the axie, and to these
holders, at their rear ends, are pivoted the inner ends of bars secured to the under side of the shafts and extend bars secured to the under side of the shafts and extena
ing backward beneat the axle, with lother novel fea-
tures, for so attaching the shafts that the tures, for so attaching the shafts that they can be raised
or lowered, and the axle with the springs kept plumb.
A fire escape has been patented by Mr. Lewis B. McDonald, of Little Rock, Ark. This inven to the floor and window sill, a rope pulley or drum piv ted between and in the prongs of the rod, with othe special features, to enable the safe descent of a person escaping from a burning building, and to cause the of another person.
A damper has been patented by Messrs. David Manuel, of Hyde Park, and George H. Burrows of Boston, Mass. This invention covers two disks, flat at their central portion and concavo-gonvex at their
outer portions, with openings through the outer portions outer portions, with openings through the outer portions,
so an annular chamber can be formed between them, and
. so an annular chamber can be formed between them, and
the openings will alternate with each other, so that the the openings will alternate with each other, so that the ascending air and products of combustion may

A water closet valve has been patented by Mr. Hermann C. Apel, of Milwaukee, Wis. Combined with a piston working in a cylinder and forming a valve is a lever for pressing down the piston, and an nlet for admitting water into the bottom of the cylinder to raise the piston valve, which is fitted in an inne
cylinder with its seat depending in an outer cylinder the seat being slightly elevatea above the upper end of the inner cylinder, with other novel features.

An axle box and skein has been patented by Messrs. Lawrence Bimel and William Bimel, of
st. Mary's, o. This invention relates to thimble skein mployed in connectivention reaten axles of wagon and other vehicles, insuring the continuous oiling of the axle for a long time, and permitting of the ready ap
plication of a fresh supply of oil without removing the plication of a fresh supply of oil without removing the
wheel from the axle, the bearing of the axle being pro wheel from the axle, the bearing of the axle being pro
tected at both ends from sand and mud, so that it will cected at both ends from sand and mua, so that it win
run
winum of wear.

A boot or shoe ventilator has been patented by Mr. Adoniram J. Trask, of Nobleborough, with an ingo wha cavity at the eabove and in lin with the bulb, whereby the latter communicates by tube with the inside of the boot or shoe, and by a second tube with the external air, the tubes having valves,
so the bulb is alternately compressed and expanded, and air is forced into the shoe by the action of walking.
A steam radiator forms the subject of two patents issued to Messrs. Juan B. Arci and Johi Chapman, of Brooklyn, N. Y. These inventions relate tataing at their ends with upper and lower chambers and embrace such construction of the chambers and chambers, to receive nuts or caps at their outer ends and so the tubes and chambers may be joined together forming the radiator complete without any extra fitting of the parts.

new books and publications

Pigturesque California Homes.
S. J. O. Hewson, architects, Francisco, Cal.
This is a series of some forty folio plates representing both the elevation and plans of dwelling houses erected
on the Pacific coast, costing from $\$ 700$ to $\$ 15,000$. Not on the Pacific coast, costing from $\$ 7700$ to $\$ 15,000$. No
only the dimensions of the different houses are given, but the size of each room, hall, and closet, and also de the agreement. Forms of builder's contract, with fullspe cifications, covering all work from the foundation wall to the speaking tubes, electrcc bells, and gas fittings, ac company the plates. To persons about to build
country, this series of plates will be found useful.

WBusiness and Personal.
The charge for Insertion under this head is One Dollar a line for each insertion, about eight words to a line.
Advertisements must be received at publicution ofice Advertisements must be received at publication office

Pocket Implement-Auguste Stoner patentee, 1875 His present ad
773, N. Y. city.
Lane's Patent Self-measuring Fancets for molasses 1, varnish, etc. Lane Bros., Box 276, Poughkeepsie, N. Y
Seaming and Looping Machines, Patent Burr Wheels, Brushing Ma
Cohoes, N. Y ohoes, N. Y.
The Provid
The Providence Steam Engine Co., of Providence, R
are the sole build
Every variety of Rubber Belting, Hose, Packing, Gas kets, Springs, Tubing, Rubber Covered Rollers, Deckle
Straps, Printers' Blankets, manufactured by Boston straps, Printers' Blankets, manufactured by Bosto Belting Co.,
New York.

Stephens'

 der; steam cyllinder, $18^{\prime \prime \prime} x 4^{\prime \prime}$; coupled to one shaft,
with eranks at right angles; also has 10 ' band, wheel $16^{\prime \prime}$ with cranks at right angles; also has 10° band, wheel $1{ }^{\prime \prime}$
face. Good an new. Will be osold very low. Address eel. See adv, pase 7 .
Olark's
Wanted.-Address of parties furnishing supplies and
achinery for umbrella manufacturers, achinery for umbrella.
River Street, Troy, N. Y.
Nickel Plated Steel Pocket Tool
ent stamps. R. S. Co., Trenton, Mich,
Steam Engine, Corliss system, 10 inch cylinder, 24 troke, used only a short time, for sale. Keufiel \& Esser
Experimental Machinery Perfected, Machinery Pat erns, , light Forgings, etc. Tolhurst Machine Works Bermuda Scientific Collections. Naturalist, Box 3359 , Y.
Snyder Engine Company, 12 Cortlandt St., N. Y
Little Giant" Engines, 1to 6 H. P. Also Boat Engines Little Giant" Engines, 1 to 6 H. P. Also Boat En
Propeller Wheels, etc. Send stamp for 28 page list.
Wanted.-A first-class man to superintend a Sash, Blind, and Door Factory; outtitted with all late and im-
roved machinery; working about one hundred hands. Must be sober, a good manager, and estimater on job work. To the right man a good salary and permanen
mployment will be given. Or I will sell a half interest employment will be given. Or I will sell a hals interest
in the above well estabbished business. Address, with full particualars as to age, habits, qualifications
Walrus and Sea Lion Leather for Gin Rolls and Meta
Polishing. Greene, Tweed \&Co., N. . .
Whistles, Injectors, Damper Regulators; guaranteed. vecial C.O. D. prices. A. G. Brooks, 261 N. 3 d St., Phila Brush Electric Are Lights and Storage Batteries
Twenty thousand Are Lightsalready sold. Our largest Twenty thousand Arc Lights already sold. Our larges
machine gives 65 Arc Lights with 45 horse power. Our machine gives 65 Arc Lights with 45 horse power. Out
Storage Battery is the only practical one in the market, torage Batery is the only pra,
Brush Electric Co. Cleveland, 0
The Cyclone Steam Flue Cleaner on 30 days' trial to For Steam and Power Pumping Machinery of Single nd Duplex Pattern, embracing boiler feed, fire and low pressure pumps, independent condensing outhts, vac
num, hydraulic, artesian, and deep well pumps, air compressers, address Geo. F. Blake Mtg. Co., 44 Washington,
tt. Boston 97 Hiberty Stationary, Marine, Portable, and Locomotive Boiler specialty. Lake Erie Boiler Works, Buffalo, N.
Wanted.-Patented articles or machinery to manufac
"How to Keep Boilers Clean." Book sent free by
Mills, Engines, and Boilers for all purposes and o
very description. Send for circulars. Newell Universa Mill Co., 10 Barclay Street, N. Y.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Tr Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Steam Boilers, Rotary Bleachers, Wrought Iron Turn
Tables, Plate Iron Work. Tippett \& Wood, Easton, Pa. Iron Planer, Lathe, Drill, and other machine tools of
design. New Haven Mfy, Co., New Haven, Conn. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
If an invention has not been patented in the United Canada. Cost for Canadian patent. 840 . Various othe oreign paients may also be obtuined. For instruction address Munn \& Co., Scientipic American paten ,
Guild \& Garrison's Steam Pump Works, Brooklyn V. Y. Steam Pumping Machinery of every description. Nickel Plating.
Nitckel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc. Com-
plete outftr tor plating, ete. Hanson $\&$ Van Winkle
Newark, N. J., and 92 and 94 Liberty, St, New York. We are sole manufacturers of the Fibrous Asbesto Removable Pipe and Boiler Coverings. We make pure asbestos goops of all kinid.
19 East $8 t h$ Street, New York.
Supplement Catalogue.--Persons in pursuit of infor mation of any special engineering, mechanical, or scien-
tific subject, can have catalogue of contents of the ScrENTIFIC AMERICAN SUPPIEMENT sent to them free The SUPPLEMENT contains lengthy articles embracing the whole range of engineering, mechanics, and physical
sciennee. Address Munn \& Co.. Publishers, New York. Machinery for Light Manufacturing, on hand and built to order. E. E. Garvin \& Co, 139 Center St., N. Y. Young Men! Read This
The Voltaic beit Co., of Marshall, Mich, offer
 thirty days, to men (young or old) afficted with
nervous ebility, loss of vitality and manhood, and
in kindrea troubles all kindred troubles. Also for rheumatism, neu-
ralgia, paralssis and many other disate

