NEW BOOKS AND PUBLICATIONS.

Russia under the Tzars. By Stepniak.
Rendered into English by Wm.
Westall Rendered into English by Wm.
Westall. New Yow York: Charles Serib-
ner's Sons, 1885.
In this vivid picture of the galling despotism of the Carre, the weli-known Nuhilist hass struck a vulnerable
point in the Russian autocracy. Such a burning ac Christendom. It is an appeal to the power of publi Christendom. It is an appeal to the power of punc
opinion. The Russian government, though entirely ob-
liviousto the tease of whole province is curiously sen. sitive to foreign criticiem. It is this sole vibratory chor which Stepniak has touched. His account of the present tyranny is accentuated by a brief sketch of
Russia's ancient liberty. The description of the village Russia's ancient liberty. The description of the village
Mir and provincial Vetche are interesting studies in Mir and provincial Tetche are interesting studies in
social economy. The contemptible detective service which the government has stooped to organize, and
the mockery of Russian law, are introductions to the the mockery of Russian law, are introductions to the
horrors of Siberia and the fortress of Peter and Paul hut the main portion of the book is devoted to the evils which fall even on those obedient subjects who
gre innocent of the love of liberty. In Russia it is are innocent of the love of liberty. In Russia it is a
crime to be suspected. No one can be free from the crime to be suspected. No one can e censorship of the
dread of administrative exile. The press and the discouragement of education, so essen
tial to autocratic rule, are formidable barriers to the tial to autocratic rule, are formidable barriers to the
progress of civilization. Coming just at this time progress of civilization. Coming just at this time,
when the eyes of the world are fastened upon Russia, when the eyes of the worla are aastened upon Russia,
this book will interest many readers, and, it is to be
hoped, will accomplish something for her liberation.
The Distillation and Rectification OF ALCOHOL, AND THE PREPARATION
OF ALCOHOLC LTMUORS, ETC. By
William T. Brannt. Henry Carey Baird \& Co., Philadelphia.
The distillation and rectification of spirits properly
occupies the major portion of this volume, and is treated in a simple but comprehensive way, bringing the whole subject within the understanding of any one of ordinary intelligence. Yet we doubt whether this por
tion of the book will be so much appreciated as will be tion of the book will be so much appreciated as will be
the chapters on the preparation of liquors and cordials the chapters on the preparation of liguors and cordiass, spirits a wide variety of liquors, such as Cognac and
other brandies, Hollands cin and Schiedam schnapps Scotch, Irish, old Bourbon and other whiskies, cordials, bitters, etc. The thousands of imitations of "genuine
imported" or "old stock " liquors in the market render it not easy for even an expert to judge of the various spect may be judged when we note that among the ma terials used in these liquors are, hesides a wide variety of nut shells, allspice, cinnnemon, etc., such additions as
turpentine, spirits of niter, citric und acetic acids and ame kind, It is diffcult to estimate the consmption the these fabricated liquors or their effects upon the indithese fabricated liquors or their effects upon the indi-
viduals who take such compounds into"their stomachs; but it is safe to say that if every one who has heretofore helped to increase their sale could be made aware of the
facts, there would be a decided "drop" in the liquor market.
$\underset{\text { Lunza. }}{\text { Applied }} \begin{gathered}\text { Mechanics. } \\ \text { John Wiley }\end{gathered} \quad \underset{\&}{\text { By }}$ Gons, New York.
As a text book for students of engineering, this volume, by a Professor in the Massachusetts Institute
of Technology, Boston, will prove a most useful assist ant. It is sargely a treatise on strength and stability,
and the topics are arranged in such manner as was and the topics are arranged in such manner as was
deemed mostconvenient for the classes of the institution in which the author taught. The contents embrace
chapters on the composition and resolution of force dynamics, roof and bridge trusses, center of gravity, strength of materials, continuous girders, equilibrium
curves, arches and domes, and theory of elaticity curves, arches, and domes, and eheory of elasticity
and applications. The reported tests of iron, steel, and timber, for a wide variety of uses, embrace a large
number of the most carefully made trials of recent date, and the explanations and criticisms thereof are such as to increase the practical value of the informa-

Twenty Years with the Indicator.
Vol. II. By Thomas Pray. John Wiley \& Sons, New York.
This work, as was the first volume by the same
author, has beencompiled from a very extensive pracauthor, has been compiled from a very extensive prac-
tice in testing engines of almost every kind and for nearly all varieties of work for which they are em-
ployed. The indicator in the hands of an intelligent ployed. The indicator in the hands of an intelligent
engineer is a simple device, which should be easily managed to give valuable readings as to the working of an engine and the economical use of steam, but there are many who fail to employ it rightly, or correctly de-
duce from the cards the evidence they give, and to all duce from the cards the evidence they give, and to all
such this volume details experiences likely to be of pracical service.
Steam Using, or Steam Engine Prac
tice. By Charles A. Smith. The TICE. By Charles A. Smith.
This work is a companion volume to "Steam Making," by the same author, the two books forming
valuable addition to the literature of this subject. T book is a great deal more practicalthan theoretical, th
chapters on valves and valve gear, and on different rieties of engines, with the illustrations of details ald
citations of experiments, containing a great deal bf interest and value.
The Phgenix Bridge Compant, of illustrated album of designs of bridges, with detailed
descriptions. The list of wrourht iron bridges, viadicts descriptions. The list of wroupht iron bridges, viadices,
and piers built by the company covers some of the most important work of this character ever built in the United States and Canada. The distinctive features of American bridge work-elaborate bracing, no estra use
of material, and, consequently, light and graceful of material, and, consequently, light and graceful
forms of structure as wel' as great strength-are well shown in the views of their bridges here given. David
Reeves is the President of the Company, and Adolphus Bonzano Vice President and Chief Engineer.

