Stixutifir Amprian.

ESS'NABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 PUBLISHED WEEKLY ATNo. 361 BROADWAY, NEW YORK.

O. D. MUNN.
A. E. BEACH.

TEIEIIS FOR THE SCIENTIPIC AMERICAN

 One copy one year posrage included...One copy, six months postage included
cratis for every cuub of fve subscribers at $\$ 3.20$ each ; Additional same proportionate rate. Postage prepaid.
Remit lypostal order. Address
UNN \& CO .. 361 Broadway,
The Scientific American Suppiement
Is a distinct paper from the SCiEvTipic American. THE SUPPleminni is issued weekly. Every number contains 16 octavo pages, uniform in size
with SciENTIIC AMERICAN. ग'erms of subscription for SoPMIEMENT,
 all news dealers throughout the countrs.
will be sent for one year postage free. on receipt of seven dolars. Both papers to one address or different adơresses as desired. The su fest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 661 Broad way, corner of Franklin street, New•

Scientife american Export Edition.
odical, issued ouce a month. Eich number contains about une bundred odical, issued once a month. Each number contains about one hunired
large quarto pages, profusely illustrated. embracing:
fl.) Most of the plates and pages of the four preceding weekly issues of the Scimetiric plates and pages of the four preceding weekly issues of the Scinciti
AmEucAN, with its splendid engravings and valuable information: Commercial. trade, and manufacturing announcements of leading houses.
Terms for Export Edition, 85.00 a year, sent prepaid to any purt of l'erms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The Scisvirific Amirican Export Edition has a larke guarinteed circu-
lation in all commercial places throughout the world Address MUNN \& co., 361 Broadway, corner of Eranklin street, New York

NEW YORK, SATURDAY, AUGUST 30, 1884.

REMOUAL.

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CON'TENTS OF

the scientific aimerican supplement NO. 452,

For the Week ending Angnst 30, 1884.
 I. ENGINEERING AND MECBANICS.-Movable Theater Stakes
Work enaraving of the stage at the Madison Square Theater, New

TECHNOLOGY Vermilion Manurfacture
How in Measure the Heights of Trees. - -i Alinure.
V. ELECTRICITY, HEAT. ETC - The Laws of Volume and Specif

 VII. NATURAL HISTORY.-The Basset Hounds.-With engrav VIIC. HORTICOLT'URE.-Papaver Umbrosum.-With engraving ..
IX. MEDICINE. HYGIENE. ETC.- Nature of Malaria and Its Peculi

BALANCING WHEELS AND CYLINDERS

For wheels of large diameters and wheels and cylinders of great velocity, accurate balancing is required. It is not yet determined that a standing balance aud a running balance can be made identical, especially when a belt is used, as on the flywheel of an engine, or the momentum of a crank is to be overcome. But for many purposes the standing balanc is near enough to accuracy to prevent tremor and injurious jar in running. When the wheel can be turned inside as well as outside, the rim balancing is not always necessary if the arms approach uniformity in size; but there are cases where inside turning is impossible, and balancing becomes
necessity. There are three methods of balancing in use, the most common being the suspension of the cylinder or wheel on
the centers of an arbor or shaft. This is not alway accurate, as, if the wheel is very heavy, the centers must be set up too hard to allow the wheel or cylinder to turn easily. A better way is to suspend the wheel by the journals on which it is to run; but of these are seated in boxes, the same objection will exist. Tu obviate this, the journals are sometimes mounted on friction rollers; but a much more accu rate method is to mount them on two parallel bars, planed and filed to exactness and tixed perfectly level. These ar long enough to allow the journals to travel far enough to make a complete revolution of the wheel or cylinder shaft, 3 inches diameter requiring bars something over 9 inclies long. By this method the degree of accuracy obtained is very great, as the journals bear on the bar at only one point and the mass rolls at a touch.
There is still another method, especially applicable to large turned wheels, as the fly whecls of steam engines. In this the wheel, after being bored and turned, is suspended by the central bole so that the wheel hangs horizuntally. The wheel is beld by an eye bolt accurately turned, having mounted on it two disks with shoulders turned to fit the bore of the wheel; thus the eye of the bolt is in the mathematical center of the wheel. The wheel is then suspended by a crane, and a spirit level laid on the turned edge of the rim. If the wheel hangs true, the level will show no declination; but the slightest variation of weight will deflect the rım. Pieces of iron are hand clamped on the opposite side, and when accuracy is attained the clamp and weight are weighed, and a pattern for a casting to go inside the rim is made accordingly.

Coforing of Bnass.

We translate the following from Industrie Zeitung:
If brass he covered with moistened sand for some time a beautiful brown coloration is developed upon the surface, which remains bright when polished with a dry brush. In order to render the color more light or green, it is covered with a film of verdigris obtained by evaporation of dilute acid applied to the surface. Theantiqueappearance of the article thus treated is quite beautiful and more or less lasting. An objectionable feature of the process is the extent of time necessary for its execution, and it bas for this reason been substituted by another process.
The brass being beated is immersed in old or dilute nitric acid, and left therein till the surface is covered with scales; it is then cleansed with sand, washed, and bronzed. The term b. inns.
Brown is obtained by immersion in a solution of nitrateor chloride of iron; the intensity of the color being dependent on the strength of the liquid-for violet colors antimony chloride being used; while a chocolate color is obtained when the surface is covered with a layer of humidiron oxide and highly heated, and polished with graphite. By moistening the brass with a solution containing iron and arsenic chloride, in olive-green is imparted to it. The liquid is prepared by dissolving the respective metals in muriatic acid. The surface is polished with a graphite brush and coated with a lacquer composed of 1 part varnish, 4 parts turmeric, and 1 part gummi gutta.