Drop Forgings, Billings \& Spencer Co., Hartford, Conn. Munson's Improved Portable Mills, Utica, N. Y. Catalogue of Books, 128 pages, for Engineers and
Electricians, sent free. E. \& F. N. Spon, 35 Murray Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville, Pa. See p. 62. a. Diamond Drill Co. Box 423 . Pottsville, Pa. See p. 62 .
Agency wanted by M. E. to represent at Exposition, on cotton, sugar,or rice plantations. Wm. N. Simmons,
No. 817 Magazine St., N. o. Steam Hammers, Improved Hydraulic Jacks, and Tube Emerson's Book of Saws free. Reduced prices 1885. 50,000 Sawyers and Lumbermen. Address Hoisting Engines, Friction Clutch Pulleys, Cut-off Wrought Iron Bridges, Rooff, Girders, and Structural Barrel, Keg, Hogshead, Stave Mach'y. Seeadv. p. 78 U. S. Standard Thread Cutting Lathe Tool. Pratt \& Whitney Co., Hartford, Conn.
Catechism of the Locomotive, 625 pages, 250 engravngs. Most accurate, complete, and easily understood
book on the Locomotive. Price $\$ 2.50$. Send for catalogue of railroad books. The Railroad Gazette, 73 B'way, N. Y. For best low price Planer and Matcher, and latest improved Sash, Door, and Blind Machinery, send for
catalogue to Rowley \& Hermance, Williamsport, Pa. All kinds of Steam and Water Packing. Greene, C. B. Rogers \& Co., Norwich, Conn., Wood Working achinery of every kind. See adv., page 78.
The Porter-Allen High Speed Steam Engine. South Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa

HINTS TO CORRESPONDENTS.
Names and Address must accompany all leters,
or no antention will be paid thereto. This is for our
informan References to former articles or answers should

(1) L. C. L.-Turtles are shipped from Cuba and Florida to New York by steamers. Will stand a voyage of a week or ten days. Require no at-
tendance. Tie the flippers together, and lay on their backs. They are sent by rail in the same manner Oysters are shipped from New York to Europe, and to ll the neighboring States, by rail and boat. If- for prforated bayrels lesd closed with bage shoveled int perforated barrels and closed with bagging or in boxe per handling.
(2) R. K. T. writes: I would like to put ading matter on one side of a knife blade so it will not I 1 am now making the blades of hot rolle leeters could be put on that finish to stay he blade with a rubber stamp and ink made by rubbing into a paste with a muller and stone flower sulpho with linseed oil and a little vermilion for color. Mak it as thick as printer's ink. Stamp the blades, and lay aside to dry. When the stamp wears off, the blade will be found marked by the sulphur
(3) S. B. G.-Small toy balloons for use vithout gas are usually made of tissue paper with paste. The cutting of the shapes is an easy matter, which yo means for inflating with hot air. A hoop of fine wire the mouth of the balloon to keep it from collapsing with a small piece of sponge tied within the hoop with fine wire, is all that is required until ready for use; then saturate the sponge with a little alcohol or a mixture of alcohol and resin, and set it on fire; at the same time the balloon must be held up and spread out, so as not to
take fire. A little practice will enable you to accom take fire.
plish this.
(4) P. J. C. writes: A floor for a skating ink was deadened by a mixture of lime, earth, and aw dust, in the proportion of 1,1 , and 6 , respectivel the floor, and the mixture under this had lain over night before being put in place. The remainder was put in as ast as it was mixed. The night after it was put in, the building burned down. Granting that one-quarter of he lime was not slaked, could it have set fire to the building? A. You fail to tell us whether the lime, earth and saw dust was mixed with water. If the lime wa slaked by wetting with water, and then mixed with th ther materials, her is no reason to believe that the fire nary, the lime was mixed with the other materials dry nd any of the mass left in a heap or even spread b from theair-slaking of the lime in contact with saw dust. Damp saw dust alone in a mass of no more than a cnbic foot is liable to spontaneous combustion. We have ex forddrying jewelry after washing
(5) S. E. S.-Your description will answer for a boiler to carry 60 pounds steam. Should be
tested with 125 pounds pressure. Steam has been used tested with 125 pounds pressure. Steam has been used
at 500 pounds pressure in an engine, and 1,000 pound at 500 pounds pressure in an engine, and 1,000 pounds
pressure in a steam gun. Such high pressures are pressure in a steam gun. Such high pressures are
generally impracticable. The steam is too hot for packgeneraly impracticab
(6) N. L. S.-Do you know of a wet pro cess for the development of solar prints? A. The print is
exposed in the solar camera until it assumes a lilac hue, which will be a few minutes at most. The image at this time will be just visible. The paper is now taken out and immersed in
vised by Carey Lea:
vised by Carey Lea:
Gallic acid.....

Gallc acil.... Acetate of lea

 Rain water.

