Srientific Amexican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN.
. E. BEACH.

TELRIS FOR THE SCIENTIFIC AMERICAN

 One copy, one year postake included...One copy, six months postage include
${ }_{83}^{230}$
Clabs.-One extra copy of The Scientific American will be supplied same provortionate rate. Postage prepaid.
Remit Ny postal order. Address
MUNN \& CO.. s61 Broadway, corner of Franklin street, New York
The Seientife American Supplement
Is a distinct paper from tbe Scientific american. The suppiement Is issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIIC AMERICAN. Terms of subseription for SupHEMENT, with SCIENTIPIC AMERICAN. Yerms of subscription for SUPPLEMENT,
850 a year, postage paid, to subscribers Single copies, 10 cents. Sold by all news dealers tbroughout the councrs
will be sent for one -Tbe Scientific american and Sopplicmen will be sent for one year postage tree. on receips of
papers to one address or different addresses as desired. The siffest way to remit is by draft, postal order, or registered letter.
Address MUNN $\&$ CO. 361 Broad way, corner ot F ranklin street, New

Sclentife American Export Edition

Whe Scinntific Ambrican Export Edition is a larke and splendid per:
odical, issued once a month. Eich number contains about ine hundred odical, issued once a month. Eich number ecntains about (ne hundred
large quarto pages, profusely illustrated, embracing:
(J.) Most of the plates and pages of the four preceding weekly issues of the ScivnTiPic plates and pages of ibe four preceding weekly issues of the SCwantiflc
AMEricas, with its splendid engravings and valuable in ormation: (2.) Commercial. trade. and manu facturing announcements of leading bouses. T'erms for Export Edition, $\$ 5.00$ a year, sent prepaid to any nart of the world. Single copies 50 cents. Manu facturers and others who desire
to secure foreign trade may have large, and handsomely displayed announcements publisbed in this edition at a very moderate cost. The Scifisific ambilican export Edition has a large guaraiteed circulation in all commercial places throurhout the world. Address MUNN

NEW YORK, SATURDAY, AUGUST 16, 1884.

REMOVAL.

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

table of contents of
the scientific american stpplement NO. 450,
For the Week ending August 16, 1884. Price $\mathbf{1 0}$ cents. For sale by all newsdeaters

1. CHEMISTRY.-Pyroxyifn-Qun Cotton.-What strength of nitric acid will yield the best results.-By G. Pise......
Liquefaction of Gases.-The freezing of ether and alcohol.
I. engineerjng and meceanics.-Lifting Bridge for Double

Track Railway.-Full page engravings.
The Heavy Guns of 1844.A lecture by Co.. E. MArviAND, Sup.
Royal Gun Factory, Woolwich,-Improvements in powder, in me Royal Gun Factory. Woolwich.-Improvements in powder, in me-
chanical appliances, and in production of large masses of steel. chanical appliances, and in production of large masses of steel.
-Relative excellence of latest types of heavy guns.-Compara--Relative excellence of latest types of heavy guns.-Compara-
tive powers of breech-loading guns of 1881-1884.-With 5 Agures....
iII. TECHNOLOGY.-Retouching Gelatine Negatives Photographing a Pistol Ball and Sound Waves.
Bleaching Agents of the Future.-By E. DwIGH
2. electricity -History of the Electric Telegraph.-Principle of Cooke and Wheatstone's Telegraph.-Fardely's and Leonhardt's Receivers.-Siemens and Halske's dial telegraph.-Jaconi's telegraph, etc.-
V. DECORATIVE ART, ETC.-Sheraton Drawing-room Furniture.-
rigures..
VI. Astronomy.-How the Earth is Weighed.--The Cavendish ex

VIL GEOLOGY MiNiNG. ETC.-The Calumet and Hecla Mines and shafts--The surface plant.......................................
The Extinct Lakes of the reat Basin.-Decrease in size of The Extinct Lakes of the sreat Basin.-Decrease in size of
Great Salt Lake. - The " fossa lake."-Topography of the Great

dill NATURAL HISTORT-Prize Dors of the Vienna Dog siow.

 A Dog Plans and Executes with Reference to the Future... IX. miscellan ineois.-The Captive Balloon at the Tarin Bixhbi-tion.-With engraving...Military Tournament at the A\&ricultural Hail, London.........
Th8
The Guise Co-operative Experiment The Guise Co-operative Experiment...
The Economic Uses of the Mesquite.-Uses of different parts of

THE GREELY EXPLORERS AT HOME.

