Curcegpaydents.

Keeping Beer with Oil.

To the Editor of the Scientific American:
In this country we continually bave thunderstorms from March to October. For months together a night never passes without one more or less severe, generally the latter I always keep beer on draught, and find it never goes sou if it is bermetically sealed hy baving oil poured on the top This should be poured into the barrel when tapped. On the other band, without the oil the beer does not keep week.
Assam, Bengal, April 30, 1884.

How Earthenware is Made.

The Trenton potters use for their white ware, clays from the State of Delaware and Delaware County, Pennsylvania which are totally or almost entirely free from oxide of iron These clays are found in the place of their first deposit, and therefore contain all the sand of the gneiss or granitic rock of the disintegration of which they are the product. New Jersey clay, which is not found free from oxide of iron, but is very much more plastic, is mixed with these clays to render them manageable. All of the seggars, however, that are used in the Trenton potteries are made of New Jersey fire clays. The value of good fire clay to the potter will be understood, when it is considered that true porcelain could not be made in England, owing to the scarcity of a cheap material for seggars, ten per cent of the ordinary seggars being lost in the firing of true porcelain.
The process of preparation of clay for making good ware is as follows: After having been washed, the clays, reduced to the consistency of cream, are separately passed through lawnsieves, and are then mixed by measure in proportions that will give the required plasticity in the mixture. The mixture is now allowed k filns." fader which furnace fues. When a uniforml doughy mass is obtained, the prepared clay is taken from the troughs, passed througb a pug mill, cut into rough lumps, and is stored for a time not exceeding one year in a damp cellar, where it disintegrates by fermentation. The process of preparing the rotted clay for actual use is called "slapping" or "wedging." A large mass of clay is placed upon a bench, and the workman, cutting it through with a wire, lifts up the upper balf, turns it about half way round, and throws it down violently upon the half which remains on the bench. The operation is repeated until the mass is intimately mixed, and every vesicle containing air bas been broken and the air expressed.
The process of preparing porcelain paste is much the same as that employed for the stoneware paste, a stirring vat be ing employed to knead up the mass of water with clay before it passes to the subsiding vats. The grinding of the feldspar, chalk, broken porcelain, etc., which enter into the composition of the paste, must be well done, and all particles of
iron, mica, and such foreign substances must be removed. iron, mica, and such foreign substances must be remover.
Theingredients are mixed either in the form of slip or in the The ingredients are mixed either in the form of sip on in the method, but more accurate. Analysis of the best Sevres porcelain manufactured between the years 1770 and 1836 gave this result:

Silica	58.00
Alumina	34:00
Lime	
Potassa.	
	${ }^{99} 5{ }^{-}$

The mixture is freed of superfluous water by being sub jected to bydraulic pressure in closely woven sacks.
There are three metbods of fashioning the innumerable and various articles made from clay. The first and most ancient is that of throwing, in which the thrower or jigge lathe. Using both bands be works the lump into the shape of a rude cone, and then flattens the mass within a few inches of the table, the object of the operations being to force out any air bubbles that may still remain in the clay. By means of his hands and fingers, and referring continually to measuring sticks, he fashions the vessel according to a model or after bis own fancy.
Few jiggers are employed in our potteries, the best ex ample of this art being found in the country earthenware noteries. Presswork is the method commonly employed. This work is done in moulds made of plaster of Paris, onebalf of the pattern being formed in one side of the mould, and the other balf in the other side. The two moulding pieces are then fitted accurately together. Handles are moulded separately and fastened on with slip. Handles of teapots, fluted solid rods, and all such slender orbaments are made by forcing clay, under great pressure, through a nar-
row bole in tbe bottom of a piston previously charged with row hole in the bottom of a piston previously charger with
dough clav. As the thread of clay issues, it is cut in suitable lengths. From these pieces, the ornaments are bent and fastened on with slip by the bandlers. For articles of very irregular sbape a method called casting is employed. The two balves of the mould are fastened together, and slip is poured in until the cavity is quite full. As the moulds are previously thoroughly dried, the absorbent power of the plaster soon abstracts the water and makes the coating of clay next to it stiff and doughy. When the liquid is now poured out, this doughy coating remains. If each half bas allowed to dry to the green or most tenacious state, and are
then joined with slip. The methor of casting is that usually employed in moulding porcelain.
Anotber method of forming articles in porcelain we may call the crust method. The dough is spread with a rolling pin upon a moistened sheepskin, and is transferred over the mould by lifting it carefully upon the skin. All pieces, whether pottery or porcelain, are finished upon the lathe when they bave dried to their greatest tenacity. A mois sponge and knives are the implements used in turning.
Owing to the low degree of tenacity possessed by the porceOwing to the low degree of tenacity possessed by the porce-
lain paste, hardly more than one-sixtieth as many pieces can lain paste, bardly more than one-sixtieth as many pieces can
be finished for fring in porcelain paste as in stoneware paste, by the same force in the same time.
Seggars are vessels of fire clay, in which all articles except the commonest earthenware are burnt. They are fashioned of clay slabs roughly cut with a spade and com pacted with a mallet, over an oval-shaped form. The bot
tom is put on separately and the whole is fired. The ware is placed in seggars, which are piled upon one another so that the bottom of each succeeding seggar forms a cover for he one immediately below. Only a single article of porcelain paste can be burnt in a seggar, and the bottom of the vent adhesion between the porcelain and the seggar. Seggars for stoneware may be filled, the pieces being separated by variously sbaped cockspurs, etc. Stoneware, W. G. ware, and kindred wares are raised in the kiln to a white heat, which is continued for thirty-six hours. The fires ar then allowed to cool, the seggars removed, and the biscuit taken out. This biscuit is very porous, and, when dresse of all rough prominences, is ready for the glaze.
The glaze for these wares is usually a "frit," composed of ground feldspar, twenty-five per cent; ground quartz, twenty-five per cent; sal soda, twenty-five per cent; plastic clay, fifteen per cent; and boracic acid. ten per cent, which is fused in a reverberatory furnace, ground in a mill, and mixed with water in glaze tubs. The bisouit is dipped in the slip contained in these tubs, the marks are affixed, and the articles allowed to dry. Since the glaze is much more fusible than the ware, a cherry-red beat is sufficient to fus the glaze. A porcelain furnace bas two stories. In the up per the ware is first fired, the ware being converted into soft, as distinct from a bard or stoneware biscuit. This biscuit is dipped in a glaze of ground quartz, feldspar, lime, and porcelain clay. In the second firing, which is done in the lower story of the kiln, the glaze and the biscuit are fused together, producing a translucent mass. Stoneware granite ware, etc., are chiefly decorated by a process called printing or transferring. The intended design is engraved upon copper or stone, and is then transferred in trausfer ink to the surface of a prepared elastie sheet. This sheet is stretched on a frame until the design is brought to the size of the article to be decorated. The pattern is now retransferred 10 zinc plate by the ordinary process of lithograph printing. The ziuc plate is engraved by electricity, and then presents all the gradations in depth and tone of the original design. The printed pattern is applied either to the biscuit or above the glaze, and may be finished hy hand and porcelain over the glaze, the ware being atterward ptacedin a muffle and subjected to a heat just sufficient to vitrify the colors, which must be of earthy character so as to form colors, which must be of earthy ctare
colored glasses.-Glassware Reporter.

Benzene a Product of Paraffine.

By Drs. Armstrong and Miller, communicated to the Chemical Society.-The authors described the results of their examination of the liquid obtained on compressing oil gas, such as is made by passing the vapor of petroleum through highly beated retorts. They point out that their material is in every respect similar to that examined by Faraday in 1825; and in which be discovered benzene. Besides benzene and its homologues, the liquid from oil gas contains hydrocarbons of the ethylene and acetylene series. It is noteworthy, they say, that the latter are none of them true homologues of acetylene, as they are incapable of form ing metallic compounds analogous to acetylide of copper They are probably all derivatives of allene $\left(\mathrm{CH}_{2} . \mathrm{C} . \mathrm{CH}_{2}\right)$ the isomer of allylene or methyl-acetylene. From the fractions boiling below benzene, two bydrocarbons of the acety lene series bave been isolated, methylallene ($\left.\mathrm{CH}_{3} \mathrm{CH} . \mathrm{C} . \mathrm{CH}_{3}\right)$, identical with the crotonylene separated by Gaventon from the mixture of bydrocarbons condensed by compressing coa gas, and bexoylene ($\mathrm{C}_{6} \mathrm{H}_{10}$), identical with that described by Schorlemmer.
The crystalline tetrabromides of these hydrocarbons bave oth been obtained in large quantity in a pure condition As yet it has not been found possible to isolate the interme diate hydrocarbon- $\mathrm{C}_{5} \mathrm{H}_{8}$. The fractions below benzene contain two olefines-viz., amylene and bexylene. A study of their oxidation products shows that both of these are the normal bydrocarbons. The amylene furnishes, on uxida tion witb permanganate, normal butyric acid. The hexylene is converted into normal valeric acid. In other words, the amylene is normal propyl-ethylene; the hexylene, normal butyl-ethylene. In conclusion, it was pointed out that this is an extension of the investigation of Thorpe and Young. By heating paraffine under pressure at a comparatively moderate temperature, they obtained a mixture, with cor responding olefines, of lower (normal) paraffines down to pentane. At the bigher temperature of the oil gas retorts, enes, benzenes, etc. It is not improbable, they state, that
he benzenes are products in a direct line of the action of eat on the paraffines; and that they are not built up, as ba been supposed, from hydrocarbons of the acetylene series.