 Rain water.}which is prepared as follows: Dissolve a drachm gallic acid in four drachms of alcohol, and a drachm of acetate of cead in $124 / 2$ ounces of water. Take a drachm of acetate; add these to 100 ounces of water, and the drop in just enough glacial acetic acid to redissolve the slight precipitate of acetate of lead that falls. Sev
eral prints maybe immersed in the bath at a time. Five eral prints maybe immersed in the bath at a time. Five
or six minutes is required for development, which ocor six minutes is required for development, which oc-
curs in the dark room, and it must be stopped when curs in the dark room, and it must be stopped whe
prints appear perfect. Overprinting is not necessary prints appear perfect. Overprinting is not necessary
as the fixing bath improves the detail. After washing he prints are immersed in a hypo bath.
.20 oz.
6 oz.
Hyposulphte soda....................... 6 oz.
Hour minutes is sufficient for fixing; the prints are the thoroughly washed in running water, theiri color is red
dish, but on drying changes to a beautiful deep brown
(7) L. W. S. \& S.-The liquid in hand grenades for extinguishing fires consists of sodium
chloride, ammonium chloride, and hydrochloric acid chloride, ammonium chloride, and hydrochloric acia
dissolved in water, with the addition of potassium carbonate and subsequently sodium bicarbonate, and last of all a little free crystallized tartaric acid is added. The object of such a mixture is the generation of carbonic acid at the time of the fire, so that if you can arrange to have a solution of some carbonates, sodium or
potassium, so placed that in the event of fire a free acid of some character can be brought in contact with th liquid, thereby generating the
purpose will be accomplished.
(8) C. H. writes: I wish to know the proportions and manner of mixing lard and creamery some for experiment. A. We understand the manufacture of butterine to be similar to that of oleomargarine,
and therefore refer you to illustrated articles on this and therefore refer you to illustrated articles on this
subject in Nos. 48 and 49 of the Scirntiric American subject in Nos. 48 and 49 of the Scientific Americas
Surpuement. 2. Can the iron parts of furnace regisSupplement. 2. Can the iron parts of furnace regis-
ters be japanned and dred enough in a common stove ters be japanned and dried enough in a common stove
oven so as not to smell a long time after putting in their place in the house floor? A. The heat required fo may be made by painting a piece of work with drying oil and putting the work into a stove not too hot but of such a degree as will change the oil black without burning it, gradually raising the heat to about 350° Fah., and keeping it up form
quires no polishing.
(9) M. E. and H. G.-The best practice for laying up a boiler for winter is to thoroughly clean
it outside and inside by taking out all mud and scale ; it outside and inside, by taking out all mud and scale,
then fill up the boiler, and put from one-half to 1 gallo then fill up the boiler, and put from one-half to 1 gallon
kerosene oil inside. Get up 10 or 15 pounds steam, draw the fires, and, if a locomotive or upright, blow out the entire contents. If set in brick, wait until the brick work cools enough to do no damage. Clean the flues and scrape all soot and ashes from the shell and smoke box, close every opening to boiler, and shut damper.
To keep an engine that is ide, thoroughly oil with mixture of oil and tallow.
(10) G. K. G. asks for a recipe for genuune Haarlem oil.
Balsam of sulphur
Barbados petroleun Barbados petroleum
Oii of amber (crude) inseed oiil......
Oil of turpentine
Mix.
(11) J. M. F. wants to get a formula for making a cheap baking powder. A. Take of Tartaric acid.....
Sodium bicarbonate.
Starch.
Ammonium carbonate
Powder the articles separately (with the. exception
of ammon. carb.) and dry each thoroughly, then rub through a fine sieve until a uniform mixture is obtained, the ammonium carb. being reduced to a fine powder
immediately before adding. The ammonium may also be left out, but its use favors the production of a finer and
(12) H. M. U. asks: How can sheets of iron and steel in a red hot condition be rolled together
and not stick? What is the powder or liquid that will prevent adhesion? A. Use powdered plumbago.
(13) News asks us to publish some good recipe for making liquid glue. A. Ordinary glue 5
pounds is dissolved in water. contained in a vessel which may be heated by means of a water bath, care being
taken to tir from time to time. When all to elue is melted, 1 pound of commercial nitric acid is gradually added in small quantities. This addition creates an effervescence and a disengagement of red nitrous fumes When all the acid has been passed in, the vessel is with-
drawn from the fire, and the contents left to cool. This glue may be kept for a long time even in uncorked ves
(14) C. G. C.-Your ring should first be appear to be the proper article to make. your wood floo adhere together, but we do not believe you can form it
into any composition in which the wood will not be burnt outatat 1,000 of heat.
(15) D. L. R. D. writes: I have broken the amber stem of a pipe that I value on account of its
associations, and would rather repair it than replace it by annew piece if possible. Will you kindly let me know he receipt for a cement that wils stand the heat, if there is linseed oil, hold the oiled part carefully over a small charcoal fire, a hot cinder, or a a aslight, being careful to
cover up all the rest of the object loosely with paper when the oiled parts have begun to feel the heat, o be sticky, punch or press them together, and
them so until nearly cold; only that part where th are to be united must be warmed, and even that care, ,est the form or poish of the other parts shound
disturbed; the part joined generally requires a little r polishing.
(16) T. H. L.-Perhaps the following wio answer for the cement you want: Guttapercha, pounce; linseed oil, 2 ounces; melted togesther. This
cement hardens on keeping, and needs remelting before cement hard
(17) W. E. A.-Irrigation has become a saving means to prosperity in many parts of the Pacific coast. We recommend you by all means to make your
ocation a study as to the ways and means for irriga tion. Building dams or embankments, cutting canals and ditches, anything to hold the water back, and at
hast to pump water with wind mills. We cannot give last to pump water with wind mills. We cannot give
specific details of what you should do in your particular case, from want of exact knowledge of the lay of
the land and the faciilities at hand for constructing examine the irrigating works in your neighborhood, and also co
specialty.
(18) J. S. C. asks: How can a gun barrel be blued-not browned? A. Polish the barrel; heat it in
ray, or box of sand, so that it may be heated its entire ength evenly. When the blue comes, cool it in water Is a breech loading riffe using a cartridge with pape nuzzle loader with cloth potched ball A. Ye
ore so.
(19) S. B. H.-There is nothing that you can add to lamp oil to make it less explosive. The
explosive qualities of the oil are due to the volatile proucts of the petroleum. These can be distilled off. The best plan is to buy a higher grade oil.
(20) T. H. writes: Do you consider par affine a good antidote to prevent the disintegration of
building stones in this climate, or do you know of any better? A. The corrosive gases contained in city ai stack the building stones, many of which are of in forior qualty, especialy the sandstones, as brown stone.
Coating them with paraffine prevents all access of the ir to the stone, and therefore arrests any corrosive tones The subject of the preservation of buildin tones is a new one, and at present it is not easy to sa made to last, or else they would be constructed from
(21) H. S. H.-We are now beginning the 1885th year of the Christian era. In regard to the
exact date of the birth of Christ, the best church histo ians agree in placing that event in the year 4 B.C.
(22) W. B. G. asks: 1 . What is the chief cause of Asiatic cholera? A. The present theory in re-
gard to the cholera is that it is caused by a germ. It is herefore a zymotic epidemic. 2. What \$reventive can be used? A. Quarantine and sanitary precautions
are the best preventives. 3. What remedy can be re the best preventives. 3. What remedy can be
ased? A. There are various medicinesknownas cholera mixtures. The so-called Sun cholera mixture consists of equal parts tincture of Cayenne, tincture of opium,
tincture of rhubarb, essence of peppermint, and spirits tincture of rhubarb, essence of peppermint, and spirits
if camphor; mix well. Dose, 15 to 30 drops in a wine glass of water. 4. Is it confined to any particular
climate? A. It is generally confined to the warmer climates, including the temperate zones during summer 5. Does it reach the lower class more easily than the
higher? A. Owing to the lack of suitable sanitary conhigher? A. Owing to the lack of suitable sanitary con-
ditions, the lower classes are generally attacked sooner than the higher. See articles on cholera on page 88 and
(23) C. E. R.-An approximate method of estimating the contents of a cask is by determining
the bung diameter and also the end diameter, adding the bung diameter and also the end diameter, adding
them together and dividing by two, and then applying the rule of the cylinder, which is as follows: Square the radius, which will be the factor obtained (that is, the average diameter of the cask), and multiply by $3 \cdot 11159$ (or approximately 37); this gives the area, which then mul-
tiply by the length of the cylinder, and the result will
(24) W. F. T.--For paste shoe blacking mix one part of ivory black, $1 / 2$ treacle, $1 /$ sweet oil, then
dd $1 / 4$ oil of vitriol and $1 / 8$ hydrochloric acid. Dilute add $\frac{1}{4}$ oil of vitriol and $1 / 8$ hydrochloric acia. Dilute before mixing. For liquid polish take 21b. of ivory black in fine powder, treacle $11 / 2$ pounds, 11 pint of sperm
oil. Rub the black well together, add the treacle, and mix. Another recipe is 4 ounces of ivory black, 3 ounce
coarse sugar, a tablespoonful of sweet oil, and 1 pint
weak beer. Mix them gradually together until cold.
(25) A. W. L. asks: How many cubic eet of air gas is made in winter from one gallon of 88°
nd 90° gasoline, in a Springfield gas machine, and how and 90° gasoline, in a Springfield gas machine, and how
many cubic feet of ordinary city coal gas would it take to give the same amount of light as this one gallon of gasoline gives? A. Professor A. A. Hays, in his report
on the Springfield gas machine, gives the following: The richest gas at 60° requires 6 to 7 ounces of gaso bbutl seven-tenths of a gallon, and seven-tenths of the price of one gallon of gasoline will be the cost of the material for 100 cubic feet of such gas. In quality it ganerally burns with han intensity equal to a qua candle
city gas. In ocmparison with city gas, the evalue of the latter depends entirely upon its intensity, an elemen atter depends entirely upon its intensity, an elem
which varien according to soveral ciscumatancom,
(26) H. B. L. asks how to extract coloring matter (lampblack) from grease? A. By melting the grease, and then filtering it through cloth or paper.
t will probably be necessary to use a hot water filter to ent its solidifying during filtration.
(27) C. S.-Gas is not literally in coal, the coal is almost solidified gas; that is to say, the (28) W. O C C yields gas.
(28) W. O. C. asks: 1. What do you reUse a solution of one part glycerine in seventeen parts
distilled water distilled water. 2. Also for removing warts and moles? A. Warts may be removed by the application of lunar
caustic, nitric acid, or aromatic vinegar. Croton oil, under the form of porade or ointment, and tartar eme-
tic, under the form of plaster or paste, have been suctic, under the form of plaster or paste, have been suc
cessfully employed in the removal of moles, etc. Suct perations should only be performed under the direction of a physiciai
(29) A. L. T. asks: Is there any compo sition used in ornamenting picture frames better than equal parts of glue, whiting, and linseed oil? A. .he
ollowing might be better for some purposes: b. of glue, 7 lb . resin, $1 / 2 \mathrm{lb}$. pitch, $2 \not 2 \neq$ pints linseed oil,
pints of water, more or less according to the quantity required. Boil the whole together, stirring well until dissolved; add as much whiting as will render it of ard consistency, then press it into mould, which has
(30) F. H. asks: 1. What
(30) F. H. asks: 1. What is acetate of soda? 1. Sodium acetate is a salt consisting of soda and
acetic acid, the acid of vinegar. 2. What is the common name? A. It has no common name. 3. By using it as and the proportion of each? A. In using it as a heater sufficient water is added to dissolve it at a boiling heat, then as it solidifies it gives off a great amount of heat. 4. Will it not eat through tinned iron (common tin)? A . Should it be partially filled, and how far filled? It is safe to fill the vessel two-thirds full. 6. Must it be
hermetically sealed? A. It should be hermetically sealed. 7 . Will frost hurt it or burst the holder, like water? A. Frost does not affect it. 8. Is it poisonou got the cheapest, besides drug stores? A. From the
 per lb. In the quantities you mention, it is probably lightly cheaper.
(31) H. G. A. asks how to prepare acaemy board and canvas for painting. A. The various nacious drying oils are laid evenly over the cloth, which irst, however, must be coated with size. In order to preserve the elastictty of the ground, some drying oil is anvas is preared For the same purpose weeswax ugar, treacle, albumen, etc., have been added with arious degrees of. success. It is said that Titian used
(32) W. D. R. asks: 1. How to polish wood to get a good polish? A. The polishing of wood
varies according to its hardness. Woods such as mavaries according to its hardness. Woods such as ma
oogany may be readily polished by rubbing over with inseed oil and then against a cloth dipped in fine brick The polishing of stone is usually performed by rubbing the desired specimen with a piece of very fine sandstone (in the case of granite, something harder is used), rubbing backward and forward, using very fine sand and water until the slab appears equally rough and not in
cratches; next use a finer stone and finer sand, the sratches; next use a finer stone and finer sand, then elt. Finish with putty powder and clean rage
(33) W. R. T. desires to know the composition of purple colored copying leads or pencils,
nd also of ordinary colorediwriting pencils? A. Faber makes four grades as follows.

