physiological study of the human constitution. It would be interesting to determine the rate of increase and average of strength with advancing age; at what age a pound of flesh, blood, and bone in a normal human being is capable of exerting the greatest force. Lately the following experiments were made:
A man of nearly 69 years of age, weighing 214 lb ., ascended a broad winding stair from first to second story of a house; height $141 / 2 \mathrm{ft}$., weight raised 214 lb ., time 16 seconds, rate of work per minute $11,665 \mathrm{ft}$. pounds; then the horse power during $1 / 4$ minute is at the rate of 0.353 H. P. Again, a man of the same age ascended two stories of the new Pension Building at Washington. stories of the new Pension Building at Washington.
This included 4 flights and the necessary landings; there This included 4 flights and the necessary landings; there !
are no winding stairs; weight 220 lb ., height $423 / 4 \mathrm{ft}$., time 74 seconds, work done per minute $7,627 \mathrm{ft}$. pounds, horse power 0.231. Again, a man of about 69 years of age ascended to the third floor of the new Pension Building. First floor 20 feet, second $22 \cdot 75$ feet, time to 2 d floor 29 seconds, to 3 d floor 66 seconds; work done: 1 st story, $4,400 \mathrm{ft}$. lb., rate per minute $9,109 \mathrm{lb}$., H. P. $0 \cdot 276$. 2d to 3d, work done $5,005 \mathrm{ft}$. lb., rate per minute $8,125 \mathrm{lb} .$, H. P. $0 \cdot 2462$. Whole ascent $423 / 4$ feet, work done $9,405 \mathrm{ft}$. lb., rate per minute $8,550 \mathrm{lb}$., H. P. $0 \cdot 259$. Another man, about 72 years of age, weighing 180 lb ., ascended another similar stair $423 / 4$ feet in 63 seconds; work done per minute, ft. pounds 7,328, H. P. $0 \cdot 222$.
For a short time the first experiment shows a man of
nearly 69 years putting forth without suffering an nearly 69 years putting forth without suffering an
effort greater than effort greater than $\frac{1}{3}$ of a horse power; but when the effort was continued for about $11 / 4$ minutes, the average
result was rather less than $1 / 4$ horse power. The other, older, man developed during 1 minute, or 63 seconds, a force of $0: 222 \mathrm{H}$. P., or rather less than $1 / 4$ horse power. Looking into the details of these experiments, we find that the man of 69 lightly clad put forth for \ddagger minute a force of 0.353 H . P., ascending a height of only $141 / 2$ feet. Rather more heavily clad, he put forth during $1 / 2 \mathrm{~min}$ ute the force of 0.258 H . P., and during the following $3 / 4$ minute of 0.2118 H . P. the average during 74 seconds being $0 \cdot 231 \mathrm{H}$. P. An older and lighter man exerted for 31 seconds, say $1 / 2$ minute, the force of 0.2338 H . P., and for another half minute immediately following the first half, 0.2127 H . P.; average during 1 minute, or 63 seconds, the force of $0 \cdot 222 \mathrm{H}$. P. Again, the man of 69 years, with a heavy overcoat, weighed $2221 / 2 \mathrm{lb}$. He ascended 20 feet by stairs in 15 seconds, work done 4,450 ft . pounds, at the rate of $17,800 \mathrm{ft}$. pounds per minute, which is an exertion of $0.54 \mathrm{H} . \mathrm{P}$.-over $1 / 2$ horse power. A younger man, 151 lb . weight, ascended 6134 ft . in 49 seconds; work done $9,324 \mathrm{ft}$. pounds, at the rate of 11,41 ft . pounds per minute, equal to 0.346 H . P.

Washington, D. C., March 18, 1885

ASPECTS OF THE PLANETS FOR APRIL. mercury

is evening star until the 27th, when he changes his role to that of morning star. He holds the place of honor on the planetary records of the month, being the only member of the sun's family that contributes interesting incidents to the annals of April, for the month is specially unevenful and monotonous as regards the movernents of our usually lively and active brother and sister planets. The most noteworthy incident in Mercury'scourse is his greatest eastern elongation. This event occurs on the 8th, at 2 o'clock in the morning, when Mercury is $19^{\circ} 26^{\prime}$ east of the sun. The present is the most favorable time of the year for a sight of Mercury as evening star with the naked eye. An intelligent observer cannot fail to find him if the weather conditions are favorable, and the directions given are conditions are favorab
faithfully carried out.
Three conditions are required for the most satisfactory view conceivable of Mercury at eastern elongation. The event must take place at the season of the year when the twilight is the shortest, in order to have a darker background of the sky for the exhibition. The planet must be in aphelion, or farthest from the sun, in order to have the elongation, or distance from the sun, the greatest possible. The planet must be at his greatest distance from the ecliptic, or sun's path in the heavens, on the north side, a necessary condition for the best observation of all the planets under all circumstances in the northern hemisphere.
These three conditions never occur together, for such is the position of Mercury's orbit that when the elongation is greatest possible, the planet is south of the sun, and not so well situated as when the elongation is less, and the position of the planet is north of the sun. We therefore never see Mercury under the most satisfactory combinations.
At the present elongation, the twilight is nearly the shortest, and the position of the planet is at his greatest distance north of the sun's center or north of the ecliptic. But the elongation is $19^{\circ} 26^{\prime}$ east of the sun instead of the maximum, $27^{\circ} 47^{\prime}$. He is therefore far distant from aphelion, which, traveling with his amazing swiftness, he will not reach until the 11th of May.
In spite of these drawbacks, the smallest and swiftest of the planets will be a charming object in the early of the planets will be a charming object in the early
evening sky from the beginning to the middle of April.

