Whinle fishery ort the coast of norway.

There are, as well linown, numerous fisheries of cod herring, mackerel, etc., off the coast of Norway, but the most curious one is certainly that of the whale. This cetacean, which inhabits the polar regions, ap proaches the coast of Scandinavia about the month of June, in the train of numerous small fish called lodde, that come to the mouth of the rivers in order to de posit their eggs.
The whale that is fished off the coast of Finmark is the blue whale, an animal quite different from the species found in Greenland and called the right whale.
The fishing is authorized by Norwegian laws only from June to September. It is carried on quite near the coast, and a boat some times remains but two or three hours out of port. Thus, during the voyage of Oscar II. along the coast of Finmark, three whales were encountered between Vadso and Jacobselv. Another time a boat from Vadso captured one near the works establishe upon the small island oppo site that city, that is to say, ten minutes' distance from the port.

Whale fishing in these regions is very ancient, as is proved by certain Norwegian legends, which relate that the giants who inhabited Finmark were of sogreat size and strength that they could take whales by the line. If they took two at once, they attached them by the tail and suspended them from their hielders, as fishermen do with the cod that they are drying The great whale fishing in
dustry was for a long time concentrated at Vadso, a small Finnic town of Varangerfjord. It is here that are located, upon the small island that we have mentioned, the establishments of the celebrated Mr. Foyn, the king of the whalemen. This person, who is still living, is a southern Norwegian, and was a sailor in his youth. Through his energy and intelligence he has ac-
 the epoch at which he began whale fishing it was not customary to bring these animals to the shore to strip them, but the fisherman who had taken one cut it up on the spot and lost many of the products. At this time only the whalebone and fat were utilized. Mr. Foyn conceived the idea of establishing himself upon shore, and of sending out small whaleboats to seek for these marine monsters, in order to bring them to his works, where nothing is lost, since, after the meat and fat have been removed for making oil, the detritus and bones are used for the manufacture of fertilizers. Mr. Foyn may be said to have established himself under excellent conditions, seeing that the whales come as far as to Varangerfjord, and that after a few hours' fishing it is certain that one or more will be brought it. It was he, moreover, who first utilized an invention that left far in the rear the antique harpoon thrown by hand from a fragile boat. The Foyn har poon which is a little over poon, which is a little over
three feet long, is thrown by a small cannon placed in the bow of a steamship, 80 feet in length, with a crew of ten men.
This vessel, which costs between twenty and twenty-five thousand dollars, has a speed of 14 knots per hour. The cannon is pivoted, and carries a sort of stock that permits of pointing it in every direction. A cock, whose trigger is manipulated by a long cord, discharges the cannon at the momentdesired. The cannon is aimed precisely like a rifle. The extremity of the harpoon is provided with a small steel pointed bomb, which bursts after entering the whale's body. At this moment seve ral rods, which up to this time had lain along the harpoon, spread out like the ribs of an umbrella, and prevent the rod from coming out of the animal's body. To the harpoon there is attached a long cable, which is coiled up in the hold, and which passes over several brakes actuated by steam.
The one who aims (who must be a very cool and skillful man) holds the butt of the gun with one hand and the cord that pulls the trigger with the other. When

It takes eight days to cut up one of these animals. In another place, chopping machines and mortars are installed under a shed that communicates with the ocean through an inclined plane. It is here that all the remains of these sea giants are reduced to a pulp in order to convert them into a fertilizer, which, later on, will find its way to the fields of Northern Germany.
On the day of our arrival at Vadso we went to visit the establishment, and Mr. Bull, Mr. Foyn's representative, did us the honors thereof. We were obliged to land at a slippery stairway, and had to perform miracles in the way of balancing in order to keep from falling. We first visited the inclined', plane, but there was nothing curious in the aspect of this. Then, going along one of the rear buildings, we passed along a lot of kettles, in which were boiling debris of meat and fat, that gave out an odor calculated to make one sick at his stomach. From time to time great bubbles burst upon the surface, and gave out \dot{a} still more nauseous and infectious odor, so that it became necessary to hold our noses.
A little further along, after passing over a small bridge covered with oily slush, we entered the shed that contains the mortars. Hereit was still more frightful. In one corner there was a whale's head being cut up, and, as it was several days old, the emanations from it were something horrible. Men wearing great boots were working among these debris, which they carried to the mortars with immense hooks. They are so used to these surroundings that they do not smell anything. It and carries it along with terrific speed. In order to was very difficult to maintain one's footing on the slip-