For purple an aniline violet is used. For other colors arious shades of aniline can be used. The cheape qualities of colored pencils consist simply of the color-
ng material mixed with kaolin or clay. Receipts for olored pencils are given on page
(34) H. B. asks if it is necessary to use he wateribath,or the kettle to be surrounded by water, in he distillation of cider, illustrated in SUPPLement, No.
10? A. The use of the water bath is to prevent the 110 ? A. The use of the water bath is to prevent the
temperature from increasing above 212 degrees. The temperature from increasing above 212 degrees. The
same effect can be produced by using a lower temperaure, and also by interposing a tin plate contaning san between the flame and the still. . After the ciaer is
boiled once, should the distillate be boiled again before
ate bited onee, sta. That depends upon its strength. If
of proper strength, a second boiling can be dispensed of proper strength, a second boiling can be dispensed
with. 3 . Could an oil stove be used to good advantage? A. The source of the heat is immaterial as long as you
get it, be it from coal, oil, or gas. 4 . Where there is no get it, be it from coal, oil, or gas. 4. Where there is no
bydrant, how or what convenient way could be arranged or the water that is used for the condenser? A. Use ny convenient reservorr of wate, for instanee, a pail ed with it by a rubber tube. 5. For the kettle that is called the water bath, should the rim be soldered or bath to set into, or should $i t$ be made of copper the same bath to set into, or should it be made of copper the same
as the other? A. The variety of vessel to be used as a
water water bath is of no consequence, a tin pan will answer
If your still is small enough; an ordinary tin tomato can will answer for water bath.
(35) W. M. R. asks what cement to use in putting together a slate trough that will withstand Paris, what to use over that to make it proof? A. Coat he plaster of Paris with a good asphalt varnish; this
allowed to dry thoroughly should be perfectly satisfac.
(36) G. B. S. desires a receipt for mixing fresco paint? A. The pigments used in fresco paintand applied with pure water. They are absorbed by plar, 1 B
(37) C. A. B. asks how to make batteries, such as sold by druggists, and worn on a silk cord around the neck? A. These batteries generally consist
of plates of zinc and copper. They generate a slight current of electricity.
(38) S. McI.-Mercury will keep in iron vessels without injury to itself or the iron. The ironexpands a little less than the mercury, but you could not
observe the amount of expansion in a half inch tube observe the amount of expansion in a half inch tung
from a ball of three inch diameter, of iron, for a change of 150 degrees in the temperature, although the differ ence would be enough to burst the ball if closed full mercury. The heat required to raise steam to 1,000
pounds pressure would decompose or destroy wood fiber. Steam cannot be raised to 1,000 pounds pressure at 300 degrees temperature. The act of compression raises the temperature to its normal point. If cooled
elow this point, the pressure falls with the tempera
(39) W. S. C.-Oak saw dust will not Injure the boiler, but might give some trouble by get ting into the water gauge and gauge cocks, or by foaming over to the cylinder. If you have oak saw dust,
you may also have oak bark, which is still better. By soaking the bark in hot water and pumping the solutio of tannin into the boiler, with a little soda, you will lave what is sold in the market for a first class boile ceaner. A pailful of bark extract and one pound of and perhaps only one a month, according to the quality of water that you use in the boiler. Blow off a little from your boiler every day, and examine the interior
(40) E. M. B.-All of the explosives may be confined to the chamber in which they are exploded, that will the chamber is sirsure to the square in. will do for most kinds of gunpowder. If the chambe is larger than the bulk of the charge, there will be less pressure, in the ratio of the size of the cavity to the
bulk of the charge. Gunpowder engines have been inbulk of the charge. Gunpowder engines have been in-
vented and patented, but are a total failure in practice.
(41) E. W. G.-Various expedients are ased for deadening the sound in public hall floors, such he joists resting on wall strips nailed on the side of the beams, and plastered from 2 to 9 inches thick. Then lay a common board floor upon the beams. Upon this lay en
ordinary roofing felt, and upon the felt the matched flooring. Another way is to put in two sets of beams, one for the floor and one for the ceiling-every other beam projecting several inches above, so as to al the ordinary plaster deafening to be attached to the
loor beams only. This will allow the ceiling beams be free from vibration.
(42) G. M. S.-The belting of an engine save the high speed otherwise required of the engine. The friction is of less value than the convenience. But where it is convenient to connect to a main shaft by proper speed of the engine, you may save 5 per cent of
he power. We know of nothing better thanlacing the power. We know of nothing better than lacing or hooks for ordinary sized belts. Very wide and thick
belts are sometimes glued and riveted, but require belts are sometimes glued and riveted, but require
tightening pulleys. Rubber belting under the same circumstances may be connected with rubber cement, and
(43) C. N. asks if there is an acid for testing butter and oleomargarine, and what are the re
zults. A. There is no very simple and complete test. sults. A. There is no very simple and complete test
One proposed by Hager is as follows: A bit of wick is One proposed by Hager is as follows: A bit of wick
 tallow-ike smell is perceived. The general method tive test
(44) H. F. K. writes: I have made soap part potash, 4 of grease, and would like to know how harder then for use? A. The soda soaps are generally pounds of the fat, use oneeighth of caustic soda; and one-third to one-fourth of the fat can be substituted with advantage by rosi. This will harde
(45) G. W. W. writes: I have some books want to letter with gold. Would you be kind enongl sed? A. The leather or cloth is sized with albumen nd gold leaf laid on with small portion of boiled linseed oil. The lettering being fastened in an embossing press and heated, is brolight with sufficient pressure on the cover to make the gold leaf adhere. The surplus
gold being brushed off, leaves the impression of the $\stackrel{\text { die. }}{\text { (46) }}$
(16) J. H. Z. asks a recipe for a trans anth is much used for such purpose. A. Gum traga hent can also be prepared by dissolving 75 parts Indi mber in 60 parts chloroform, and add to the solution
(47) W. H. H. writes: In relation to the locomotive: 1. Would it not be more economical to cona blowers ondensing? 2. Where can I find a description of the nost approved condenser? A. Any book on low pres
(48) F. E. W.-It is claimed that Trevi-
hick made the first successful locomotive which was laced in actual service, in 1803 in England. The first railroad in the United States was built in 1829. The Oth day of December, 1867, was Friday
(49) H. E. D.-A can filled with air and the vapor of gasoline is liable to explode by contact
with fire or a light. It will not explode spontaneously nor by the mere heat of a hot day.
(50) V. C.-Coal tar is a good preservative for wood of any kind. and contains the antiseptic principle of creosote. If applied hot by dipping che plish all that may be desired. The creosote costs
more, and both can generally be obtained where there more, and both
are gas works.
(51) D. H. E.-The great trouble with cams in stamp mills arises from bad construction, in
allowing the shapeof the cam to cause a concussion with the stamp catch. The point of the cam should no strike, but some part of the curve nearer the shaft
should first lift the stamp. Much also depends upon should first lift the stamp. Much also depends upon
the relative position of the shaft and stamp bar. A true the relative position of the shaft and stamp
spiral from a center is considered the best.
(52) N. A. W. asks the exact number of Englishfeet in a nautical mile, and how it is figured. A. $6086 \cdot 44$ feet according to some authors, and
608588956 scording to some other authors. A nautical mile is one-sixtieth of a degree on the equator, and is obtained by divididing the earth's circumference by
360 and then dividing the dividend so obtained by 60 .
360° and then dividing the dividend so obtained by 60 .
(53) A. S. G. asks a receipt for preserving the hair, and prevent it from falling out. A. The following is frequently used for strengthening the hai
Castor oil..... $1 /$ p pint.