decisions relating to patents.

of Pennsylvania
STUTZ v. ARMSTRONG \& SON.-PATENT COAL WASHING
Acheson, J.
Where it appears from the original papers in a case that a certain feature was within the contemplation of the in ventor as a valuable element in a patentable combination and it is proved that a claim embracing such feature was rased from the original application through a misunderstanding of the invention hy the solicitors, Held that the Commissioner of Patents committed no error in granting a eissue containing a claim embracing such feature
The fact that a reissue application was filed within two years after the grant of an original patent, while it may no be conclusive against the charge of unreasonable delay, is entitled to some consideration in view of tbat provision o the patent laws by wbich nothing less than two full years public use of an invention is a bar to an application for a patent.
In determining whether an inventor is guilty of inexcusa ble delay, the fact that the correction of a mistake by reisue was before any adverse rights bad accrued is a consideration of paramount importance, and it ought to count some thing in his favor that, being of foreign birth, erlucation and an alien tongue, be encountered difficulties in acquiring a knowledge of our language and laws.
There is no patentable combination in a mere aggregation of old devices which produce no new effect or result due to their concurrent or successive joint and co-operating action; but it is by no means essential to a patentable com bination that the several devices or elements thereof should coact upon each other. It is sufficient if all the devices co operate with respect to the work to be done and in further ance thereof, although each device may perform its own particular function only
If a patentee might bave claimed an element generally and broadly, most assuredly his more limited claim canno e successfully impeached.
It is settled tbat a disclaimer need not be filed until the court bas passed upon the contested claims.

United States Circuit Court.-Northern District few York
crandal et al. v. the parker carriage goods company. -PATENT LOOP FOR CARRIAGE TOP
Coxe, J.
A device which could not be used as a substitute for the patentee's invention without the exercise of invention is not a anticipation of it.
Where it can be seen that the patentee seeks by apt words fescription to secure what be bas honestly invented, and nthing more, the court should hesitate to regard with favo the accusation now so freely made against reissued patents.

A Brief Sermon on Cranks.

The Burlington Hawkeye publishes a great deal of non sense, but sometimes in its amusing way it states indispu able facts. The following is from a recent issue:
What would we do were it not for the cranks? How slowly the tired old world would move, did not the crank keepit rushing along! Columbus was a crank on the subject of American discovery and circumnavigation, and at last be met the fate of most cranks, was thrown into prison, and died in poverty and disgrace. Greatly venerated now 1 Ob yes, Telemachus, we usually esteem a crank most profoundly after we starve him to death. Harvey was a crank on the ubject of the circulation of the blood; Galileo wasan astronomical crank; Fulton was a crank on the subject of steam navigation: Morse was a telegraph crank. All the old abo litionists were cranks. The Pilgrim Fathers were cranks John Bunyan was a crank; any man who doesn't tbink as you do, my son, is a crank. And by and by the crank you despise will have his uame in every man's mouth, and a balf completed monument to bis memory crumbling down in a dozen cities, while nobody outside of your native village will know that you ever lived. Deal gently with the crank, my boy. Of course, some cranks are crankier than others, but do you be very slow to sneer at a man because be knows only one thing and you can't understand bim. A crank Telemachus, is a thing that turns something, it makes the wheels go round, it insures progress. True, it turns the same wheel all the time, and it can't do anything else, but that's what keeps the ship going abead. The thing that goes in for variety, versatility, that changes its position a bundred times a day, that is n o crank; that is the weather vane, my son. What? You nevertheless thank heaven you are not a crank? Don't do that, my son. May be you couldn't be a crank, if you would. Heaven is not very particular when it wants a weather vane; almost any man will do for that. But when it wants a crank, my boy, it looks about very carefully for the best man in the community. Before you thank beaven that you are not a crank, examine yourself carefully, and see what is the great deficiency that de bars you from such an election.