Fig. 2.-Whale ready to be cut up.
 oppose this the engine is reversed, and from each side of the ship, perpendicular to its sides, are spread out wings analogous to those found on Dutch boats. The whale sometimes goes to the bottom, and it is then difficult to raise it when the sea is rough. At the end of a certain time it returns to the surface to breathe When it is dead, a boat with two men puts off to pierce its lower jaw and tail and attach an iron chain thereto. After this the animal is towed alongside the ship so that its head and tail are visible.
Foyn's land establishment consists of several parts. In the first the whale is carried to an inclined plane dug out of the rocks. When it is high tide and the animal is floating, the latter is attached by chains to rings set into the rocks. When the tide runs out, it leaves the whale on the inclined plane. At this moment men, armed with long knives affixed to the extremities of great handles (Fig. 2), begin to cut outlong strips of fat from the animal's sides. When twoparallel incisions have been made, a hook is attached to the most distant extremity. This hook is affixed to a chain that winds around a windlass moved by several men,
who, combining their efforts, detach the strip of fat from the animal's body. They are aided in this operation by another man, who, provided with a long knife, cuts all the tissues that offer a resistance. When this strip is removed, it is placed upon the inclined plane until it can be taken up and carried to a large kettle, in order to convert it into oil. After the fat is removed, all the greasy matter possible is extracted. Then the all the greasy matter possible is extracted. Then the
lungs and intestines are removed and thrown away.
constantly gravitating downward, and in a fewhundred thousands of years what is known as the site of Virginia City will be nothing but barren bed rock, worn as smooth by the action of the elements as the southern slope of Sugar-loaf Mountain; and were it possible for structures built by human hands to withstand the decay of time, the entire city itself would then havebeen forced out on the flat between the mouth of Six-mile Canon and the Carson River.-Virginia Chroniole.

Photographing by Artificial Light.

The light obtained by the burning of magnesium ribbon has been used extensively as an artificial light for photographic purposes, so that now, in consequence of the introduction of extra sensitive dry plates, it is possible for the amateur photographer to amuse himself during his leisure evenings by taking pictures as rapidly with this light as was formerly required by day light.
In place of magnesium ribbon, which is somewhat expensive, light produced by some cheaper pyrotechnic compound is said to answer a very good purpose. Referring
By far the best, as it is also the cheapest, source of light among the pyrotechnic compounds is that which has a time honored reputation as "signal fire," or very frequently as "Bengal light." This is composed of six parts (by weight) of saltpeter, two parts of sulphur, and one part of sulphide of antimony. In the prepara tion of this compound each must be powdered by it self, and the powder kept in dry canisters. They are then mixed together in the proportions given above After a little experience has been acquired in the compounding of these substances, the weights and scales may be discarded in favor of measures representing the values of the respective weights.
The lantern in which the compound is burnt consists, in its most advantageous form, of a large parabolic reflector formed of tin, although we have known a common packing case to render excellent service. The front of the lantern ought to be from two to three feet across, and it must be covered with thin tissue paper. The back must have a small door through which is introduced the little cup that contains the requisite charge of the powder, there being a stand upon which to place this cup. The door at the back also serves for the introduction of a lighted match to ignite the powder when an exposure is about to be made.
It is an improvement when a small metallic chamber having violet glass in front is made the receptacle of the burning compound, as it prevents the interior of the large lantern from being incrusted with the smoke, and also causes the light emitted to be of a color that does not distress the eyes of the sitter. A capacious chimney must communicate with the burning chambe to insure the products of combustion being carried off. The particular form of chimney we employ for both this purpose and the ignition of magnesium is one which we can strongly recommend. It is formed of calico,
which is kept distended by a spiral spring made of fine which is kept distended by a spiral spring made of fine
wire. Its diameter is between three and four inches, and the length sufficient to reach any window or chim ney within twelve or fifteen feet of the lantern. In the case of a window it is merely opened a little at the top and the end of the flexible chimney projected, and kept in position by means of a pin. The flexibility of this chimney permits of its being easily packed away when not in use
The lantern must be placed upon a stand so as to be a little higher than the sitter. When a spoonful of powder is placed in the cup and ignited, the front of the lantern becomes practically a highly luminous ar tificial cloud throwing a powerful light upon the sitter, yet without any strong shadow being cast. This ex emption is secured by the large diameter of the front of the lantern. The intervention of the violet glass and of the tissue paper causes the light which falls on the sitter to be soft and agreeable. White reflectors miay be placed at the side of the sitter at the taste of the operator. Owing to the actinic power of the light a brief exposure suffices, usually from two to five seconds proving enough. As but little of the compound is re quired to give a light of such brief duration, this sys tem of lighting is strictly economical.

Ancient Mexican and Central American Measures

Professor Daniel G. Brinton, in a paper lately read before the American Philosophical Society, gives many interesting facts. Among other observations he says:
Whatever the lineal standard of the Aztecs may have been, we have ample evidence that it was widely recognized, very exact, and officially defined and protected In the great market of Mexico, to which thousand flocked from the neighboring country (seventy thou sand in a day, says Cortes, but we can cut this down one-half in allowance for the exaggeration of an enthusiast), there were regularly appointed government officers to examine the measures used by the merchants and compare them with the correct standard. Did they fall short, the measures were broken and the merchant severely punished as an enemy to the public weal.
The road measures of the Aztecs was by the stops of the carriers, as we have seen was also the case in Gua-
temala. In Nahuatl these were called neceuilli, resting places, or netlatolli, sitting places; and distance were reckoned numerically by these, as one, two, three, etc., resting places. Although this seems a vague and inaccurate method, usage had attached comparatively definite ideas of distance to these terms. Father Duran tells us that along the highways there were posts or stones erected with marks upon them showing how
many of these stops there were to the next marke towns-a sort of milestones, in fact. As the competition between the various markets was very active, each set up its own posts, giving its distance, and adding a curse on all who did not attend, or were led away by the superior attractions of its rivals!
So far as I have learned, the lineal measures above mentioned were those applied to estimate superficies. In some of the plans of fields, etc., handed down, the size is marked by the native numerals on one side of the plan, which are understood to indicate the square measure of the included tract. The word in Nahuatl meaning to survey or measure lands is tlalpoa, 1
The Aztecs were entirely ignorant of balances, sc or weights. Cortes says distinctly that when he visit d the great market of Mexico, Tenochtitlan, he saw all articles sold by number and measure, and nothing by weight. The historian Herrera confirms this from other authorities, and adds that when grass or hay was sold, it was estimated by the length of a cord which could be passed around the bundle.
The plumb line must have been unknown to the Mexicans, also. They called it temetztepilolli, "the piece of lead which is hung from on high," from temetz $t l i$, lead, and piloa, to fasten something high up. Lead was not unknown to the Aztecs before the conquest. They collected it in the Provinces of Tlachco and Itz miquilpan, but did not esteem it of much value, and their first knowledge of it as a plummet must have been when they saw it in the hands of the Spaniards. Hence their knowledge of the instrument itself could nothave been earlier.
Prof. Brinton's conclusions are as follows:

1. In the Maya system of lineal measures, foot, hand, and body measures were nearly equally prominent, but the foot unit was the customary standard.
2. In the Cakchiquel system, hand and body measure were almost exclusively used, and of these, those of the hand prevailed.
3. In the Aztec system, body measurements were unimportant, hand and arm measures held a secondary position, while the foot measure was adopted as the official and obligatory standard both in commerce and architecture.
4. The Aztec terms for their lineal standard, being apparently of Maya origin, suggest that their standar was derived from that nation.
5. Neither of the three nations was acquainted with system of estimation by weight, nor with the use of the plumb line, nor with an accurate measure of long
distances.
Incidentally Prof. Brinton, after comparing the old Central American measures with those of the moun builders of the Ohio Valley, concludes that the "mound builders" probably used a ten-foot measure to lay out their works.

An Unsatisfied Want.

I want a planer with plenty of backbone in it; and to get this there must be no niggardly ecenomy of iron The platen must be heavy and stiff, and must not run far off the ways at the ends. The ways should have plenty of surface, so as not to squeeze out the oil, and cut under a heavy load. The rack and gears should be cut so as to run without back lash; for I do not want gear marks on my work after a finishing chip. I want the square holes for bolts and the round stop holes planed and reamed to gauge, so that fitted bolts and stops will fit all the holes. As to the stop holes, it is heathenish to use a hammer; the stops sho uld be pushed home by the hand; we are not splitting logs when we are fastening work to the platen.
I want the crosshead with plenty of bearing surface on the uprights, so that a trifle of wear on the lower end will not unfit the crosshead for higher work. I want the gibs, both in the crosshead and in the sadale nade wedge shaped, so that I can adjust them with screws on the side, which require much time to adjust evenly.
I want the shipping motion to work alike and exact, so that in planing plump up to a shoulder I shall not run against it and break the tool or smash the work. The feed motion should be positive, so that if I require a feed of just one tooth it shall be exactly one tooth, and a feed of twenty teeth shall be twenty teeth, not wenty and one-half with a slip back of half a tooth or twenty teeth this time and twenty-one the next I want the planer geared so that I can takea heavy chip without the planer winking. I want a solid foundation for the machine, on masonry piers, if necessary down to hardpan, so that the passing of a loaded
truck over the floor will not spoil a finishing cut. I want the speed changeable by an extra countershaft, so that I may change from working rigid steel to soft composition; and with these qualities in a planer I can do a good job.
These are the complaints and opinions of a machinist that has run planers for thirty years, and they possibly contain suggestionsthat may be of value to machine tool builders.