$$
\begin{aligned}
& \text { Castor oil............. } \\
& \text { Alcohol } 95 \text { per cent... } \\
& \text { Tincture cantharides. } \\
& \text { Oil of bergamot..... }
\end{aligned}
$$

Color a pale pink with alkanet root. Tincture of can 2 der tharides and glycerine mixed together is a more active compound, and is frequently used to prevent baldness. leather belts may be made with boiled linseed oil, litharge, and lampblack. A spirit varnish may be made arge, and
with shellac varnish and and lampblack.
(55) J. O. S. asks for a corn remedy. Corn cure. Take
Salicylic acid...

Salicylic acii...... Ext cannabis indic

Collodion.
gr. xxx.
gr. x.
2. A remedy for squeaky shoes. A. There is no satis factory cure for a squaeaky shoe. It will sometimes cure
itself, from itself, from getting wet, or as it gets older and the parts better set together. The squeak generally comes
from the inner sole not fitting well in its place, but may also come from the shank piece, or counter, or other parts.
(56) A. P. F. asks how opodeldoc soap is made. A. White Castile soap, cut small, 2 pounds;
camphor, 5 ounces; oil of rosemary, 1 ounce; oil of oricamphor, 5 ounces; oil of rosemary, 1 ounce; oil of ori-
ganum, 2 ounces; rectified spirit, 1 gallon; dissolve in a corked bottle by the heat of a water bath: and when considerabial in coitelran an, it in bottles, cork close, and tie
ounces immediately put ounces; immediately put it in bottles, cork close, and tie
over with bladder. It will be very fine, solid, and transparent, when cold.
(57) W. J. H. asks how to prepare the various articles for the gelatine pad, and if it is really necessary to ute kaoin. A. Firss dissolve the
glue in water, heat it, add then the glycerine. Leave the kaolin out if you prefer, or use finely powdered the kaolin out if you prefer, or use inely powdered
barium sulphate instead. . Also a recipe for making the purple ink used on the gelatine pad. A. Dissolve
the 1 part aniline blue violet in a mixture of 7 parts wate and 1 part alcohol.
(58) S. P. B-Frictional electricity is frequently generated in the process of baffing. It is more weather. Common glue is not a very good conductor weather. Common giue is not a very good conductor,
when perfectly dry, it is a fair insulator. To line nickel plating baths, melt together 1 partpitch, 1 part resin, and 1 part plaster of Paris, perfectly dry. A good asphalt
varnish, if allowed to dry properly and completely, varnish, if allowe
will also stand.
(59) J. L. G. asks if there is anything that will take off the hulls in making hulls. I am using Babbitt's concentrated lye, but before the hulls comp,
it is liable to burn. A. Your experience shows the impossibility of using too concentrated a lye. It will not injure the corn to soak it in lye, provided too strong an
article is not used, but the alkali must then be removed article is not used, but the alkali must then be removed
by repeated washings, using, if necessary, alittle acid; hydrochloric would answer.
(60) L. D. V. L. asks how to prepare a green coloring for ice cream. A. Green ice cream is
made with pistachio nuts. These closely resemble almonds, but are sweeter, and form a green emulsion with water. The cook books will give you the propor
(61) S. D. G. asks by what process it is that by the use of sulphuric acid potatoes are hardened so they can be used for pipes. A. Boiled (dry) potato
mixed with zinc chloride and barytes has been used to form an imitation alabaster. See Scientific American Supplement, No. 313.
(62) J. J. K. asks: 1. Which is the most economical in feeding a boiler-the steam pump, the
power pump, or an inspirator or injector, and why? A. A power pump with a heater is cheaper than pump alone, but not always the most desirable, on ac-
count of the occasional necessity of feeding the boiler count of the occasional necessity of feeding the boiler
when the machinery is not running. The injector in connection with a heater is clamed to be the most economical, because it returns all of the heat used as
power to the boiler. 2 . What change is produced in hardening steel, that is, in molecular arrangement? A This is to o large a subbject for discussion here. You steel in Scientific American Surplemment, Nos. 397 375, 223, 224. 3. I. It there any economy in heating the feed water when using an inspirator? A. Yes. Every
degree of heat guined is economy.
(63) A G We have.
(63) A. G.-We have no knowledge of paper floors for skating rinks, and believe that floor
of that material, to beserviceable, would cost very high. We do not suppose there is anything better for skating rink floors than hard wood, preferably maple, well sea
soned, narrow and thick strips, tightly driven together carefully planed, and then wased or oiled.
(64) W. W. P.-As the running parts of ocomotives are balanced, and with nothing but gravity to hola them to the track, there is consequenty no The absolute traction or pull on the track is more whe starting and moving slowly than when under ful
(65) W. H. P.-We have no knowledge of any water pitchers or urns for cooling water separate
the the ice: but coils of block tin pipe placed in ice from the iee; but coils of block tin pipe placed in ice he coil, are in common use. A refrigerator with a sepa rate ice and water chamber is a subject of patent, and on
the market. Any of our silversmiths would no doubt undertake to make the device in the form of pitcher or
(66) F. L. B. asks: With 80 pounds ressure, 100 revolutions, and 200 horse power known, how many revolutions will 60 pounds, steam develop
ing 135 horse $671 / 2$ revolutions, due to the other conditions you name This is rather a crude way of deciding the fact as to whether a mill had been run to its full capacity. What
speed the mill should run and what it did run should be matters of fact derived from observation.
(67) M. G. K.-The three largest equal circles that can be described in a square containing 160 cres will have a diameter of $1366 \cdot 6$ feet, according to our cempnutation. A diagram and formula is too com-
hee for Notes and Queries. Human fat resembles
. eef tallow. Kerosene does not pass through metal o glass, but crawls over the top by capillary attraction,
and will thus accumulate on the outside of vessels so as or run down.
(68) W. A. E. asks what the preparation made of that is put on canvas so it can be used jus the same as a blackboard. A. 1 gallon 95 per cent
alcohol, 1 pound shellac, 8 ounces best ivory black, 5 ounces finest flour emery, 4 ounces ultramarine blue Make a perfect solution of the shellac in the alcoho
before adding the other articles. To apply the slating, before adding the other articles. . To apply the lating,
have the surface smooth and perfectly free from grease; well shake the bottle containing the preparation, and pour out a small quantity only into the dish, and appl.
with a new flat varnish brush as rapidly as possilfe. Keep the bottle well corked, and shake it up each time before pouring out the liquid.
(69) H. W. F. says: I have had the lieasure of reading your valuable paper for the last
ifteen years, and knowing your willingness to give your subscribers information, I take the liberty of asking you for the dimensions of the Washington mon-
nent that is now being completed. A. The dimension ment that is now being completed.
of the Washington monument are