A job in a machine shop of Bessemer steel worked in the A job in a machine shop of Bessemer steel worked in the right; the material appeared to lack tenacity; it crumbled when brought up by the turning tool to an edge. As an instance, some axles for cars on an elevated railroad were scored circumferentially. They were made of excellent Bessemer steel. The scores, somewbat more than a quarter of an inch deep, were turned in the usual way, but before the vees could be finisbed to a depth of about five-sixtcenths of an inch, the metal crumbled at the top of the vee, and the entire job bad a ragged look. It was found that the only way to do a good job on this material was to make a collection of toothed mills, and mill the scores instead of turning them. If the axles bad been made of tenacious material like Norway or Low moor iron, there would bave been no diffculty in cutting clean vee scores possessing all the toughness of the solid material.

Safety of Railroad Traveling.

According to published statements, not a single individual riding on a passenger train in Massachusetts was killed the past year, unless the cause was directly traceable to the carelessness of the person killed. Over $61,000,000$ passengers were carried, at an average distance of fifteen miles each. According to this statement, it is safer to be on a passenger train in it is safer to be on a passenger train in Massachusetts than to be almost anywhere else. It is a remarkable fact that fewer ac-
cidents causing death occur on suburban cidents causing death occur on suburban
tains, or those running through thickly settled districts, than in the open and sparsely settled country. The Northoestern Lumberman concludes that the reason for this is that more care is taken with such trains; that the shocking railroad accidents that are continually bappening are the result of gross and criminal carelessness on the part of both managers and employes.

ROCK CUTTING MACHINE.

The rock extracting industry seems to ever remain at the same point. Little progress bas been made in the method of quarrying, and, nearly everywhere, use is still made of the wedge, the lever, and powder. Aside from the cost of the work and its defectiveness, there results considerable waste, while the blocks extracted are irregular in shape. We therefore believe it our duty to make known to our readers a new machine for cutting rocks, the invention of an engineer, Mr. Rapp.
This machine, which is easy to maneuver and move about, appears to us to obviate all the inconveniences that we have just noted. It may be briefly described as follows: Upon a platform, A, are fixed two uprights, B, between which there are two cylinders, C and \mathbf{D}, that are connected with a slide, against which the cutting tools, E, are fixed by means of pivoted supports, F. The steam which is introduced througb a pipe, R, is capable of giving the piston a velocity of 300 strokes per minute.
The steam cylinder, D through a gearing formed of a wheel, S , and pinion, T , is capable of being moved ver tically, thus permitting the cutting tools to work to depth of 0.25 meter. In order to reach a greater depth, it is only necessary to un screw the supports, F, and place the tool in the succeeding aperture.
The cylinder, C, contains air, which, through its sud den compression, forms a spring and prevents the ma chine from being damaged in cases where the cutting tool bappen to meet with insuffici ent resistance. By means of an ingenious mechanism each stroke of the piston gives the machiue a to-and fro motion, whose extent may be regulated by the operator according to the nature of the rock.
The total weight of the apparatus is 1,800 kilogrammes; the steam power required is that of from three to four borses, and the work effected per day varies between 6 square meters in marble and 20 in soft rock. One man and a boy assistant suffice to run it.
Mr. Rapp's rock cutter may be employed elsewhere than in quarries, and serves for all works of excavation, such as
digging trenches, large canals, etc. For this latter purpos it offers the great advantages of permitting of the use of dynamite without any fear of lateral caving, since an absoute break will always be made between the bank and the ube to be taken out.-La Nature.

DRAWBRIDGE SIGNAL

The invention herewith illustrated relates to signats for drawbridges, and aims to prevent accidents either in rail oads or common roads where the drawbridge is located, by indicating to approaching trains or vebicles whether the draw is open or closed, at sucb a distance from the bridge that the train or vebiclemay be stopped in time, should the draw be open. This object is attained by a mechanism at
fastened, and so arranged that they cannot be unfastened except by the turning back of the bridge to its original position, when the gates, being released, swing back where they properly belong. The distant signal may be dispensed with on bridges used entirely for vebicles.
Further information concerning this invention may be obtained from the patentee, Mr. James N. Williams, Scot Street, Mobile, Alabama.

The Economy or Arc Lighting.