Read Less; Think More."

The late Charles O'Conor, perhaps the most profound awyer New York city has produced, gave a piece of advice to a young man which is as valuable as anylegal opinion for which the distinguished lawyer ever received a fee. A lad wrote to him, giving a long list of books which he had already gone through, and asking advice as to a course of reading. Mr.
O'Conor replied that "he had not only notread, but had not known even by name one-half of the books his correspondent appeared to have read. He would not therefore, undertake to advise him what to read, but he could safely advise him to read less, and think more." This anecdote comes from a recent number of the Century.
The advice was not, however, original with Mr. O'Conor. In the Philadelphia Ledyer some time since an older authority was quoted to the same purport. Probably the same sound wisdom could be traced back to the time of the invention of printing. "Read less (of trash) and think more " has a pithiness which makes the advice all the more easy to keep in mind. And following it would enable the " temperate" reader not only to think, but to remember more of what he reads. Remembering more would give a practical value to the ideas acquired and the facts obtained. Perhaps Mr. O'Conor's opinion on reading is to be qualified a little by his practice. It seems that his reading was very much confined to the purposes of his profession. No doubt this limit increased his wonderful efficiency in his legal pursuits. But it would be a great abridgment of mental freedom to restrict the reader to his specialty and forbid excursions outside of that. The mind is enlarged by a variety of topics, and there is scarcely any subject, however foreign to a thinking person's daily life, from which he may not derive some advantage. There is nothing in the way of learning which stands so much alone that it cannot be illustrated by other and indeed apparently dissimilar matters. Still the caution holds good-to most readers' read less and think more.'

Lacing Belts.

The market is full of devices for fastening the ends of belts, but there seems to be no diminution in the importation of Patna hides and the use of leather lacings. Lacings are absolutely necessary in remaking once used belts, as after the belt has been oiled the cement ceases to "take," and the riveting of scarfs is very unsatisfactory. But in many instances the butting of belts is preferably done with lacings. The belt awlor awls, for there are several patterns-as generally in use, is not properly shaped. It depends on a point to start a hole, and enlarges the hole by the larger round or lozenge-shaped section. This tears and crowds the fibers of the leather, and tends to cockle the belt. The belt awl should be patterned after a mortising chisel, except perhaps that the edge need not be of the entire width of the blade, and the blade may be slightly curved for ease in handling. A sharp chisel edge will cut a clean hole, or rather a slit, which may be opened for the passage of the lacing, and not being a violent disturbance of the leather, the slit will close firmly around the lacing when it is in place. The temporary spreading of the hole crosswise may be made by the thicker cross section of the awl, corresponding to the flattened lozenge of the mortising chisel. In butting belts, however, the first row of holes should be made with the punch, and a triangular punch is better than the common round punch, one of the faces of the triangle to be in line with the cross cut of the belt.
Unless absolutely necessary to "take up" or mend a belt in working hours, it is best not to run it off the pulleys for this purpose. It is always mere guesswork to know how much to cut out of a slack belt when it is off its pulleys, and it is not uncommon to have the job to do over, sometimes more than once. Taking up belts should be deferred, if possible, to a nooning or the shutting down of the works. Then a pair of clamps should be used to bring the open ends of the belt together while the belt is on its pulleys. There are clamps for this purpose that do not require the use of wrenches; the jaws are always in line (parallel), dispensing with the use of the straight edge, and they are actuated by
a crank. Except for very wide belts, these clamps can a crank. Except for very wide belts, these clamps can be handled by one person. By their use the exact tensionof the belt can be secured, its perfect line preserved, and a clean joint made with the belt in the handiest possible position for working on it.

Wind Mills.

An $81 / 2$ foot wheel will raise 3,000 gallons of water daily a distance of 25 feet. Its first cost, including pump and a plain tower, is about $\$ 150$. A 10 foot wheel will raise about, 9,000 gallons of water a day a purtenances above mentioned. A 12 foot wheel will raise 16,000 gallons of water per day the above distance, and cost with the same appurtenances $\$ 210$; so up from a 25 foot wheel, which costs about $\$ 1,200$ and will raise . 100,000 gallons of water daily the specified distance.