(70) G. H. W. asks how to make a preparation that will be harmless in bleaching the human
sin. A. In a general way, we should recommend that hydrogen peroxide be experimented with. A de scription of it and its uses will be found in Sorentifio
AMERICAN SUPPLEMENT, No. 339. There can be no directions given which will answer every case.
(71) M. N. B. desires an ink with which mpre than one copy can be obtained. A. Mix about 10 parts of jet black writing ink and 1 part of glycerine.
this, if used on glazed paper will not dry for hours, and will yield two fair, neat, dry copies by simple pressur of the hand in any good letter copy book. The writing
should not be excessively fine nor the strokes uneven or should not be excessively fine nor the strokes uneven o ng, should be removed by blotting paper. By changing the quantity of glyc
give several copies.
(72)/J. A. M.-There is no such thing as "agrieultural ammonia" as distinguished from ordi-
nary ammonia, composed of one volume of nitrogen nary ammonia, composed of one volume of nitroge
and three of hydrogen which condense to two volumes nitrogenous manures, such as guano, fish manures, phesh, etc., and in stable manure. A teaspoonfuli in a quart or more of water is often used as a fertilizer for
pot plants. It is also used, but not so extensively, in he salts, sulphate, and chloride of ammonia; but owing to the solubilitity of these salts, they are very liable to
be washed out in drainage water if not promptly taken be washed out in drainage water if not promptly taken
by the plants. They should, when used, be appied as a top dressing in spring. Nitrogen is, more proftably, supplied in nitrates.
(73) H. J. D. asks (1) for a receipt for making mead. A. Mead wine consists of honey, 20 poands; cider, 12 gallons; ferment, then ald rum, $1 / 2$ 6ounces; bitter almonds and cloves, of each, $1 / 4$ ounce.
Then cleared and bottled. 2. Also one to make a good Then cleared and bottled. 2. Also one to make a good
drinking bitters to give one an appetite. A. For bit drinking bitters to give one an appetite. A. For bit-
ters grind to a coarse powder $1 / 2$ pound cardamom seeds, \% pound nutmegs, 14 pound grains of paradise, $1 / 2$ pound galanga, $1 / 4$ pound orange, peel, $1 / 4$ pound lemon peel; salanga, 4, pound orange peel, 1 pound emon peed add a a irup made
(74) B. R. T. asks: 1. What is used to form plumbago into a paste for stove blacking so that
it needs no other preparation?
A. Plumbago pulverzed, 1 pound; turpentine, 1 gill; water, 1 gallon; sugar
1 ounce, constitutes the liguid black lead polish 1 ounce, constitutes the liquid black lead polish. 2
What is the best for boots and shoes to keep snow water out, and make them pliable and not injure the
leather? A. Beef tallow, 4 ounces; resin, 1 ounce; bees leather? A. Beef tallow, 4ounces; resin, 1 ounce; bees
wax, 1 ounce; melt together. Add when cold a quantity of neatsfoot oil equal to the mass. Apply with a rag
warming the boots, and rub in well with the hand.
(75) E. A. M. writes: I have a boat 36 feet long, 8 feet beam, with flat bottom and round sides aside from keel. aganst a current running at the rate of 7 miles an
hour with 30 inch screw, 4 blades, and driven by 4 horse power engine? And how far from end of boat should the wheel sit to get the best results? A. Very doubtuul whether you can make head way against aseven
mile current, unless the boat is of the best model. The mile current, unless the boat is of the best model. The
screw should be placed close under the stern, and entirely submerged.
(76) C. W. M. asks: 1. How can I bleach shellac? I want to make a varnish as near transparent pearl ash or potassium hydroxide (caustic potash), filte ac and pass chiorine through the solution untin all the ac is precipitated. Collect the precipitate; wash wel into cold water to harden. 2. How can I mix the anine dyes, either soluble in water or alcohol, with a having made an alcoholic solution of them, they should readily mix with any varnish.
(77) T. P. L. asks how and what the laundries use to stifen collars, cuffs, etc. A. Melt $21 / 2$ pounds of the vegs best paramine wax over a aliow fire.
When liquefled, remove from the fire, and stir in 100 drops oil of citronella. Have a number of round new pie tins, clean and nice; place them on a level table and coat them slightly with sweet oil, and pour about 6 ta blespoonfuls of the mixture into each tin. The pan
may be floated in water to cool the contents sufficiently may be floated in water to cool the contents sufficiently
to permit the mixture to be cut or stamped out with th cutter into small cakes about the size of a pepper mint lozenge. Two of these cakes added to each pin finest possible finish to muslin or linen, besides perfuming the clothes in first class style.
(78) V. C. T. writes: I am troubled with dandruff in my whiskers, and am rapidly losing them have tried tonics, washings, oil, without any success
Can you' recommend anything? A. A serviceable ap jication is two drachms of borax dissolved in a pin of camphor water, washing with this lotion once or
wice a week; or much benefit may also be derived by washing with tepid water, agitated with a piece of quillar bark until a strong lather is produced; or with wate containing salt of tartar in the proportion of two dractm of the salt to a pint of tepia water. See also Dr.
Shoemaker's paper on "The Hair, its Use and its
in Scirentiric America N Supremmen, No. 388.
(79) H. C. asks: 1. Will a continuous coil boiler containing 75 feet of $11 / \mathrm{inch}$ pipe, heated by a blast spraying kerosene oil, generate sufficien
team at 100 pounds pressure to run a 2 inch by 3 inch engine at 500 revolutions per minute? If not, how many feet of pipe will it require? A. You have enough fire surface, but your boilers are not arranged for the great a shorter circulation, with two or more sections, yo would have a better effect. It will require double the amount of pipe for the work required. 2. Which is bet-
ter-to feed coil from the bottom, keeping it half full of water, or to feed from the top, allowing all the wate s evaporate into steam? A. Feed at bottom. 3. Will steam, at the temperature consequent to 150 pounds per
square inch pressure, injure Babbitt metal valves and fittings? A. Babbitt metal is too soft or tender for yttings? A . Babbitt metal is too soft or tender for
valves or fittings. Better use the regular trade stock
(80) W. X. H. asks how many horse power a 6 inch leather belt (single) will transmit run-
ning over 20 inch pulley at 80 revolutions per minute. \% horse power
(81) H. M.-The best way of finishing ioors is described in Scientific American, November
7,1883 . An oiled floor is generally considered more durable than carpet. Oiled fioors are not generally washed, but are wiped up with coarse woolen cloths, or oil a floor,but it must first go through a preliminary preparation. Floors are generally oiled first, and then polished. They require constant attention, and for a stone fioor we think you would find it exceedingly difificult to dapted, and when protected by rugs a very pleasantand cleanly flooring.
(82) J. J. K.-Water will filter through ricks, provided you make the filter well or cavity in filter box two feet square in a cistern might do for the use of a small family, but its capacity would largely water pressure.
(83) A. H. P. writes: I wish to apply parafine wax to a wood surface. Is there any way of ame as paint, and that when dry will have a smooth waxed surface? A. Paraffine may be dissolved in coal ar benzol, and then applied with a brush. The solution will be rather dilute, and several coats will be ne cessary before the proper thickness of surface is ob fine. 2. Can you tell me a cheap way of preparing a vood stain from red sanders? A. An imitation roseood is made by mixing $\frac{1 / 2}{}$ pound of potash in 1 gallon hortwater, and 14 pound of red sanders wood is added ounds of gum shellac are added and dissolved over quick fire; the mixture is then ready to be used on
(84) B. F. G. writes: After boiling the bones preparatory to grinding them, I find a good dea grease, but it is very dirty, and 1 wish to know if cost, so as to make it marketable? A. Melt the grease with a small quantity of saltpeter; then add sunficient sul phuricacid to decompose the saltpeter. The mass, after the scum is removed, becomes a light yellow color, and is completely deprived of all offensive smell and ani
nal impurities. The grease thus obtained can be used to advantage in making soap.
(85 W. M. C. writes: I am making a medical coil similar to that described in Sprague's latest edition. 1. What is the object in having the pasteboard tube tapering? A. In a small coil, tapering the tube would make but little difference. In a large coil, it is of some advantage, as it allows part of a se-
condary wire to benearer the primary wire than it could condary wire to be nearer the primary wire than it could
be if the tube were as thick as is necessary to prevent be if the tube were as thick as is necessary to prevent
the secondary current from leaping to the primary coil. the secondary current from leaping to the primary coil.
2. Does it not requiremore insulation between its several layers of wire than a coating of parafine, also between the primary and secondary coils? A. If the wire is well covered, a coating of parafflne is sufficient. 3. Does it require a condenser? A. No condenser is re quired for a medical coil. 4. How many pounds of It depends upon the size of your coil; you will not need more than two or three ounces of No. 18 wire, and but
ittle more of the other sizes. 5 . If the tube is tapering $\begin{array}{lll}\text { how can a brass tube be made to fit in in tightly? } & \text { A. The }\end{array}$ taper of the tube should be all upon the outside.
(86) J. B. P. writes: In our work at this diace, we use to a large extent the common Faber penany wash or other substance by which the sheets can be covered, so as to prevent the figures and writing from erasure, or blurring? A. To a solution of collodion of
the consistency used by photographers, add two per the consistency used by photographers, add two per
cent of stearine. This solution is then spread over the paper in a similar way as in photography. It dries in from 10 to 20 minutes and thoroughly protects the pen cil marks. This sol.
India ink sketches.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted,

January 20, 1885,

AND EACH BEARING THAT DATE
LSee note at end of list about copies of these patents.]