(2)

HINTS TO CORRESPONDENTS.

(1) W. M. B.-The wood of pickle kegs may be protected by coating it with. paraffine. Bottle
however, are the best vessels in which to preserve pic kles. A beautifulg green color entirely destitute of any poisonous qualities may be made by dissolving 5 grains
saffron in 34 ounce distilled water, and in another vesel saffron in $\frac{13}{4}$ ounce distilled water, and in another vessel
dissolving 4 grains indigo carmine in water. After shaking up each thoroughly, they are al lowed to stand for 24 hours, and on being mixed to gether at the expiration of that time a fine green solu tion is obtained, capable of coloring pickles, etc.
(2) C. H. R.-An oil cloth should never be scrubbed with a brush, but after being swept, shpuld
be cleaned by washing with a soft flannel and uikewarm or cold water. On no account use soap or pater
that is hot, as either would have a bad effect on the that is hot, as either would have a bad effect op the
paint. When the oil cloth is dry, rub it well wath a small portion of a mixture of beeswax softened with
minute quantity of turpentine, using for this purpose soft furniture polishing brush. The following is also used to keep oil cloths looking well: Wash them once each. Rub them once in three months with boiled lin
nd polish with a piece of old silk.
(3) H. V.-There is probably no special book treating of the separation of gold and silver from their ores by means of electricity. In a small way gold them, as in the plating processes, but such a line of ope ration would hardly meet with success in treating ores. The same is true of mercury; the general process of ob-
taining mercury from its ores is by distillation. We would suggest that you consult some of the many books on metallurgy.
(4) G. D.
(4) G. D. writes: Please inform us how many lines of nonpareil type, 13 ems pica width, it takes
for 1 square. Also how we can find the number of squares in nonpareil, when the matter is set in bour-
geois same width? we have couty geois same widh? We have county prining to do,
and they pay at so much a square, nonpareil type. We
dont have nonpeil don't have nonpareil enough to set it in, and have to use
bourgeois, and we areunableto find any rule, or any one who knows how to measure it? A. A printer's "square" for measuring advertising space in a newspaper is a
term of variable meaning, always requiring fuller definition to express its exact quantity of space. It is
customarily used in connection with the particular type customarily used in connection with the particular type
and measure of the paper, as "a a cuare of 12 linesagate, or nonpareil, or any other kind of type, and really means only a space of that extent, not in any way a
mathematical square of space in the paper. It first mathematical square of space in the paper. It first
came into use as designating a small space for a business card, and has been largely used by printers, mor
especially in small country papers-the "square " beidg generally stated to mean a particular space varying frdm about 10 to 14 lines, and of the size type used for adver-
tising in tising in the paper, from agate to long primer. Your
square of nonpareil should mean a definite number of
lines, and then measure by this rule the space occupied lines, and then measure by this rule the spac
by any other kind
(5) D. W. L.-With a well made boat, on smooth ice, an ice boat will travel much farter than
the wind. For example, a twenty mile breeze will drive the boat with a velocity of 40 miles per hour or
(6) C. E. A.-A good quality of printer's nk brought to the proper consistency with linseed oil is the best article to use with pad for rubber type. Ni-
grosine black dissolved in water and mixed with suffigrosine black dissolved in water and mixed with suffi-
cient glycerine is likewise employed, but it is not as good aent thy forminer
(7) A. S. writes: Do you know of any paint that can be applied to posts, that horses will no
touch? A. We do not know of any but uch asitwould ouch? A. We do not
be objectionable to
(8) R. F. E., Jr.-The Carre ice machinge is made by the Richmond Iron Works, Philadelphya. The medium used is simply a strong solution or
ammonium hydrate, the principal point throughout ammonium hydrate, the principal point throughout que
operation being that as the liquid ammonia is renderfd
gaseuos it absorbs the sensible heat from the water
(9) R. H. D. asks: In what proportion
(9) mix tincture of cantharides and glycerin vention of baldness? A. An excellent hair tonic consists of as follows: Scald black tea, 2 oz,. with 1 gal.
boiling water; strain, and add 3 oz. glycerine, tincture of cantharides, $1 / 2 \mathrm{oz}$, and bay rum 1 qt. Mix well by
(10) H. J. C. writes: 1. The gas carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is present in air ${ }^{\text {to extent of nearly } 4} 4$ per
cent, and is soluble in water (1 liter of water at 15° dissolving about 1 liter CO_{2}). Notwithstanding this, it is found that even after long rains the amount of CO_{2} in
the air at any particular locality remains practically unthe air at any particular locality remains practically un-
changed. What is the reason? A. Ordinary rain contains carbon dioxide which it has dissolved out of the
air. The amount absorbed by the rain could not but be air. The amount absorbed by the rain could not but be
infinitely small under ordinary circumstances, and indintely small under ordinary circumstances, and
moreover the sources of its origin are constant 2 . How
would you defnete
also Webster. 3. At low temperature the gas nitric per oxide ($\mathrm{N}_{2} \mathrm{O}_{4}$) condenses to an almost colorless liquid. Upon increasing the temperature the color deepens to
yellow and brown. Why? A. The various shades as sumed by the nitrogen peroxide are due to impurity or dilution, for as a liquid it is colorless, but as it expands
by the heat it takes more air, becomes more oxidized, by the heat it takes more air, becomes more oxidized,
and therefore colored to a greater degree, just as the and therefore colored to a greater degree,
iron oxide, which is black whenanhydrous, as in certain arieties of hematite, but, as it becomes hydrated and various shades to the light yell
(11) J. B.-Rubber is generally pressed in iron moulds. A little soapstone is first thrown into the mourd to prevent the rubber from adhering to the IFic American Supplement, N is given in
249 , 251, 252
(12) F. N. O. asks for the preparation used to stick together the edges of paper in makin
aribling blocks. Ordinary glue to which about per cent of glycerine has been added is frequently used
A solution of rubber in carbon disulphide is also used. A little aniline