A steel color is developed by using a boiling solution of arsenicchloride, while a careful application of a concentrated solution of sodium sulphide causes a blue coloration.
Black, being generally used for optical instruments, is obof which tin nitrate has been added. In Japan the brass is bronzed by using a boiling solution of copper sulphate, alum, and verdigris.

The success in the art of bronzing depends in a chief measure upon the temperature of the alloy and solution, the quality and proportion of the metals used in preparing the alloy, length of time of immersion, drying, and many other particularities-as regards care of the manipulations-which demand a dexterity only acquired by practice.
When it is not the object to impart to the surface an artificial color, but to protect it against the formation of rust or oxidation, a coating of the surface with a varnish called "lacquer" will then suffice. The metal is heated as above, steeped in acid, and waslıed with water; it is again immersed in pure nitric acid, washed, and dried in sawdust. Or the brass is placed in dilute nitric acid-1 part of acid to 1 part of water-until the surface appears quite white, being then washed and dried as before. The first method produces a
bright, the latter a dull surface; by polishing the projecting parts this imperfection is partly overcome. The articles are again immersed in acid, washed with water, containing some crude potassium bitartrate, and dried in hot sawdust. The so prepared articles are beated on a bot plate and then
varnished. The varnish used is prepared by dissolving 1 ounce shellac in 1 pint alcobol. Pigments, sandalwood dragon's blood, and annatto are introduced to increase the color and gloss; also turmeric, saffron, gummi gutta, etc. The former produce a yellow, these a red, and a mixture of both a beautiful orange colored varnish.
An excellent light colored lacquer consists of 3 parts aloes, 1 part turmeric, and 1 part plain varnisb. A yellow lacquer s composed of 1 part turmeric, 4 parls dragon's blood, and 1 part of the spirit varnish. A red lacquer can be made by mixing 32 parts of annatto, 8 parts dragon's blood, and 1 Lac
Lacquers fade and are chemically altered by the rombined action of light and beat, and should be kept in vessels of glass or earthen ware; they are also affected by metals.

The Microscope in Analysis.

The recent gift by Andrew Carnegie of $\$ 50,000$ to Bellevue Hospital, New York city, to be devoted to the further ance of microscopic study and microscopic investigation, is a step which must go far toward adding to the value of the microscope as an aid to the chemist as well as to the physician and surgeon.
With every improvement in that noble instrument, the telescope, new worlds are revealed to the astronomer, and the science of astronomy owes as much to the skill of Alvan Clark, the instrument maker of Cambridge, as to the patience and learning of Secchi or of Proctor or Langley So it is in respect to the microscope, and the skillful and ingenious men who are continually improving and perfect ing these invaluable instruments. The modern analytical chemist finds a microscope almost asindispensable in bis re searches, especially in organic analysis, as are his retorts and acids and tubes.
The intricate relation which botany bears to medicine presents a field in which intelligent use of the microscope must produce excellent results. The student of medicine is to-day enabled to unravel, before the potent glance of the perfected microscope, the deepest mysteries of the medicinal plant, flower, herb, or root. The nature, virtues, attributes, etc., of these can be studied at leisure, and gazed upon with an ege that magnifies from a few hundred to thousands of diameters.
The brilliant discoveries by Pasteur and by Koch are as much due to the perfected microscope as to any one cause. The nature and habits of the tubercular bacillus bave only been capable of study since the microscope was so improved that organisms heretofore unrecognizable stand revealed. Disease, has been traced to its source, the presence of bacteria and germs, by the use of the finest microscopic appliances; and in fact a thorough course study in the art of intelligently using this instrument is becoming yearly a greater necessity, not only to the medical student but the pharmacist who wishes to keep abreast of the age we live in. The relation of the microscope to cholera is at present an interesting and close one. And when another potent servant of man, electricity, is summoned to aid the microscope, the power of the latter is increased to an astonisbing degree. Recently in London such an apparatus threw upon a screen the image of a cholera germ, magnificd two million times, and in which these long hidden and minute organisms appeared the size of the bunsian band.
The motto of the modern microscopist seems to be: There is nothing hidden that shall not be revealed." And be determination of the modern student of medicine and of drugs and their effect and nature should lead bim to expend less upon cigars and divers luxuries and aim to be the possessor of an instrument without which three-fourths of the realm be proposes to enter will remain invisible. Fortunately, the growing perfection of the instrument does not imply increased cost. And it is now possible to secure a micrnscope of marvelous power for a sum which a decade ago would by no means have secured a much less perfect instrument.
We are satisfied, concludes the Independent Record, of this city, that in the next few years the microscope, in the bands of brainy and quick witted American students, must pave tie way for discoveries in the realm of medicine that will be worthy of a place beside those of Pasteur or of Koch.

A New Revenue Cutter.

The Commodore Perry, a Usited States revenue cutter, ust completed by the IVnion Dry Dock Co., of Buffalo, for service on the great lakes, is an iron steamer of 451 tons displacement. Her length over all is 161 feet, on the water line 145 feet, beam 25 feet, depth 11 feet 2 inches, draught of water 9 feet. Her rig is that of a Iopsail schooner. Her engines and boiler were constructed by the Hartford Engineering Co. The boiler is a returu tubular, 15 feet,long and 11 feet 6 inches diameter of shell. She bas a single direct acting engine, cylinder 38 inches diameter and 40 inch troke, single screw propeller 10 feet in diameter and of 4 blades. Her decks and spars are of white pine. All bands from the captain down are quartered below the main deck; the captain's cabin is in the extreme stern next the ward room. The engine and boiler are amidships, and the men orward.
The woods used for finishing are white pine, black walnut, nahogany, cherry, and ash. She is a neat, bandsome little teamer, inside and out, in every way creditable to the by Mr. Frank R Rosseel, of Buffalo.