 Buildings, construction of, R. S. Pearsall........... 311,031
Burglar alarm, w. F. H. O'Keefe............. 311,027 Burner. See Gas burner.
Button, C. V. Goddard................................ 310,93 Button, C. V. Goddard... 310,939
Button, N. . Newell................. Button attaching machine, J. C. F. Dick............................311,934
Button, collar, S. Cottle.......10 Button eye, H. C. Luther
Button fastener setting machine, F. H. Richards Button, sleeve or collar, J. Wall................ Cables, suspension of aerial, E: T. Gilliland........ 310,938 Caloric engine, Boolt See Tin can.
 Car canopy, horse, F. H. Dibble............................. 310, 310. Car coupling, F. D. Root................................ 311, 311,134
 ar roof, H. Aldridge
Cars, hot water apparatus for railwa, W. D.
Mann... 311,02 Carriagne spring.. 311,069
Carrier. See Cash carrier. Hay carrier.
Cartridge shells, machine for making, J. H. Ring.. 311,035 Cartridge shells, machine for making, J. H. Ring.. 311,035
Cartridge shells, machine for making metallic, D. Cartridge shells, machine for making metallic, $\mathbf{D .}$
J. Ring......................................11,034
Case. See Shipping case.
ash and parcel carrying system for store service,

Cash carrier, Kennex \& Mason...11,011
Cattle fastening, J. C. Buzzell.................. 3108 Chain, drive, C. W. Heald.............................. 310,997 Chandelier, extension, L. T. Lawton................ 311,078 Chimney top covering, A. J. Conway.................. 311,105 Clamp. See Floor board clamp. Clasp, C. . Hardy. 3111,126 Clutch coupling, M. Haas.......................... 3110,996

 omb making machine, L. M. Chorier.......311,060, Condenser, spirit, F. Sonier....a..................... 310,96
Cooling or embalming table, T. H. De Motte..... 310,88 Cotton gin, E. C. Horne...
Coupling. See Clutch coupling
Cultivator scraper attachment, G. L. Baker........ 310,974
Cut-off valve gear, J. W. McFarland..................
Cutter. See Glass tube cutter. Tobacco cutter. Cylinder engine, twin, J. L. Bogert................. 310,999
Damper regulator, Ball \& Lispenard. 310,976

	Water closet valve, H. C. Apel..................... 310,972
	Water trap, J. P. Putnam..........311,085 to 311,087, 311,14
	Well drilling machine, W.E. Brow
	Well tube, F. W. Miller.....
, 16	
	Whiee. see Vehicle wheel.
940	
	Wire, making, T. Midgley.
17	Wire with metal, apparatus for coating, M. G. Farmer
	Wood preserving apparatus, Collings \& Pike................10,880
	Wood steaming apparatus, v. Wheat.............. 310,926
81	Wrench, J. L. Phillips.............................. 310,
818	DESIGNS.

Chenille A. Heald.................
Domino, C. Selkirk.
Package holder, G. H. Be
Pendant, M. Bernhard.
endant, B. Dreyfus...
Stove, cooking, J. L. Gobeille.

TRADE MARKS.

Ale, beer, and other malt liquors, J. W. Koch......
Cards, playing, Perfection Card Company........
Cigars, cigarettes, and smoking and chewing to
baceo, Friend-EEskine Cigar Company........
Fertilizers, chemical, Farmers' Fertilizer Com-

Hair and general toilet wash, D. L. Grant...........
Medicinal fluid extracts for internal use, Bur-
roughs, Wellcome \& Co.........................
Medicine for internal use, fluid, Potter Drug and
Chemical Company...
Organ, mechanical, M. Gally
Oysters, W. K. Reeme.....
Salve or ointment, Potter Drug and Chemical 11,8
 Tobacco, smoking and chewing, Easley Bros....................................

A printed copy of the speciffcation and drawing of
any patent in the foregoing list, also of any patent
issued since 1866, will be furnished from this office for 25

 Broadway, New York. We also furnish copies of patents
granted prior to 1866 ; but at increased cost, as the
specifications, not being printed, must be copied by hand.
 inventors for any of the inventions named in the fore-
going list, at a cost of $\$ 40$ each. For full instruction
address Munn \& Co. 361 Broadway, New York. Other
$\xlongequal{\text { foreign patents may also be obtained. }}$
 Engravings may head advertisements at the same rate
per line, by meansirement. as the letter press. Adver
tisenent must be reived at publiation ofice as early
as Thursday morning to appear in next issue.

UPRIGHT
DRILLS
BORIMG
WANTED responsible party to manufacture Windowfree. Address
JOHN ERDMAN, Macungie, Pa.
 Steam Bugines
Of the highest standard, in ever respect, of materials
and workmanship. Were pioneers inthe manufacture of Pa Prictically Portable Steam Engunes,
And with determined policto build only the best ma-
chinery from bethe best materials, and in the best manner
of construction and with continued improvements, have attanntruction, and with continued improvements, have
attaine the highost standard in excellence of workman-
ship, simplicity of esign, and capacity of power. Fror a
quarter of a century have maintained their manufacture The Standard Portable and Azricultural Engines
of the world. Descriptive circulars sent

2emane

NEWSPAPER FILE

The Most Useful Practical Bonk Ever Offered to Amerb can Machinists. 13th Thoroughly Revised Edition VIOLIN OUTFITS
 GCE-TIOUSE AND COLD ROOMT.-BY R.
 29. WeakNervousMen

Decay and Ded Powers, certainly

 and permanently cured without STOMACHMEDICINES by the Marston Bolus; the
new plan of treating Nervous Debility Pbysical new plan of treating Nervous Debility, Physical
Decay, \&c. Endorsed by thousands who have
been restored to full and perfect mant Srese Seled treatise sent free. Varicocele
ured without Surgery. Adress cured without Surgery, Address
$M A R S T O N$ REMEDYY Cor or DR
46 West 14 th Street, New Yorkow,

 A GREAT MEDICAL WORK ON MANHOOD
 found by the author, whose experience for 23 years i
suuh a probably never before fell to the lot of an
physician. Three hudred pages, bund in beautitu
Tresch ary, and professional than any other work sold in thit

PATENTS.

in. Mu a co., in connection with the pub
amine Improve
In this line of business they have had forty years the preparation of Patent Drawings, Specifcations, and the prosecution of Applications for Patents in th Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and prompt ness, on very reasonable terms.
A pamphlet sent free of charge, on application, con
taining full information taining full information about Patents and how to pro
cure them; directions concerning Iabels, Copyrights cure them; directions concerning Iabels, Copyrights,
Designs, Patente, Appeals, Reissues, Infringements Designs, Patents, Appeals, Reissues, Infringements, As signments, R jected Cases, Hints on the Sale of Pa-
tents, etc.
We also send. free of charge. a Synopsis of Foreign We aiso send. free of charge. a Synopsis of Foreign
Patent Laws, showing the cost and method of securing
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, MUNN \& CO., Solicitors of Patents,
BRANCH OFFFICE. Broadway, New Tork.
Washinglon, D. C.

"Chaminion" Cash or Deed Breses.
More Convenient and Cheaper than a Safe.

inside trays.
If not trept by nearest responsible house dealing in
Stationery or Hardware, we will deliver, free, by ex
Stite
 MILLER LOCK CO., 823 CHERRY STREET, PHLLADELPHIA, PA

ROCK BREAKERS AND ORE CRUSHERS

MITMERRY, RUG\& \& RICHARDSON. Mantacturer
 RAILWAY AND STEAM FITTERM" SUPPLIES Rue's Little Giant Injector.

SCREW JACES, STURTEVANT BLOWERS, \&c.