It was on the 17 th of July that the telegraph brought the news of the return of the Greely relief expedition to St . John, N. B., with Lieut. Greely and five of his companions who were rescued alive, and the bodies of twelve who had perished. Since then, with the more full details that have been furnished, the general sentiment of the country has strongly expressed itself in words of earnest commend ation for both rescued and rescuers. The steamers composing the relief expedition, the Bear, Thetis, and Alert, were ordered to remain at St. John until metal caskets could be obtained for the bodies of the dead, and then to come home ward gradually to more southern latitudes, so that the yer feeble survivors might not be suddenly exposed to extreme warm summer weathe
In accordance with this plan, the first official reception to the returning party on United States soil was given at Portsmouth, N. H., Aug. 4. There was a procession, in which Lieut. Greely was too weak to take a part, but whinch he reviewed from a balcouy, and speeches were made by Secretary Chandler, Senator Hale, Representative S. J. Randall, Commander Schley, and others. The scene wa an affecting one, and the exercises were marked by a simple dignity well according with all the circumstances of the occasion, Secret ary Chandler concluding his address by saying. "To the rescuers and the rescued are these receptions most fitly given, and we are here assembled to do them honor; but our first duty is to pay our tribute of praise and of mourning to those devoted men who, after months of suf fering and starvation, borne with heroic fortitude and patience, perished as truly on the tield of duty as if they had met their fate at the cannon's mouth.'
Lieut. Greely, in a letter which was read, bore strong testimony to the energy and skill of Commander Schley and the officers of the squadron, who so determinedly pushed their vessels through the ice packs to Cape Sabine earlier in the season than was ever before accomplished, adding "Had they known our exact condition and locality, they could not have reached Camp Clary in time to have saved another life." In view of the blundering management of the former relief expeditions, however, the following portion o Lieut. Greely's letter must seem almost like grim sarcasm to the officers who had charge of them: "Never for a moment, in our darkest or gloomiest bour, did we doubt that the A merican people were planning for our rescue, and from day to day, as food failed and men died, that faith and that certainty gave strength to us who lived.
The buriness of the relief ships was formally ended on the 8th inst., when the remains of the dead were formally de livered by Commander Schley to General Hancock, at Governor's Island, New York. Each of the caskets was placed on an artillery caisson, and a column thus formed, the mili tary with arms reversed, the band playing a dirge, and minute guns being fired, the procession moved to the hospital, where the bodies were left for final disposition according to the wishes of the friends or relatives of the dead heroes

SCREW BOLT HEADS.

While machine screw heads are of the solid metal from which the shanks of the screws are turned, most of the screws and bolts used in woodwork have their heads struck up cold, as are those of rivets and of nails, or else hand forged or machine forged from the red hot bar. Rivet-made heads are necessarily made at one blow, the metal being cold, and to such an extent has this possibility of work been carried that bars of Norway iron, seven-eighths of an inch diameter, are worked cold into headed bolts, a single blow forming a head one inch and a quarter diameter. The amount of heat generated by the blow necessary to instantly change the direction of the fiber-of the Iron is such that the dropped bolt cannot be handled with bare hands for some time after its formation.
If the heat thus generated could all be utilized and concentrated on the head formation, the result might be something approaching a weld, and the head be a solid. But these rivet-headed bolts are not solid headed; the fibers of the straight bar are " broomed out," like the rays of a mushroom, without solid connections. This is caused partially by the suddenness of the change from perpendicular to transverse, and partially by the dissipation of the heat engendered by the blow, which is conducted from the rivet itself to the die and its surroundings.

When these heads are formed by successive blows while the iron is hot the result is somewhat differeut, as the fibers are gradually bent to the new direction, and near the shank they are partially welded. The heads of boiler rivets are generally welded, being brought to form under a white heat. But in the attempts to form heads by upsetting, it may be questioned if the violent redirection of the fibers of the iron in the cold rivet heading, or the slower bending of the fibers in the repeated percussion of the hammer while the iron is hot, retains the original tensile strength of the iron. It is from that of the original shank, the fibers of the iron must be forced apart, and cousequently they must become less coherent as farther apart they go.

Machine screws generally are madeon an entirely different principle. Instead of the shank being the original of the diameter of the screw, the head is taken as the measurement, and the difference between head and shank is turned off into chips. At first sight it would seem that there is a very great waste of material to produce the required result; but as an
compensates for much of this loss, and the uniformity of the product is particularly desirable. Beyond this is a claim made by thoughtful mechanics that the undisturbed relation of the tibers of the iron in head and shank is a source of trength.
However this may be, it is certain that the Spencer system of producing machine screws excels in rapidity, in exact ess, and in uniformity of the product. The waste bring back more than half of the first cost of material, and at least seventy-five per cent of the oil used is saved by means of the centrifugal machine.