No other planet is like him. Not a fixed star can be compared with him in brilliancy when seen under the same light, unless it may be Sirius, which he somewhat resembles, shining with a white light, though we have seen him take on a golden aspect or a rosy hue. Easily as he may be seen in this latitude, it is almost impossible to detect his presence in the central and northern portions of Europe. It was a life-long sorrow to Copernicus that he never had a glimpse of the little planet that travels nearest to the sun.
We give Mercury's position at elongation, though he will be visible for eight or ten days before and after the event. On the 8th he sets about 8 o'clock, nearly an hour and three-quarters after the sun. The best time for observation is three-quarters of an hour after sunset, about 7 o'clock. The observer should command an unobstructed view of the northwest horizon, and note carefully the point where the sun sank below the horizon. Mercury will be found about 9° north of the sunset point. There are no large stars in his vicinity, but he is plainly visible to those who look in the right place. An opera glass is a valuable aid in picking him up. Before the 8th he will be farther south, and after the 8th, he will be farther north than at elongation.
Even when found he is easily lost, hiding himself in the twilight glow, and then suddenly reappearing, as if taking a conscious pleasure in baffing the curiosity of those who are earnestly seeking to behold his face. Audacity is the prominent characteristic of the smallest of the planetary brotherhood. The most painstaking observer has not succeeded in finding out the cause of the incomprehensible acceleration of his perihelion point. It is generally conceded that astronomical science has at present no means capable of solving he problem.
Mercury persistently hides from human view any small planet or planets that may make their swifter circuits within his own orbit, though practiced observers have traveled nearly round the globe, hoping to discover intra-Mercurial prizes during total eclipses. He manages as faithfully to keep the secrets of his physical organization concealed within his own domain, or
in the dense atmosphere that possibly surrounds his solid crust.
We know little more about him than we 'did when the telescope was first invented. Amateur astronomers with ordinary telescopes have seen bright spots on his surface indicating a diurnal rotation of about twentyfour hours; blunted cusps and an irregular terminator, interpreted as the shadows of mountains, eleven miles high; a departure from a spheroidal form; and even a hole through the center. Practiced astronomers, with hole through the center. Practiced astronomers, with
the largest telescopes in the world, fail to see these the largest telescopes in the world, fail to see these
marvels on the disk of our swift-footed brother, and give little credence to them.
Nearly all that is known of Mercury may be comprised in a few lines. He has phases like the moon. At eastern elongation, he appears like a half moon; before that event he is gibbous, and after that event he takes on the form of a crescent. These are his aspects while evening star, which occur in reversed order while he is morning star. When beyond the sun, he is round and small, his diameter being $5^{\prime \prime}$. When nearly
between the sun and the earth, he take on the phas between the sun and the earth, he takes on the phase of a very slender crescent, his diameter being $10^{\prime \prime}$ or $12^{\prime \prime}$. There is reason to hope that the astronomy of the future holds within its grasp the key to many scientific secrets, and that human ingenuity will succeed in finding out something more concerning the planet whose
close proximity to the sun renders him an exceedingly close proximity to the sun renders him a
difficult object for accurate observation.
On the 27th, at 10 o'clock in the afternoon, Mercury is in inferior conjunction with the sun, passing between the earth and sun, completing his course as evening star, and reappearing on the sun's western side to run his short course as morning star.
On the 28th, he encounters Venus, and the planets are in conjunction, Mercury being $1^{\circ} 42^{\prime}$ north. This event, occurring the day after Mercury's inferior conjunction, shows how near both planetsare to the sun and how entirely they are hidden in his rays. It may seem
strange that Mercury, having just passed between the earth and the sun, and Venus nearly ready to pass beyond the sun, should be side by side in the sky. But this is the way they would look to an observer on the earth if they were visible.
The right ascension of Mercury on the 1st is 1 h .47 m .; The right ascension of Mercury on the 1st is 1 h .47 m. ;
his declination is $12^{\circ} 57^{\prime}$ north; his diameter is $64^{\prime \prime}$; and he is in the constellation Aries.
Mercury sets on the 1st soon after half past 7 o'clock
inthe evening; on the 30th he rises at half past 4 o'clock in the morning.

JUPITER

is evening star. He is beautiful to behold as he makes his way over the celestial road, followed by his twinkling attendant Regulus. Planet and star keep about the same distance from each other during the month,
for Jupiter is in stationary aspect, and varies little in his bearings. It is well to enjoy the present beaming aspect of the Prince of Planets, for hiscourse lies southward, and he is approaching the aphelion of his orbit. More than six years must intervene before, in 1892, he
declination, when he will again take on his most superb aspect.
The right ascension of Jupiter on the 1st is 9 h .56 m .; his declination is $13^{\circ} 52^{\prime}$ north; his diameter is $404^{\prime \prime}$ and he is in the constellation Leo.
Jupiter sets on the 1st at a quarter before 4 o'clock in the morning; on the 30th he sets at 2 o'clock.

SATURN
is evening star, and he is a lovely object in the western sky, making his transit before it is dark enough for him to be visible, and sinking below the western horizon before midnight when the month commences. He, like Jupiter, is nearly stationary during the month.
The right ascension of Saturn on the 1st is 5 h .12 m ; his declination is $21^{\circ} 52^{\prime}$ north; his diameter is $16 \cdot 6^{\prime \prime}$; and he is in the constellation Taurus.
Saturn sets on the 1st soon after half past 11 o'clock in the evening; on the 30th he sets about 10 o'clock.

neptune

is evening star, and fast approaching the sun. He is the first of the four great planets to disappear below the horizon.
The right ascension of Neptune on the 1st is 3 h .18 m .; his declination is $16^{\circ} 31^{\prime}$ north; his diameter is $2 \cdot 5^{\circ}$; and he is in the constellation Taurus.
Neptune sets on the 1st about half past 9 o'clock in the evening; on the 30th he sets at half past 7 o'clock.

uranus

is evening star. He is, on the $1 \mathrm{st}, 12 \mathrm{~m}$. east and 35^{\prime} north of Eta Virginis, a third magnitude star in Virgo, having changed his position but little since his opposition. He may still be seen with the unaided eye, though the telescopic view is more satisfactory.
The right ascension of Uranus on the 1st is 12 h .2 m .; his declination is $0^{\circ} 33^{\prime}$ north; his diameter is $3 \cdot 8^{\prime \prime}$; and he is in the constellation Virgo.
Uranus sets on the 1st shcrtly.after 5 o'clock in the morning; on the 30th he sets soon after 3 o'clock.
venus
is morning star, is very near the sun, and will soon pass beyond the great orb.
The right ascension of Venus on the 1 st is 0 h .19 m .; her declination is $0^{\circ} 34^{\prime}$ north; her diameter is $10^{\prime \prime}$; nd she is in the constellation Pisces.
Venus rises on the 1st at a quarter after 5 o'clock in the morning; on the 30th she rises a quarter before 5 o'clock.
is morning star, creeping slowly on his course, receding from the sun and approaching the earth. April closes with Neptune, Saturn, Jupiter, and Uranus as evening stars, and Mercury, Venus, and Mars as morning stars.
The right ascension of Mars on the 1st is 0 h .7 m .;
his declination is $0^{\circ} 12^{\prime}$ south; his diameter is $4 \cdot 2^{\prime \prime}$; and he is in the constellation Pisces.
Mars rises on the 1st about ten minutes after 5 o'clock in the morning; on the 30th he rises soon after 4 o'clock.

the moon.

The April moon fulls on the 29th at 14 minutes after 1 o'clock in the morning. The waning moon is in close conjunction with Mars and Venus on the 14th, the day before her change. The new moon of the 15th is at her nearest point to Mercury and Neptune on the 16th, in conjunction with Saturn on the 18th, with Jupiter on the 23d, and with Uranus on the 26th. There is nothing of special interest in these conjunctions, for they are either invisible or moon and planet are far apart as they pass on the star-spangled road.
Our fair satellite, however, gets up a charming exhibition on a more southern belt of the earth's territory between the limiting parallels of 28° north and 38° south latitude. She occults the planet Venus on the 14th at 3 o'clock in the afternoon. The close conjunction occurring in this vicinity, for moon and planet are at that time only 6^{\prime} apart, becomes, farther south, an occultation beautiful to behold. The slender crescent, only ten hours before new moon, occults the fairest of the stars, at that time nearly a full orb. But while the moon hides Venus, the sun's bright rays hide both moon and planet. Conjunction and occultation are, therefore, invisible to the naked eye, and, in this respect, we are as well off as our southern neighbors. The phenomenon may be observed with the aid of a powerful telescope, for through its light-gathering glass the brilliant planet may be followed in full day-
light until she is nearly ready to pass beyond the great light until she is nearly ready to pass beyond the great
luminary. It is tantalizing that an occultation of Venus should occur under conditions so unfavorable for observation.

Furniture Polish.

The subjoined simple preparation is said to be desirable for cleaning and polishing old furniture. Over a moderate fire put a perfectly clean vessel. Into this drop two ounces of white or yellow wax. When melted, add four ounces of pure turpentine, then stir until add four ounces of pure turpentine, then stir until
cool, when it is ready for use. The mixture brings out the original color of the wood, adding a luster equal to that of varnish.