(13) J. T.-The so-called "magic tooth paste" consists of white marble dust, 2 oz; pumice
stone in impalpable powder, $11 / 2 \mathrm{oz}$ or rose pink, $1 / 2$ oz; tone in impalpable powder, $11 / 2$ oz:; rose pink, $1 / 2$ oz.:
otto of roses, 7 or 8 drops. Mix with sufficient honey o make a paste. This will rapidly clean the teeth, but ted for free or frequent use
(14) D. H. asks if there is any prepara tionthat will stop cracks in a stove, soas op operent the
smoke from escaping, where the heat is great, sack of an ordinary yrate? A. Take equal parts of
bulphur and white lead with a oout a sixth of borax in corporate them so as to form one homogeneous mass. When going to apply it, wet it with strong sulphuric acid and place a thin laver of it between the two pieces
of iron, which should then be pressed together. An exof iron, which should then be pressed together. An ex
cellent cement consists of glycerine and litharge stirred to a paste. H. W. asks: What substance is
(15) A. the best for securing the rubber tire to the rim of a bi-
cycle? A. Rubber cement is used, although the tire 5 someti
(16)
(16) C. S. T.-Oxygen gas is given off when potassium chlorate and manganese dioxide are heated together. This operation is generally conducted
in a flask to which a delivery tube is attached, and the in a flask to which a delivery tube is attached, and the
gas passes through into a convenient receptacle, bubbling up and replacing the liquid already in the vessel. Any text-book on chemistry will
(17) P. W. T. writes: How can I stick glass to wood so as to cut it? It must be so that water
will not affect it. Also, how can I take it will not affect it. Asso, how can I take it of again?
What will polish glass? A. You will find in Sorevtirio AMERICANSUPPLEMENT, No. 158, a great number of waterproof cements, but one that can be easily
moved complicates the condition. Will not sealing moved complicates the condition. Will not sealing wax
answer? It is not aftected by moisture, and a little heat will make it fluid.-Glass can be polished by treating it with fuller's earth, rouge, and like substances with a (18) J D
(18) J. D. asks: 1. Is there any way of restoring the yellowish unbleached color to bleached
cotton cloth without weakening the fabric? A. No. 2 . Will anything remove ink stains from the dark colored eather of portoilios or book bindings without destroy Ing color? A. Any breaching agen that you might us.
will probably affect the coloring mater of the leather.
(19) W. A.-To clean marble from discoloration: Try 2 partssodium carbonate, 1 of pumice
stone, and 1 of finely powdered chalk. Mix into a fine paste with water. Rub this over the marble, and the
water.
(20) F. V. S. asks how to make a permanent light shade of copper on brass; it looks very pretty and bright when first done, but seems to get not helpit. A. Try dipping or boiling in a saturated solution of sulphate of copper in water, till the de-
sired color is obtained. 2. How to mix kerosene and sired color is obtained. 2. How to mix kerosene and
aniline colors. I have dissolved the anilines in alcohol aniline colors. I have dissolved the anilines in alcohol
and also water, but they will not mix; also how to mix and also water, but they will not mix; also how to mix
shellac with kerosene? A. The best way to do is to shellac with kerosene? A. The best way to do is to
purchase the socolled aniline fat colors. These are purchase the so-caled andine eat colors. These are
then directly soluble in kerosene. Shellac is not solu
he in benzol, and then mixing this solution with kerosene,
(21) C. S. asks how to make a glue or paste which when dry sticks well, retainsa pliable con-
dition, and in bulk, corked tight, remains in a dition, and in buk, corked stathe. A. Take a wide mouthed bottle, and dis-
liquid stan solve in it 8 ounces best glue in $1 / 2$ pint water by setting it in a vessel of water and heating until dissolved;
then add slowly $21 / 2$ ounces strong nitric acid 36° then add slowly $21 / 2$ ounces strong nitric acid 36°
Baume, stirringallthewhile. Effervescence takes place under the generation of nitrous gas. When all the acid has been added, the liquid is allowed to cool. Keep it
well corked, and it will be ready for use at any moment. This preparation does not gelatinize nor undergo purefaction or fermentation.
(22) C. C. H.-The strength of a $1 / 4$ inch belt 6 inches wide, laced, is about 700 pounds, If riv-
eted, about 1,200 pounds; solid, ahout 2,000 pounds. The amount of horse power a belt will transmit de pends so much onspeed and size of pulleys as wellint as
tightness that nodatac an be given for the amount of work a belt can develop, without considering all of
the conditions. Threeply rubber belts have a tensile strengthof about 600 pounds per inch in width, 4 ply about 800 .
(23) W. A. S. asks: 1. Is a one dollar bill Issued in 1862 worth any more than its face value? If
so, how much? A. It is not worth any more 2 It so, how much? A. Is not worth any more. 2. Is
there any operation by which the size of the nose can
he reduced? It there be reduced? If there is, what is it? A. The siz
the nose cannot be reduced in any rational way.
(24) C. C. C.-Thereare tides in our great wees, but small, because the lakes are small compared nice or soap water. Have aluay t ordinary temperature as good as could be desired for black heat annealing.-The more surface you have
in the body of a plain cylinder stove, the more radiaion.
(25) A. H. P. writes: How can I best keep screw on small steam launch from fouling with water, way. The wheel in from midshp, with curved not below said keels. I have not tried this one yet,
but very much wish your opinion. We had a steam but very much wish your opinion. We had a steam
catamaran, and it fouled badly last year in our creek in catamaran, and it fouled badly last year in our creek in
getting to the lake. A. This has given a great deal of seting to the lake. A. This has given a great deal on
trouble to the steam canal boats. We fear there is no ope for you unless you invent something.
(26) M. B. asks: What is the cause of bunions of enlarged joints, and what is the best way to
get rid of them? A. Bunions are caused by boots or hoes that are too short, producing an enlargement of the joint of the great toe. This enlargement, once
produced, will remain permanently on the feet of adults but all soreness mas beremoved by the ceet of adults, as used for corns. Only comfortable fitting foot wear ill prove a permanent reiief.
(27) T. H. De S. writes: Western manu facturers of cooking ranges say that they are obliged to make their wrought iron ranges of heavier material
than their Eastern competitors, as the soft or bitumin ous coal is more destructive to the iron than the an thracite is, because of the excess of sulphur in it. Is this correct? Will not a range last equally as long
whenusing soft as with hard coal? A. The bituminous coal of the Western States has much sulphur, which is destructive to grates and adjacent iron work. The competition among stove and range manufacturers in
the Eastern States may also have much to do with the Eastern States may also
the thinness of their castinge.
(28) F. C. D. writes: I have a boiler with $3913 / 4$ inch tubes 20 inches long. This boiler furnishes ample steam for an engine with a cylinder 3×5. Can I heat a building with two rooms, one 15 feet wide,
10 feet high, and 43 feet long, and the other 12 feet wide, 7 feet high and 26 feet long, the boiler to furnish steam for engine at same time ? Also, what is the best way oheat it-by radiation or by pipes near the celling of by pipes, do you think that two rows of inch pipe would be sufficient, and if by radiator, how many sure on boilen. A. We recommend you to use exhaust steam for warming your rooms, with a live steam con-
nection, so that you may have steam in the pipes when the engine is not running. Your boiler is large enough for ordinary weather, but in the zero weather you could steam. For exhaust you will require 200 feet of 1 inch pipe for the large room and 100 feet of 1 inch pipe pipe for the large rom and 1 feet of 1 inch pipe
for the small room. Let the exhaust blow freely through the pipes. Overhead heating by exhaust is much in vogue; long coils at the sides of the rooms
(29) F. A. P. asks how punches are tempered for punching irơr cold. Have considerable
trouble to have punches made that will stand the trouble thave punches made that will stand the
strain. A. Temper punches in the same manner as you would any tool that is required to be tough and hard. Your trouble probably is not so much in the tempering as in the relative size of the punch and
hole in the bed piece. The hole should be larger than hole in the bed piece. The hole should be larger than
the punch according to the thickness of the metal to be punched, say about $1 / 6$ the diameter of the punch.
(30) F. S. B. asks: 1. Why a tin pail will not rust when a piece of zinc is soldered in the
bottom of the pail? A. We suppose that the prevention of rust is due to galvanic action. 2. Is there any preparation that will mend what is commonly known as
agate ware sold by hardware dealers? It cannot he solagate ware, sold by hardware dealers? It cannot be sol-
dered, and when broken or cracked it is worthless. A. We know of no successful method of reparing agate
(31) R. W. W. writes: Please inform me if there is any instrument bywhich I can tell how much distance auminess, and are paid by the mile; they go on
oficill horseback. A. The pedometer 1 s an instrumentfor measuring a man's step; if the man steps approximately even, step, it gives fair results. We think that it would be difficult to so measure a horse's pace. For vehicles there
(32) J. P. McN.-Good solders are made rrom tin and lead in all proportions, from pure tin, which is the strongest, to equal part,
(33) J. J. L. writes: A and B have a dispute: A claims that two ships sailing in the same direction at the rate of one mule per minute, one being one
mile behind the other, and a cannon on board the rear vessel capable of throwing a ball at the rate of one mile minue, in case his is is red at hevessel in the lead the ball will hit the vessel fired at in one minute. B claims
it is impossible for the ball to leave the vessel it is fired from. How is it? A. Leaving out the question of vessel in one minute, because the cannon, being on a vessel that is moving one mile per minute, also moves one mile per minute, and if the ball is disminute, it will have a speed of two miles per minute in relation to the earth. Otherwise the ball could not leave the cannon, and the dispute is an absurdity.
(34) J. A. W. writes: 1. Does the stu ing of books on locomotive engineering assist one to learn to be sych an engineer? A. Yes, it is very neces-
sary if you would become an accomplished engineer. 2 . Would Mexico or South America be a good location for ne to follow such a trade? A.Better learn theart of enfor an opening in any part of the world. 3. What kind in any of those countries? A. There is little to be learn ed in Mexico or South America in the trades, but good
openings there are awaiting men whoare good work-
mén tiere. 4. What are the rates of wages of America or iny other countries outside of the United States? A.
Wiges in Mexico and South America for expert workmen are higher than in the United States. In all other
ountries wages are low.
(35) G. C. F. writes: I have a small yaeht that ran against the rocks and rubbed holes into her sides, from one-quarter to one-hal inch ceep; and
as I do not want to put in new planks or pieces, would like you to tell me what composition I can put in them, to stay, and make a smooth surface, the holes being
above water mark? A. Haul out the yacht and turn up theisides, let the wood dry, and with a hot iron mel helliac into the bruised spots. Make the iron hot nough to melt the shellac quickly, but not to burn Smooth over the surfaces evenly with the iron a little cooler. Finish with a scraper and sand paper. The
(36) J. R. B.-The plastic asbestos felt ing will not hold well on a traveling boiler. Use a layer of asbestos paper next the boiler, and cover with
hair felt and canvas; leave the front of the boiler naked hair felt and canvas; leave the front of the boiler naked
You may probably save from 5 to 10 per cent of the fuel You may probably save from 5 to 10 per cent of the fuel
by thoroughly felting both boiler, steam pipe, and cyl inder. Copper thimbles are used in locomotives. No used in stationary boilers. The thimbles are rings cut
from seamlesstubes.
(37) T. P. R. writes: What would be the best method for polishing irregular shaped steel, such
as drill points or cultivator points? If with belt, which drin points or cultivator points? If with belt, whic method for applying the emery, and what sized emery will give the beat results? Should the glue and emer be mixed before applying, and at what speed should the belt be driven? A. Emery belts are much in use for pol ishing. They are noteconomical for therough surface of ron castings. Steel that is formed in a drop or press, in water, which takes the scale off, after which the belt will finish in good style. Use No. 60 emery and th est glue. Spread the glue hot and sift the emery on quickly and as thick as the glue will hold. The best he glue and the other to follow with the emery as close the glue and the other to follow with the emery as clos

$$
\text { arser grade of emery is preferred }-50 \text { or } 40
$$

(38) C. S. S. writes: I have a small hori ontal boiler 2 feet in diameter, $31 / 2$ feet long, with 26 wo inch fiues running the full length; the fiues are put in one-half of the heads. Can I use it as an upright as so, how many? I think there is heating surface enoug or my engine as it is; engine is 3 inches diameter by inches stroke. How much power will it develop with 60 pounds steam, running 300 times a minute? A. I you set your boiler horizontally, as its make was intended, it will be 3 horse power. If you set it upright, in will be necessary to fill the space with tubes laid ou power. It will only make a poor boiler at that, as you be 14 inches from shell in either case. Your engine will develop about $2 / 2 /$ horse power. Use $3 / 4$ inch steam pipe, 1 inch exhaust, smoke stacls 8 inches diameter, 15 ne described in Supplement, No. 161, from the de scriptions given in it, and if so, what proportion should it be to require 2 full horse power to run? A. For a
larger dynamo, such as you ask for, you had better consult some of the establishments in the electric light
(39) F. O.-We could not undertake to instruct you in making an air gun. It requires a skill ful mechanic in gun work to make these guns. A few and illustrated in Knight's "Mechanical Dictionary." and illustrated in Knights "Mechanical Dictionary. on air guns from the Patent Office for a fee. We think that you could make a windmill that would drive your fret saw, and for this also you could find a var
(40) R. E. writes: Please let me know i I would get any more speed out of my boatby using a
smaller propeller wheel-using 24^{\prime} now, 3^{\prime} pitch-en gines $3^{\prime \prime} \times 312^{\prime}$, coupled, or if I would be better with woo-bladed one, boat long, 5 beam? Can mak between 6 and 7 miles now, but think I ought to d more. Also let me know if boiler is large enough, siz Your wheel is about right. A tubes $22 / \prime$ long? A Your wheel is about right. A smaller wheel woul If your boiler and engines are running up to their capa ity, you could only improve by ulsing the whee arger, and very little at that, unless you aleo incread the engine power. Three-bladed wheels are preferred for this class of launches. You are making very goo speed. Boiler is probably large enough. You do no pressure in boiler-all essential points to know in giv ing an opinioner-all essential points
(41) J. A. D. writes: Take three pieces metal. first a standard silver dollar, second, piece of gold; third, piece of platina; to be precise in measurement, they shall each be struck in the die of the silve ollar. Question: Which of these pieces will displace the most water when immersed? J. M. says the gold will displace more than the gold. J. D. maintains the displacement will be the same, as bulk causes the tis placement, and not specific gravity, which I under stand J. M. to maintain. A. J. D. is right.
(42) C. H. C.-We could not undertake in this place to attempt an explanation of the pheno nition of what is claimed in this line.
(43) E. S. writes: I have an instrument of music called the Musical Cabinet, for which I paid 880. It performed very well at first, but it soon got t ray the edge of the paper on the bass side, and did not possible? A. Get a piece of rolldrawing paper, and cut anew sheet; this can be done by taking out theold on pencil. Cut on a board with a knife.