STRAIGHTENING SHAFTS

Managers of machine shops and foremen of men some times allow shop practices that are ruinous to tools and in jurious to the mechanics themselves. One of the most fre quent abuses of this sort is the methods of straightening shafts for turning is the lathe. A common practice is to suspend the shaft on the lathe centers, and then, with a bar, using the tool carriage or the vee-ways of the lathe for a fulcrum, spring the shaft with a powerful leverage. Of course, the centers and the two spindles of the lathe have to bear the brunt of this trying ordeal, as may be supposed to their detriment as accurate portions of an accurate ma chine. Perhaps a worse practice is that of striking the shal with a hammer while thus suspended on the lathe centers Hardly less injurious to the shatt itself is the straighten ing on the anvil by sledge blows, the projecting ends of the shaft being left unsupported; it has been demonsirated by tests that the vibrations caused by this treatment diminish the torsional resistance of the bar. If a bar or shaft is to be straightened cold on the anvil, the ends of the bar should be supported on wooden horses. For short crooks in the shaft the hammer straightening should be preceded by heat ing to a "black" heat.
The proper way to straighten a shaft is the obvious one by pressure-screw, or cam, or lever pressure. A frame with ways like those of a lathe can be made, either of iron o wood, to receive two head stocks with centers, one of the centers or both of them to be projected and retracted by a screw and hand wheel, as is the center and spindle of the ordinary lathe foot stock. If the frame is long enough, a supplementary double head can also be used between these two, having a center at each end, so that the process of straightening two short shafts may go on at the same time.
There should be a sliding carriage $\mathrm{t} \boldsymbol{\mathrm { n }}$ traverse the way between the beads, carrying a horse-neck screw press, and two vee-scored blocks, which can be moved nearer togethet or farther apart as the crook in the shaft makes uecessary The operation is simple. The shaft, having been centere by its ends, is suspended, and its "outs" ascertained and marked by rotating by hand and marking with chalk. Then, released from the centers, it rests on the carriage, which las been moved to one of the chalked points. A turn of the screw, the lower end of which is provided with a shallow vee-scored block that swivels on the screw, gives a pressure between the sliding vee-scored blocks on the carriage, when the carriage is moved to ancther chalked spot, repeating the same performance. The carriage is held to the ways of the frame by hooked clips that are attached to it, or it may be held in place by a bolt, bar, and cam, or wedge lever, as is the foot stock of some lathes.
With this contrivance two men can do a large amount of accurate work very rapidly. The rapidity of the work may be increased by substituting a cam lever for the screw, on the same priuciple as the lever used in bending and straight ening railroad rails.

STEEL TESTS

So many are the varieties of so-called steel nowadays that it is difficult to have a test that shall apply equally to all. But for tool steel its quality can be readily assured by a common smith's test. It should be understood that steel for tool purposes-for the cutting of the metals particularlyshould be a composition capable of being bardened and drawn to temper. To be sure, it is claimed that there is suitable tonl steel for certain cutting purposes that leaves the smith's hammer in good condition for use. It may be so, but it is evident enough that the proper condition of this steel depends upon its manipulation, and as that is less or more, the steci varies in resisting and durable qualities in use. Chrome steel and Mushet's steel are both valuable fo certain purposes, but it is not always known when the proper quality or condition for these certain purposes is reached. Mechanics generally will prefer to guide the coming to condition by their own judgment, rather than to trust to the exactness of the manufacturer in proportioning the components, properly mixing them in a melted state, and afterward working the resultant
The old-fashioned method of testing tool steel is as gond practical method as that of a careful chemical analysis. It is simply the heating and drawing under the hammer to a slender point, plunging while red hot in cold water, and when chilled striking it with a hammer across the edge of conditions, If the steel will harden it will break, underthes conditions, without bending back and forth. Steel that will not harden under these conditions is not fit to temper and will not retain a cutting edge. Steel that is so "high" that it cannot be heated red hot and chilled in water withou flying may do for some purposes, and retain a sufficiently rigid edge by air hardening. If a piece of steel can be forged into a cold chisel, be hardened, tempered, and used, such steel is good steel, and may be relied upon for all ordi nary shop purposes.