So much has been said by interested parties to make i appear that the arc light, as applied to street illumination is expensive and even extravagant, that it is eminently desir able to get at figures which grow out of actual experience,

WILLIAMS’ DRAWBRIDGE SIGNAL

 Fortunately, just sucb figures are obtain able from the city of Hartford, in Connec ticut, where the arc light has now been in use for some time, although on a limited scale up to the present time. It should be premised that the electric light was firs introduced into Hartford about a year ago and that it has stoutly beld its own, not withstanding the violent and almost viru lent opposition of the gas company, whic has done its best to bring it into disfavo and disrepute, and to oppose its introduc tion at every possible point. At last it urn seems to have come, for the authorities are loud in its favor, and in deciding o very materially increase the number of electric lights, report that each light in us actually displaces six and one-half stree gas burners, giving, at the same ttme, a least ten times as much light. Now, each street gas lamp costs the city $\$ 35$ pe annum, the lamps burning 326 nights in the year. Six and one-balf of these lamps, $\$ 35$ per rear, cost the city $\$ 227.50$ pe annum. Ou the other hand, one electric bridge, and the action of which is sure and perfect Th bridge attendant bas no control whatever over the attach ments or signals, which are automatic in their action. The device is easy and simple to construct, and as castings are not essential an ordinary blacksmith could place one in position in a very short time. It would add but little to the weight of the bridge, and it could be attached to any draw bridge now built.
The distant signal is located from two to six hundred feet away from the bridge, where there is a small house for the signal, which is raised about ten feet from the ground. Wires are led from the bridge to this house, where they connect with the signal arm, upon which is a red ball about two feet in diameter; this constitutes the day signal, but at night the ball is removed and a red danger lamp bung in its place. The turning of the draw causes the signal to be swung out of the house at a right angle and within two feet of the passing train.

rock cutting machine. light, which displaces these six and one-balf gas lamps, costs the cily 65 cents per night for 326 nights, or $\$ 211.90$ pe annum, a saving of $\$ 15.60$ effected by each electric light per annum. Supposing Hartford to use one bundred arc lamps in its streets-and it is certain that the number in use will be increased to that figure within a very few monthsthe annual cash saving by displacing 650 gas lamps will be over $\$ 1,500$, besides the cost of lighting and extinguishing, and the light furnished will not only be ten times as great in volume, but of a far better and pleasanter quality.

It will naturally be asked how it is that in Hartford one electric light displaces six and one-balf gas-burners, while it was reported not long since that in Boston cacharc light replaced but three and one-balf gas burners. The answer is that in Boston many gas lights were kept burning so near the electric lights that their flames actually cast a shadow on the sidewalk, and that, in perbaps a majority of instances, the electric lights were not so placed as to render the greatest possible service. Wbatever the cause may bave been, it is very certain that certain influences were at work in Boston to throw disfavor on the electric light, and tbat it was not difficult for those in autbority to so "cook" the returns as to make the worse appear the better cause
But the reports that come from Hartford are those of persons who, at the outset, were bitterly opposed to the electric light, but who now, seeing its numerous advan ages and fully convinced by their own experience of its superior economy, advocate its general introduction for street illumination.
For ourselves, we can say bat we bave never for a mo ment doubted the permanent use of the arc light for al purposes, including street lighting, where large spaces are to be illuminated. As we have already said, ten years hence we expect to see ten and perhaps twenty arc lights in use in this and every city where one now burns, and we expect to see such im provements as will render cher more simple, and We are gning to get far more At the same time another signal, located at the end of the
bridge or pier, is displayed. This consists of a gate built than it is to-day. We are going to get far more
electricity for the same expenditure of power, and far more bridge or pier, is displayed. This consists of a gate built
of light bar iron, and baving a central opening about two $\begin{aligned} & \text { electricity for the same expenditure of power, and far more } \\ & \text { power for the same expenditure of moncy. The incandes- }\end{aligned}$ iron abor tho whole being painted red. The night danger signal is bung from a book in the central opening, and there is a tube or shield extending through the opening for the purpose of When the ight from the engineer when the draw is closed. When the bridge has been swung open the gates are securely
power for the same expenditure of moncy. The incandes-
cent light is invaluable in its place, but so, too, is the arc light in its place, and it bas come to stay.-Electrical Revievo

Arizona's total production of copper this year is expected to be nearly 50 per cent greater than last year's yield, which amounted to $17,000,000$ pounds.