Minerals, ETC.-Specimens have been amined with the results stated.
E.M.-Sample No. 1 consists of hematite or specu 2 is simply a metallic plate of the same a little large is simply a metallic plate of the same a little large S. H -The deposit is calcium carbonate, and it is s luble in acids.

INDEX OF INVENTIONS

For which Letters Patent of th United States were Granted,

 April 28, 1885,
AND EACH BEARING TIIAT DATE

[See note at end of list about copies of these patents.]

Adjustable bracket, W. s. How..............316,459, 316,54 Mimals to be
McCreight. Attrition mill, T. L. Sturtevant........................ wning. Bonner, Jr, \& Vanden Berghe. Ax blank, H. Hammonond
Axes, manufacture of
Axle box, car, J. Timms.............
Axxe, vehicle, Bennett \& Sullivan
Axle, self-lubricating, H. G. Farr.
Baling press, A. M. Brashe
Banjo, G. A. Washburn.
Battery. See Electric battery. Primary and

Bed, folding, spring, S. S. S. Bur

Bed sofa, B. Kreith.
Bellt, carrier, Blum \& Lind
Belt fastener, W. H. Sleep
Belting, E. Deming.
Belting, manufacture of
kins....................
Bench. See Wash bench.
Bessemer converters, apparatus for mounting

Binder, temporary, G. V. Nauer
Binding fabrics, E. F. Bradford Blind slat holders, window, \mathbf{w}.
Block. See Electrotype block.

Boat. See Life boat.
Boiler furnace, T. Mu
Boiler furnace, T. M
Bolt, C. F. Diehlman
Bolt, C. E. Hayes. \qquad
Bolt, C. E. Hayes....................................
Boneblack kilns, top plate for, E. P. Eastwick..
Book rack for church pews
Book rack for church pews, etc., M. G. Frutchey
Boot or shoe heel, B. F. Hall.
Boot or shoe insole, L. B. Hawk
 Blossom.
Boot, quarter
Boot, quarter, T.
Bottle forming tool
Box fastener, F. W. Beckwith
Box fastener, G. S. Randall
Box fastener, G. S. Randall..
Box for cigars, etc., E. Pisko
Bracket. See Adjustable bracket. Scaffold bracket. Car brake. Elevator safety brake.
Brake. See Cent

Brakee shoe clame, L. King. Brick kiln, S. B. Moe.........

Bridge gate, automatic draw, F. W. Meuze
Buckles, manufacture of, G. R. Kelsey
Buckles, manufacture of, G. R.
Budding knife, K. McLennan.
Burglar alarm, electric, Hill \& Babcock.
Butter cutting device, O. K. Dexter.
Button, W. C. Howard.............................. Camera. See Photographic camera.

Can. See Cracker can.

apsules, device for stirring melted gelatine fo
making, Hubel \& Re
ar and seat, G. Buntin
Car and seat, G. Buntin
Car brake, C. E. Currie.
Car brake, J. S. Naery...
Car brake, J. S. Naery....
Car brake, E J. Roberts.
ar coupling
Car coupling, T. T. \& J. M. Da
Car coupling, A. A. Hopper.
ar coupling, A. A. Hoppe
Car coupling, J. H. McCormick
Car coupling, M. L. Whitney.
Car cover, J. H. Gage...........
Car, dumping, M. Van Wormer
Car safety attachment, cable, H. J. Rohrback
car seat backs, rest for the arms of, G. Buntin. Car starter, J..S. Briggs
Cars, carding railway freight, c. W. Cushman....
Cars, device for unloading gravel, Huber \& Bar
hart...
condensing cylinders of, A. R. Fox..
Carrier. See Cash carrier. Hay carrie
arrier. See Cash carrien
Cart, road, E. E. Krengel

Cash carrier, automatic, J. W. Flagg..

Centering gauge, D. W. Standeford.
Check hook, harness, R. J. Well
Check row line, O. O. Kit
Chimney cap or ventilator, M. W. Kidder Chimney cowl and ventilator, W. G. Henis.
Chimney flashing Chimney flashing, T. H. Apple
Chimneys, draught re,
for, F.H. Leonara..
Chuck, lathe W.
Churn, J. McClure
Churn dasher, J. D. Wallace....................
Clamp. See Brake sh oe clamp. Saw clamp.
Cleaner. See Cotton cleaner.
Cack for nozzles, shut-off, J. E. Prunts
316,537
316,722
316009
316,51
316,627

316,641
3166767
316,619
316,610
316,535
316,49
316,456
316,78
316,867

316,630

316,597

316,635.

316,790
318559

6,621

316,740
316,896

99

$\begin{array}{ll}16,807 & \text { Ga } \\ 16,446 & \text { Gas } \\ \end{array}$

Condiment, R. F. Maier......
Converter, H. Schulze-Berge
Cooking apparatus; steam, Johnson \& Long Corn cutter, green, S. D. Warfield Corn shellier, Q. E Bohannon.............. Cornet or other musical instrument, W. Booth Cornice, L. Woelfle.

\section*{Corset, C. H. Williams...}
 Corset press, J. A. House. Corset spring, Thury \& De

 Cotton buncher, S. Tynes

Feed
Fence
Fence
Fence
Fence
Ter

> | 16,879 | Ga |
| :--- | :--- |
| 6,582 | Ga |
| Ga | |

46 Gas, purifying and odorizing natural................... Gas regulating burner,
Gas regulator, J. Hunte
Gate. See Bridge gate. End gate. Flood and
sluice gate. Railway gate.
sluice rate. R
Gate, J. Phillippe.
Gate, D. G. Smoot.....................
Gear cutter shaping tool, R. M. Hill
Gear cutting machines, index for,
Gearing, stop motion, S. D. Locke.
Generator. See Gas generator.

lough.............................
Governor, Therkelsen \& Bruun.
Governor, steam engine, J. W. Sargen
316,488
316,490
Grain binders, cor
I. H. Russell.
Grain binders,
Kennedy..
Grain cleaning mill, Balch \& Burtt. $.316,550$
316,722

```
Grated shovel, M. P. C. Hooper.......
Grinding plate, metallic, E. M. McKee.
```

Guard. See Car dust guard. Razor blade guard.
Gun, magazine, D. H. Rice............
Hammagazine, D. H. Rice...
See Pipe hanger
c. W. Burgtorf.
collar a targtachment for double, D.

Harrow, L. Deloria..
316,501
316,700
316,453
316.577
316,633
316,748
J. B.

Files, cutting, C. M.
Filter, J. H. Dumont.
Filter, R. P. A. Turcot....................
Filter case, hard rubber, E. K. Haynes.
Filtering, apparatus, K. W. Vogel.
Firearm lock, F. W. Hood
on............... 107
or for, \mathbf{w}.

ream testing device, Andrews
Cultivator, F. M. Everingham..
utter. See Corn

,

Distilling wood, apparatus for.......... Koch
Door closing device, N. H. Richardson
Door lock, R. G. Roland...
Drawers, fastening device for a series of, M. Ban-
croft...........................
Drawing board, S. W. Goodwin.
Drier. See Fruit drier.
Drier, D. H
Drier, D. H. Rice......
Drill. See Seed diril. Se..............................
Drinking trough for animals, J. Moore............
Dropper. See Tobacco dropper.
Eaves trough, Schumann \& Muth
Eaves troughs, device f.
making, .F. O'Brien...
dge curling machine, W.

Ejector, W. T. Messinger.
1 Electric battery, E. Bazin........
Electric cut-out, W. M. Thomas.....................
Electric lighting ssstem, E. Weston.....16,707 to
Th
Thectri
W
Ele
Ele
Ele
Ele
En
En
Eng
Eva
Ex
Ex
En

Firearm, magazine, C. J. Ehbets. Firearm, magazine, F. F. Knous....

Firearm, magazine, J. M. Mar
Fire escape, H. . Braunfeld
Fire escape, G. Denison..........
Fire extinguisher, W. H. Stratto
lour bolts, mechanism for brushing, M............ ruit Hay fork. Manure fork.
Fuel, composition for, C. H. Sternberg.............
Furnace. See Boiler furnace. Smelting furnace.
Furnace, T. Murphy.......................................
Furnace, T. Murphy.........
Furnace door, H. H. Dreyer.
Furnace, liquid fuel, C. M. Gearing.
Gauge. See Centering gauge.
s burners, stop valve for, S. B. H. Vance
as, composition for purifying, J. Duke. s engine, C. Benz.

Upperma

Hat ironing machine, Tweedy \& Yule.......
Hay carrier, C. E. Hunt et al.............
Hay elevator and carrier, C. E. Hunt et al. Hay elevator and carrier, C.
Hay fork, C. S. Ambruster..
Hay fork, horse, P. Werum. Hay fork, horse, P. Werum.
Hay knife, W.. H. Carter....
Hay rake, horse, C. A. Werde
Hay tedder, J. H. Thomas... Hay tedder, J. H. Thomas Heating and soldering implement, Hoeveler \&
Heating apparatus, G. Gessner.............................
Heating apparatus, G. Gessner........................
Heel nailing machine, H. A. Henderson........
Heel nailing machine, H. A. Henderson (r)..10,588,
Heel nailing machine, F. F. Raymond, $2 d$,
$316,661,316,826$ to 316,728
Hoisting machine, c. E. Albro............................
Holder. See Book holder. Music holder. Sash
holder. Soap holder. Spool or ball holder.
holder. Soap
Stock holder.
Hoop planing machine, G. S. Foster.
Hoop planing machine, G. S. Foster....
Hose, device for repairing, C. P. Pierce
Hose manipulator, fre, J. Roby..........
Houses, construction of, A. Hubbard.
Houses, construction of, A. Hubbard...........
Hub, vehicle wheel, T. G. W. \& L. McMeekin..
Ice and refrigerating machi
Ice machine, T. I. Rankin
Induction coil, T. J. Perrin....
Inhaler or respirator, J. A. Miles....................... 316,631
Insulator, electric wire, Locke \& Bowker....... 316,43
Insulator, telegraph, ,. O'Brien...................... 316,812
316012
Ironing board and table, A. A. Wysong......... 316,928
lroning board and table, A. A. Wysong...........
Jack. See Boot or shoe jack. Hoisting jack.
Knife. See Budding knife. Hay knife. To bact
Knife. See Budding knife. Hay knife. Tobacco
harvesting knife.
Knitting machine, G. E. Nye 316,90

Lamp, electric arc, w. W.
Lamp, torch, C. \mathbf{L}. Betts.

Lantern, C. Riessner.................................. 316,488
Lasting, preparing uppers for, W. C. Cross.....................87
Latch, E. W. Brettell................
Latch, E. W. Brettell.............................. 316, 316,8
Lathe for turning irregular forms, c. Schoen-
leber.. 316,83
Life-boat, D. P. Dobbins..................................881, 316,8889
Live box, wire foating, J. F. Hardman.............. 316,77
Lock. See Door lock. Firearm lock.
unbricating compound, D. D. Wass................ 316,7
Lock. See Door lock. Firearm lock.
Lubricating compound, D. D. Wass..66,803
Lubricator, R. Ruddy...............
 316,492
316,744
! Man
Man
Man
Man
Map
Mat
Map rack, F. P. Montgomery.................................
Matth safe and cigar clipper, combined, Lake
Crandall................................
Measuring device, cloth, W. H. H. Frye................. 316. 316,886
Measuring device for liquids, automatic, J. Prax
Measuring device for liquids, automatic, J. Prax.. 316,910
Meat freezer. C. N. Shaw........................316,80
Mecanical movement, T. S. Huntington......... 316,897
Medicines, apparatus for spraying, P. Lochmann. 316,488
Metal turning tool, E. Horton.......................316,787
Metal working machines, work holder for, L. Cos-
grove.................................... 316,526
Metallic fabric w
Metallic fabric, W. Hewitt............................ 316
Mater. See Water meter.
Midalings puritier, F. Prinz (r)..................... 10
Mill. See Attrition mill. Grain cleaning mill.
Mill. See Attrition mill. Grain cleaning mill.
Milling machine, automatic, E. Horton.......... 316,786
Mixer. See Paint mixer.
Motion, devie for converting, H. B. Keiper....... 316,78
Motor. See Sewing machine motor.
Motor, T. K. Hansberry............................... 316,5

Non-resonant material
buildings, railway tunnels, railway carriages,
etc.. R. R. Hazara.......................................56543
Nut lock, S. M. Guss........................ 316,616

Oil, etc., reftining, A. Rock..36,668
Oven, portable, J. Ringen...........

Packing, piston, G Garrison.................................... 316,9774
3addewheel, feathering, J. P. Hickey............ 316,783
Pad. See Stamp pad.
Paint mixer, , Ross, Jr............................... 316,
Pavement for streets and sidewalks and mould for constructing the same, block, H. G. Fiske.. 316,450
Pen holder, cap, R. W. Parker. 316,815 Pen holder, cap, R. W. Parker....................... 316,815
Photographic camera, U. V. \& H. V. Parsell, Jr... 316,647

```
Pianoforte, G. Cook....
316,564
316,445
```

Pill counter, D. B. Moor
Pill counter, D. B. Moore.
Pipe hanger, H. Trask.....

Pitcher, fountain, W. Painter................................. 316, 316,922
316,646
lee. ..
Planter check row, corn, H. . . . Alle........................ 316
Planter, check row corn, F. A. Rose............... 316
Planter, check row corn, F. A. Rose.................
Planter check rowing attachment, corn, W.
Reeve....................................
Reeve.. 316,662
Planter fertilizing attachment, corn, G. S. Paine.. 316,645
Planting machine, corn, J. Case................ 316,743

Plow, steam gang, W. H. Snyder...................... 316.845
Plow, steam gang, Snyder \& Frick................ 316.846
Plow, sulky, J. S. \& E. C. Robinson............. 316,572

Plow, wheel, J. W. Meikle.............................. 316,802
Pooketbook coin attachment, G. W. Scales....... 313664
Pole, wagon, N. E. Springsteen................ 316,671
Pole, wagon, N. E. Spri.
Post. See Fence post.
Potato digger
Post. See Fence post.
Potato digger, B. . Pren
Press. See Corset press.
Primary and secondary battery, G. Fournier...... 316,53