THE CAMERON STEAM PUMP.

 30,000 IN USE.

The A. S. cameron st THE CELEBRATED
RACINE BOATS
and CANOES, LAPSTREAK BOATS.

FRET SAW OR BRACKET WOODS, PLINCHOIOEAND RARE VARIETY,

Clarl's Stexl Cassed Rnbber Wheel

A.A.GRIFFING IRON CO STEAM HEATNG Apparatus BUNDY STEAM RADATOR 750 GOMMUNIPAW AVE. CUTLER'S POCKET INHALER
 arbolate of Todin
INHALANT.

LOVERS OF MUSIC

 Z. DE FOREST ELY \& CO.,

WHOLESALE SEED MERCHANTS, II22 MARKET STREET, Philadelphia, Pa.

THEDNGEE \& CONARD CO'S

ROSES

R Stim OTHEE VARIITIES $2,3,810$ FORS 1

TTHE LAWSON This is the only steam boiler eve

EVAPORATING FREIT

and genera statistics, FREE.
AMERICAN MAN'F'G CO
"BOX R,' WAYNESBORO, PA.

VAATERE.

Cities, Towns, and Manufactories Patent tube and gang well sistem. Wm. D. Andrews \& Bro.. 233 Broadway, N. Y. Infringers of above patents will be prosecuted.

FOREIGN PATENTS.
Their Cost Reduced."
The expenses attending the procuring of patents in oost foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a arge proportion of our inventors patenting their inven Cions abroad
Cess than the cost cost of a patent in Canada is even ormer includes the Provinces of Ontario. Quebec, New Brunswick, ${ }^{\top}$ ova Scotia, British Columbia, and Mani
The number of our patentees who avail themselves of patents in Canada is very large, and is steadily increasENGLAA ND.-The new English law, which went into Great Britain on very moderate terms. A British pa-
tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowledged goods are sent to every quarter of the world, and her invention is likely to realize as much for the patente
in England as his United States patent produces for him at home, and the small cost now renders it possible tent in Great Britain, where his rights are as well pro-
tected as in the United States. Ot'ed as in the United States.
OUNTRIES. - Patents are also obtained on very reasonable terms in France, Belgium, Germany
Austria, Russia, Italy. Spain (the latter includes Cuba and all the other Spanish Colonies), Brazil, British India,
Australia, and the other British Colonies. Australia, and the other British Colonies.
An experience of Forty years has
An experience of Forty years has enabled the competent and trustworthy agencies in all the principal have the business of their clients promptly and
ly done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
of all countries, including the cost for each, and othe of all count ries, including the cost for each, and othe
information useful to persons contemplating the pro-
curing of patents abroad, may be had on application to this office.
MUNN \& CO.. Editors and Proprietors of THE SCIENMIFIC AMERTCAN, cordially invite all persons desiring
any information relative to patents, or the registry of any information relative to patents, or the registry of
trade-marks, in this country or abroad, to call at their
offices, s61 Broadway. Examination of inventions, consultation, and advice free. Inquiries by mail promptly

Address
MUNN \& CO.,
Publishers and Pater

The " MONITOR. a new liftingand non-

EJECTORS
Water Elevitors

H.W.JOHIS assesyos
 IIQUID PAINTES

 ROOFING.Fire-proof Building Felt,

H. W. JOHNS M'F'G 87 maiden Lane, New York 170N. 4th St., Phila.

KORTING UNIVERSAL D Double tube INJECTOR

PRASS POBITVE ACTION GUAANTEED UNDER WIL LFT WATER $\operatorname{OFFICEET}$ AND WENO FREREROOMS:

The Best in the World.
of cost. Users will sustain us by calling for the "JEN KINS STANDARD PACKING.
genuine unless so stamped. Stamped on every sheet. Non JENKINS BROS.
71 John Street, N. Y. 79 Kilby Street, Boston

EDPNGSG』A BREAKFAST

 hal--pound tins by Grocers, labeeed thus:
JAMES EPPS \& CO., Homeopathic Chemists,
London, England
 ondon, England

GEO. Wु. FIFIELD, MANYAGTURER
ENGINELATHES ream

OWELL,
UAGIC LANTERNS
very sublect for PICONS, Ex prices. viows ilustrating

TELEPHONES.

The United StatesTelephone Mfg. Co

 ers, sellers, and users will be proceeded against.
This Company are ngxaprepared to sell phones of the For phones of the thers apply
The United States Telephone Manufacturing Co.,

The Scientific American.

THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

Weeny, 83.20 a Year; \$1.60 Six Menth This unrivaled periodical, now in its forty-first year,
continues to maintain its high reputation for excellence, nd enjoys the largest circulation ever attained by any cientiffc publication. printed, elegantly illustrated; it presents in popular tyle a descriptive record of the most thovel. interesting and important ad vances in Science, Arts, and Manurac-
tures. It shows the progress of the World in respect to Mechanical Works, Engineering in all brachin Chemistry, Metallurgy, Ele tricity, Light, Heat, Arch tecture, Domestic Economy, Agriculture, Natural His tory, etc. It abounds with fresh and interesting subjects
ROOTS NEW IRON BLOWER
 IRON REVOLVERS, PERFECTLY BALANCED P. H. \& F. M. ROOTS, Manufacturers
 FOR PRICED CATALOGU

SgORCUINETESTS

 HaBBaCH ORGAMCO PHiLAD'APA
.
\qquad

ECONOMIC MOTOR CO.'S GAS ENGINES. Best in principle, workmanship, and materials.
An unequaled small Motor adapted to all uses.
Four sizes: $1 \mathrm{H}, P$., $1 / 2 \mathrm{H} . \mathrm{P} ., 1$ man power, and a Sewing Machine Motor.
ECONOMIC MOTOR CO.,

SPEAKING TELEPHONES. THE ADERICAN BELL TELEPHONE COMPANY W. H. Forbes, W.R. DRIVRR, Theo. N.VALL,
Tresident.
Treasurer.

 nalers. selliers. and users will be procee
Information furnished upon applicatio
Address all communications to the
sun

The \boldsymbol{T}^{2} Seibert Gylinder Oil Gup Co

for discussion, thought, or experiment; furnishes hun
dreds of useful suggestions for business. It promote dreds of useful suggestions for business. It promotes
Industry, Progress, Thrift, and Intelligence in every community where it circulates.
The SCIENTIFIC AMERICAN should bave a place in very Dwelling. Shop, Office, School, or Tibrary. men, Foremen, Engineers, Superintendents, Directors, Pawyers. Physicians, Clergymen, people in every walk and profession in life, will derive benefit from a regular reading of The scinimic American. Terms for the United States and Canada, $\$ 3.20$ a year
$\$ 1.60$ six months. Specimen copies free. Remit by MUNN \& 61 Broadway, Ne TEXE
Scientific American Supplement. The Scientifio American Supplement is a sepa-
rate and distinct publication from The Scientifio AmERICAN, but is uniform therewitb in size, every number
containing sixteen large pages. THE SCIEvTIFIC AMerican SUPPLICMENT is published weekly, and includes cent papers by eminent writers in all the principal deBiology, Geology, Mineralogy, Natural History, Geography, A rchæology, Astronomy, Chemistry, Electricity, way Engineering, Mining, ship Building, Marine Engineering, Photography, Techhnology, Manufacturing
Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc A vast amount of fresh and valuable information pertaining to these and allied subjects is gi
profusely illustrated with engravings.
The most important Engineering Works Meba nd Manufactures at home and abroad are represented Price for the SUPPUEMENT for the United States an Canada. 85.00 a year, or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed ERICAN and one copy of the SUPPLENENT, both mailed
for one year for $\$ 7.00$. Address and remit by postal order or check, \& Co.. 361 Broadway, N. Y., Publishers Scientific Amelicin.
To Joreign Subscribers.- Under the facilities of by post direct from Ncientific AMERIOAN is now sent scribers in Great Britain India. Australia, and all other British colonies; to France, Austria, Belgium, Germany Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, \$4, gola, for SCIENTIFIC AMERICAN, oue year; $\$ 9$, gold. for both ScIENTIFIC Ambrican and Supplement for
one year. This includes pcstage, \#hich we pay. Remit Steel Castings

,

WATCHMAKERS.

 by postal order or draft to order of
MUNN \& CO , 361 Broadway, New York.
PRINTINE INKS:

