

A WEEKLY JOURNAL OF PRACTICAL INFORIIATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Not a fe NEW STEAM CATAMARAN.
the Hudson River for the past four seasons have had their curiosity excited by the appearance of a strange looking structure plying about the waters of the Tappan Zee, where the river widens out lake-like between Tarrytown and the rive
Nyack.
Nyack
Two elongated cylinders projecting from beneath a long narrow bouse, a pilot house, and smokestack gave the monster a certain nautical air; but it was not until notices appeared in the papers describing it that the public became aware of the problem in marine architecture that Commodore W Voorhis was trying by patient work aud great financial outlay to great
solve.
Occasionally the strange craft would glide out from her slip and run over the waters of the quiet bay with a speed and steadiness truly astonishing. Again she would move so slowly that a pleasure yacht might, as the natives expressed it, "make a dock of her;"' but each time a dock of her;" but each time she appeared some new change could be noticed, until, from a propeller with hidden wheel and single funnel, she was metamorphosed into a double stacked, huge center wheeled boat. Other changes have also been made. The long projecting iron points bad been decked over into broad promenades, the boiler and engines changed, the steering gear likewise hidden; in fact, little but the twin hulls remains as it was originally.
Four years having been consumed in these experiments, she at last steamed out for a decisive test early last month. she at last steamed out for a decisive test early last month.
Turning her bows up river, the city of Poughkeepsie was Turning her bows up river, the city of Poughkeepsie was
reached in a surprisingly short time, when turning home-

ward she was laid beside one of the Albany day boats, and a	$\begin{array}{l}\text { miles. The boat has wide level promenade decks and ample }\end{array}$
contest ensued for twenty miles, resulting in a drawn battle,	

DIAGRAMS OF THE STEAM CATAMARAN.

The dimensions of the strange looking craft are as follows: Lengl h over all, 190 feet; width on deck, 25 feet; width of bulls, 5 feet 6 inches; draught, loaded, 28 inches. There are five watertight bulkheads in each hull, and the entire interior of each is diagonally braced. Her engines are of the type used on Mississippi River steamers, and are made by James Rees, of Pittsburg, Pa. Her two cylinders are 13 inches diameter by 5 feet stroke. Wheel, 22 feet diameter, 8 feet face, 18 inch buckets. Revolutions to be made, 30 .

Her builder is now finishing the interior decorations and fittings, and after another trial trip to Albany intends put ting her on as a passenger boat between Poughkeepsie and Albany.

Canals.
The Imperial Canal of China is over 1,000 miles long. In the year 1681 was completed the greatest undertaking of the kind in Europe, the canal of Languedoc, or the Canal du Midi, to connect the Atlantic with the ect the Atlantic with the Mediterravean; its length is 48 miles, it has more than 100 locks, and about 50 aqueducts; and in its highest part it is no less than 600 feet above the sea; it is navigable for vessels of upward of 100 tons. The largest ship canal in Europe is the great North Holland canal, completed in Holland canal, completed in 1825. It is 124 feet wide at the water surface, 31 feet wide at the bottom, and has from Amsterdam to the Helder, 51 miles. The Calefrom Amsterdam to the Helder, 51 miles. The Cale-
donian canal, in Scotland, has a total length of 60 miles , including 3 lakes. The Suez Canal is 80 miles long, of which 66 miles are actual canal. The Erie Caual is $3501 / 2$ miles long; the Ohio canal, Cleveland to Portsmouth, 332; the Miami and Erie, Cincinnati to Toledo, 291; the Wabash and Erie, Evansville to the Ohio line, 374. The Suez Canal is 26 feet 4 inches deep, 72 feet 5 inches wide at bottom, 329 feet wide at water surface. Length atitle bottom, 329 feet wide at water surface. Length a little
short of 100 miles. The Pauama Canal is to be $451 / 2$ miles feet of coil. Consumption of coal, $1 \frac{1}{2}$ tons to every 32 in length.

Stinutific बmmerian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TERIMS FOR THE SCIENTIPIC AMERICAN. One cony, one year postage included....
One copy, six months postage included

Clilus.-One extra copy of The Scientifio Anerican will ... 160 grat is for every ciuv of tive subscribers at $\$ 3.20$ each; additional coppes at same proportionate rate. Postage prepaid.
mit py postal order. Addres

The Scientife American Supplement

is a distinct paper from the Scievtific American. 'The SUPPLEMIEN' is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scientric Ambrican. Terms of subscription for Suphlement $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrr.
Combined Rates. - The Scientific American and Supplement
will be sent for one year postage free. on
receipt of seven dollars. Both papers to one address or different addresses as desired.
The satest way to remit is by draft, postal order, or registered letter.
Address MUN $\&$ CO., 361 Broadway, corner of
Scientife American Export Edition.
The SCIWNTIFIC AMERICAN Export Edition is a larse and splendid periodical, issued once a month. Each number ccntains about one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Sctwertiric AMEucaN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses.
'Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the 'Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displayed in nouncements published in this edition at a very moderate cost.
The SCiENTIFIC Ambicican Export Edition has a large guaranteed circulation in all commercial places throughout the world. A
CO., 361 Broad way, corner of Franklin street, New York

NEW YORK, SATURDAY, AUGUST 2, 1884.

REMOVAL.

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CONTENTS OF

the scientific american supplement
NO. 4 48,
For the Week ending August 2,1884.
CHEMISTRY AND METALLURGV.-Carbonate of Potash.-Diffrer- Page

U. Engineering And MECHANIC-FFrench Barrel Making Ma-

 rormation of Coloring Matters by Eiectrolysis.-- Higures...

vil valkuris...

IX. miscelia neous.-The New Bicycle Race Course at Leipzig

finishing by pressure.

Under this heading a paragraph appeared in the Scienti fic American of March 29, 1884, stating that drop forged articles of Norway iron had yielded to a permanent com pression of one four-hundredth of an inch under a pressure of 800 tons. The result of this compression is to change the character of the material to a considerable depth, compacting its fibers so that the surface is almost a perfect one, re quiring but a slight amount of polishing to bring out it clean, bright characteristics.
More noticeable results have been obtained on articles of malleable cast iron, the honeycombed, loose fiber of the reheated casting being forced in on itself, so as to greatly change its character. Under a pressure of 500 tons the mal leable iron yields almost one-sixteenth of an incl, and becomes almost as solid as steel. Wrenches for agricultural cast and made malleable by heating in boxes packed with pyrogenous oxide of iron, come out so soft and yielding in texture that they are almost like pewter. But put under this pressure they come to a rigidity that is surprising, re sembling that of tempered steel.
A press for this work has recently been built which pro duces the pressure by the well known toggle joint or knuc kle joint. The machine weighs seven tons; the head under whish the pressure is given is re-enforced from the base by two five inch steel bolts; the dies are adjusted by screws moving an inclined plate or wedge that provides a solid bearing at all times and at every stage of adjustment. The throw of the die is one and a half inches, and is produced by the toggle joint driven by a lever from an eccentric, the shaft of which carries a gear wheel that is driven by a pinion which is to the wheel as one to to six. The lever from the eccentric does not engage with the toggle joint at its center, but by a connecting bar above the center, thus giv ing greater leverage than by the ordinary method.

the barff process for preserving iron.

The process known by the above name, of coating fin ished iron and steel with a permanent oxide, is being prac ticed in Hartford, Conn., with very gratifying results.
The method of producing the oxidized surface is quite simple. The articles to be treated are first highly finished and polished, cleansed from oil, and placed in a muffle, or oven, of boiler iron and heated to a red heat. Into the oven is projected the end of a steam pipe with rose nozzle or minute spray holes. This pipe lies in the furnace or in an adjacent oven in a coil, and is kept red hot and fed witb boiler steam. This superbeated steam is turned on to the red hol articles, and after an exposure of an hour a perceptible change has taken the place of the bright polish. Three hours produces a change similar in its penetration to the analogous casehardening of iron. There is not the slightest roughening of the surface; the first finish is all there, but the bright polish has given place to a dull, slaty smoothness, and this pleasant tint will remain in storm and sun, under steam and ice. But beyond this it is a beautiful finish; it would be elegant for the apron of a lathe or the cross head of a planer.
The articles thus coated resist acids and all the changes of temperature from steam at bigh boiler pressure- 80 to 100 pounds to the inch-to freezing, and they resist all changes by weather exposure. The oxidized surface is as smooth as the original surface, however highly polished, but it is of a slaty black color, without any glisten. No prolonged tests have been made as to its permanance when worked metal to metal; but from other tests it is believed the wear will be inconsiderable when so tested. It is noticed that with cast iron this method of nxidizing appears to slightly permanently expand the article treated, and yet the oxide does not appear to be a superĩcial coating, but a chemical change of the surface of the iron, the expansion being probably due to the degree of heat employed.

PORTABLE MACHINE TOOLS

Portable machine tools are growing in favor in shops where heavy machinery is built. The Stow flexible shaft is a familiar illustration of the use of a rotary power at changing distances and chauging angles from the driver, and the suspended weight and wire rope arrangement for producing rotary motion away from the driving shaft is also well known. But for heavy work, as driving a large boring bar, hand and ratcbet labor has been used for years. Yet it is quite possible to do such work by power whatever the position or the distance, within reasonable limits, of the work from the driving shaft.
The boring bar is fitted with two or more gears of different numbers of teeth, which are driven-one at a time, according to the speed desired-by a pinion on a shaft that carries a pulley. A simple clutch engages the pinion with either one of the gears, the pinion and pulley shaft being moved by a lever through a curved slot in the frame to suit the differing diameters of the driven gears. The frame containing this shaft with pulley and pinion is attached to the work by means of a clamp just as in the using of a ratchet drill or a Scotch drill. In this there is nothing novel, but the novelty of the device consists in the attachment of the counter shaft to the ceiling. Thisshaft is driven by a round belt received on a scored pulley from any flat faced pulley on the main or on a counter shaft, and, by means of idler wheels on an angled arm, may be run in any direction. The entire counter and fixtures is held in place
thread, like that of a coach screw, and being secured into the flooring timber overhead or into a flooring plank. This central screw permits the plank holding the counter to be wong in any direction, and when it is properly placed it is held by two similar screws at each end. A weighted idle may be used if required, when the distance between mai and counter shafts is very great.
An excellent hand feed for a boring bar may be made by having a sliding collar on the boring bar, threaded a portion of its length on the outside, to receive a nut. The collar is held at any point on the bar by one or two set screws, and he periphery of the nut is either drilled with holes for the recption of a holding pin, or is furnished with fixed handles The outer faces of nut and collar are trued off in the lathe and both of them are cylindrical. The traverse of the nut on the threaded collar may be any distance desired-from one to three inches perbaps is a useful limit-and to feed the bar forward as it bores, the nut should have a bearing against some temporary obstruction, as a piece of scantling or timber, a wasker intervening between the face of the nu and the timber. The boring bar, the collar secured to it, and the nut all rotate together until the nut is held by the pin or a bandle a portion of a revolution to force it for ward. The collar may be moved and reset to place at will.

POISONOUS COFFEE.

Most people think if they buy coffee in the berry, roast and grind it at home, they are sure of having obtained a healthy article-the Simon pure Java. But it may be they have been both deceived and poisoned. In Brooklyn the health inspectors recently found several well known coffee dealers who were in the habit of doctoring cheap Central American coffee so as to make it resemble and sell for the true Java. This was accomplisbed by polishing the coffee berries in rotating cylinders, with the addition of such stuffs as chromate of lead, Silesian blue, yellow ocher, Venetian red, drop black, burnt umber, charcoal, soapstone chalk, and Prussian blue. Some of these substances contain lead, copper, and arsenic, and when the doctored coffee was subjected to chemical test these metals were found in poisonous quantities. The Health Board promptly ordered the discontinuance of this mode of coffee adulteration, and the enterprising dealers will now have to move across the river into New Jersey or some other State where their ne river into New Jersey or some other State where their ne-
farious traffic may be conducted without interference of the authorities.

The Successes and Tragic End of a Genius.
The career of M. Volkmar, the bauker and speculator of Paris, who committed suicide in that city on July 22, was in many respects a remarkable one. A gentleman o New York who was connected with the Faure Electric Storage Company, iu speaking of the late financier, said to a Telegram reporter to-day, July 24: "It is true that Volkmar began as a workman in M. Faure's electrical factory in Paris. While there he studied the Faure patent for the storing of electricity, which was a leaden plate immersed in a chemical bath, and he conceived the idea of manufactur ing the accumulator on his own account. Leaving M. Faure's employment he went to England, where in 1882 be endeavored to get a patent for a so-called improvement of the Faure apparatus, his improvement consisting merely of a perforated plate instead of a solid one. The British Pat ent Office, however, refused to grant letters patent on so small an improvement, and, besides, there was doubt as to whether the additional surface gained by the perforation was a new idea. Notwitbstanding his failure to obtain a patent, he formed a partnership with Mr. Sellon in the same year, and they begau manufacturing the Volkmar-Sellon im proved plate. They did well, and I imagine that Volkmar proved plate. liking his methods of business, offered him a small sum to withdraw from the firm or threatened to force him out. He took the small sum and went to Paris.
The possession of so much money troubled him, so he con sulted with M. Philipart, the most famous speculator who has appeared in Europe since George Law's day. Philipart gave him some points, and he speculated on the Paris Bourse. On the whole he was fortunate in this venture, and soon acquired a reputation for great strategic powers. Volk mar was active until his death, but lately he suffered so many severe losses that he became despondent. Volkmar's metbods were peculiar, and his reputation for cunning caused him to be viewed with suspicion. He never failed to get into difficulties with all his confreres, except Philipart, with whom he did not dare to trifle. His is a remarkable life. Beginning without trade or profession, then becoming an electrician, appropriating his employer's ideas and making a vast fortune on them in a foreign country. A speculator, first successful and then a loser, and finally dying by his own hand. His system of storage is in general use even now in England and the United States.'
[The body of Volkmar, formerly a resident of this city, was found in the Seine on the 22d ult., with a bullet through his head and his pockets rifled. He is supposed to have been murdered, as his own pistol was found in his house. The affair created a great sensation in the French capital. He visited New York in 1881.]
Some recent trials show that very thin blades, as flat springs and cutlery blades, can be effectively hardened and tempered by heating them and thrusting them into a mass of chines and small drills have also been so treated successfully

aspects of the planets for august jupiter

is evening star until the 7 th , and morning star the rest of the month. On the 7th, at 1 o'clock in the afternoon, he is in conjunction with the suu. He makes his bow to his evening audience, where he has been a shining light during the winter, spring. and summer months. As the curtain falls that hides him from view on the sun's easteru side, it rises on the sun's western side, and our giant brother soon emerges from the sun's eclipsing rays in a new character, that of morning star, a part that he will play faithfully and well, as those can testify who watch his rising in the east ern sky, and note his advent with increasing radiance a few minutes earlier each morning as the months roll on.
If we bad eyes to see the position of the huge planet at conjunction, we should find that a straiglt line drawn from the earth, through the sun, would reach Jupiter, showing that he is then beyond the sun, and at his greatest distance from the earth.
If we could be transported to the vicinity, there would be startling things to behold in this vast sphere that almos make the hair stand on end even to think of.
Our staid planet, the earth, rotates on her axis once in 24 hours. As her circumference is about 24,000 miles, her axial velocity at the equator is about 1,000 miles an hour, or 16 miles a minute. Jupiter rotates on his axis, with a volume near! 1,400 times as great as that of the earth, in a few minutes less than 10 hours. As his circumference is about 266,000 miles, his axial velocity, at the equator, is about 26,000 miles an hour, or not far from 433 miles a minute. When the planet was in a plastic state, this rapid rotation produced an effect that is plainly perceptible in the present outline. It caused a bulging out at the equator and a depression at the poles more marked and much greater than that of any other planet, so that his polar diameter is one-seventeenth less than his equatorial diameter, or in the neighborhood of 5,000 miles, more than balf the earth's entire diameter.
And yet the Jovians, when in the passage of millions of years the planet becomes the abode of animate life, will no more feel the rapid movement of the monster planet than those who live at the earth's equator feel the more moderate speed that carries them around with the earth, and gives the sun a comparatively slow circuit in bis diurnal course, instead of the rapid march that rules in the Jovian sky
Matters must be rather mixed there, according to our ideas, with a day not half as long, only five hours from sunrise to sunset, and with a year nearly twelve times as long; for these are the conditions that hold sway in the domain of our distant neighbor. We like better the more dignified length of the eartbly day, the more stately axial rotation of our little planet, and the quicker return of the revolving seasons. But the earth and all the other planets are re sults of the great nebulous mass that ouce extended far beyond the system's remotest bounds. The huge mass quickened into life, and threw off concentric rings that condensed into the sun and planets, aud became the solar system. No man of science bas yet been able to explain, in all its bearings, the law which ruled in the arrangement of the sun and the worlds that round him roll, to tell where the fuel comes from that keeps up the sun's fire, to show the reason why four giant spheres still bolding portions of their primeval fires were established on the outposts of the system, or why four small planets roll on in their swifter course nearer to the great central orb. Theories are plenty on all these points, but conclusions are not convincing. We are prove to think that the earth holds a favored place among the planetary brotherbood. It is well to think so, and the posi tion will not be disputed in the present attainments of astronomical science
Jupiter has deigned to give little information concerning nimself in his last synodic circuit. Even the red spot, the peep hole into his glowing nucleus, is but a ghost of its former self. The cloud atmosphere has closed over it, and there will be no more tidings until another rift sb all open, and show further glimpses of the chaotic mass, cooling and condensing into form and shape. We must wait until 1892 for Jupiter's next peribelion, when, being $46,000,000$ miles nearer the sun than at aphelion, we may hope that the improved telescopes of the day will pick up something worth knowing. The process of world making will be a slow one on this princely planet, and the earth may have cooled down to desolation before the process takes perceptible form on this distant outpost.
The right ascension of Jupiter on the 1 st is 9 h .7 m .; his declination is $17^{\circ} 11^{\prime}$ north; and bis diameter is $29.6^{\prime \prime}$. Jupiter sets on the 1st about balf-past 7 o'clock in the evening on the 31 st he rises at a quarter before 40^{\prime} clock in the morning.

venus

is morniug star during the munth, and is a charming object in the eastern sky during its course. On the 17th she reaches her period of greatest brilliancy as morning star, and observers who wish to behold the most lovely star that gilds the morn will find our celestial neighbor worth getting up early to see. She makes her appearance on the 17th, soon after 2 o'clock in the morning, nearly three bours before sunrise, casts shadows on objects illumined by ber rays, and holds ber visible presence in the sky, even in the noon-day radiance of the King of Day, to those who know where to look for her.
Venus has two periods of greatest brilliancy. One of them
occurs thirty-six days before inferior conjunction, when she is evening star, as was illustrated on the 3d of June. The
other takes place on the 17 th, thirty-six days after inferior otber takes place on the 17 th , thirty-six days after inferior
conjunction, when she is morning star. At this portion of conjunction, when she is morning star. At this portion of her course she is 40 degrees from the sun, and about a quarter of her surface is illumiued. After her first period, and before ber second, she is nearer to the earth and large in dimensions. But the illumined portion of her disk is less, and the loss of light more than counterbalances the increasing size. This is the time for the most satisfactory view of the Queen of the Stars. She is rapidly receding from our neighborbood, and many months will wax and wane befor the favorable conditions will return
The right ascension of Venus on the 1 st is ' 6 h .49 m . er declination is $16^{\circ} 26^{\prime}$ north; and her diameter is $49^{\prime} 4^{\prime \prime}$. Venus rises on the 1st at 3 o'clock in the morning; on the 31 st she rises a few minutes before 2 o'clock.

mercury

is evening star during the month. On the 23d, at 5 o'clock in the evening, he reaches his greatest eastern elongation when he is $27^{\circ} 21^{\prime}$ east of the sun. There is a moderately favorable opportunity for seeing him about that time, on an exceptionally clear evening after sunset in the west. His southern declination will, bowever, make him a difficult. object, although bis elongation is nearly as great as possible. Mercury must be looked for on the 23d in the constellation Virgo, about 20° northwest of Spica and 12° south of the sunset point.
A few hours before elongation the swift footed planet overtakes Urauus, passing $3^{\bullet} 5^{\prime}$ south of his slow plodding brother.
The right ascension of Mercury on the 1st is 10 h .5 m . his declination is $12^{\circ} 55^{\prime}$ north; and his diameter is $5 \cdot 6^{\prime \prime}$.
Mercury sets on the 1st a few minutes after 8 o'clock in the vening; on the 31st he sets about a quarter after 7 o'clock.

NEPTUNE

is morning star, and leads the planetary choir in being the first to make his appearance above the horizon. On the (4th, at 11 o'clock in the evening, be reaches the half-way house between conjunction and opposition, being then in quadrature, or 90° west of the sun.
The right ascension of Neptune on the 1st is 3 h .25 m is declination is $16^{\circ} 53^{\prime}$ north; and his diameter is $2 \cdot 6^{\prime \prime}$ Neptune rises on the 1st about half past 11 o'clock in the vening; on the 31st he rises at balf past 9 o'clock.

saturn

is morning star, and is growing brighter and more conspicuous as he approaches the earth. It is however the day of small things in his history. On the 17 th , when Venus is brightest, he may be found about 30° nortbwest of the fairest of the stars.
The right ascension of Saturn on the 1 st is 5 h .19 m . ; his eclination is $21^{\circ} 43^{\prime}$; and his diameter is $16 \cdot 2^{\prime \prime}$
Saturn rises on the 1st at a quarter after 1 o'clock in the morning; on the 31st he rises at half past 11 o'clock in the evening.

uranus

is evening star. His course is une
njunction with Mercury on the 23d
The right ascension of Uranus on the 1 st is 11 h .45 m .; his eclination is $2^{\circ} 24^{\prime}$ north; and his diameter is $3.5^{\prime \prime}$
Uranus sets on the 1st not farfroma quarter past 9 o'clock the evening; on the 31st he sets a quarter past 7 o'clock.

MARS

is evening star. He is of little account as be slowly travels toward the sun, bis increasing southern declination being the only noteworthy event in bis course
The right ascension of Mars on the 1st is 12 b .10 m .; his eclination is $0^{\circ} 45^{\prime}$ south; and his diameter is $5^{\prime \prime}$
Mars sets on the 1st at twenty minutes past 9 o'clock in the evening; on the 31st he sets at a quarter past 8 o'clock.

THE MOON.

The August moon fulls on the 6th at six minutes after 6 o'clock in the evening. standard time. She is in conjunction with Neptune on the 13th, the day of her last quarter, and with Saturn on the 16th. On the 17th she makes a close con junction with Venus, at 4 h .37 m . in the afternoon, being then 23^{\prime} north. Although the nearest approach is invisible, the waning crescent and the radiant morning star will make a beautiful celestial picture on the morning of the 17 th . The monn on the 20th, the day of her change, will be at her nearest point to Jupiter. The two days' old moon will pass 32 north of Mercury on the evening of the 22d, an event that sbarp eyed observers may behold. She will pass Uranus on the same evening, and close the circuit by a very close conjunction with Mars on the 24th, at 10 h .28 m . in the morning. Sbe will be at that time 10 north of Mars, but as the conjunction takes place in daylight, it can only be seen in the mind's eye.
It will be noticed that the moon passes very near Venus on the 17 th, Mercury on the 22 d , and Mars on the 24 th . She will occult these three planets to observers whose places of observation are in line with her geocentric position; that is, as seen from the earth's center. These fortunate observers will see the moon, if the hour he favorable, bide Venus, Mercury, and Mars from view on the dates mentioned, the three occultations occurring within the limit of seven days.

Photographic Items.

Starched Glass.-At a recent meeting in this city of the Society of Amateur Photographers, Mr. H. J. Newton gave the following recipe for making starched glass as a sub titute for the ground glass of the camera, should the latter be accidentally broken:

Water.. 30 grains.
Starch..............
The starch is well mixed and incorporated with the water, all large particles being reduced by pressure. The solution is now cooked or boiled very thoroughly for five minutes, strained througb muslin, such as a handkerchief, and when cold is applied to the glass plate. The plate is leveled, the tarch poured on and spread over to the edges and corner y a glass rod, and the plate is then drained and dried.
Silvering Paper.-Mr. Newton makes silvered paper which requires no fuming with ammonia, and yields fine purple ones, as follows:

Water
 Nitrate of silver.. 1 ounce.
 Nitrate of ammoni

Upon this solution the plain or albumenized paper is oated for three minutes, and is then drawn off from the hath over the edge of the dish next to the operator. The wet paper adheres strongly to edge of the dish as it is draw off. Bubbles are thus prevented from injuring the sur face.

The bath should register from 54 to 56 by the bydrometer and its strength may be reduced by usage to 25 grains of silver to the ounce before brown tones will be made. It is extremely important to keep it alkaline; it should be tested occasionally with red litmus paper, and if acid, more am monia should be added.
Potash Developer.-Mr. F. C. Beach gave a formula for potash developer, with which be had had much success. It is well adapted for instantaneons plates.

no 1. PYRO SOLUTION.

Warm distilled or melted ice water
 hen cool ad. sulphurous acid.......................... 2 ozs.

which is done by pouring the sulphite solution into the pyro bath, repeating the pouring until the pyro is dissolved The solution, which will now measure five fluid ounces, should be filtered, and will contain 44 grains of pyro to each ounce

NO. 2. POTASH SOLUTION

is prepared by making two separate solutions as follows:

 b. $\left\{\begin{array}{l}\text { Warm water... } \\ \text { Chemically pu }\end{array}\right.$

a and b are next combined in one concentrated solution, a small quantity of which when mixed with the pyro will be sufficient to develop 3 or 4 plates. The strength of the solu tion will be uniform, and it will measure between eight and nine fluid ounces.
Supposing a plate to bave been greatly overexposed, or properly timed, or the length of the exposure is unknown to develop a 5×8 plate take 2 ounces of water and add thereto 3 drachms of No. 1 and from half to 1 drachm of No. 2, or the potash solution. Then pour the solution upon the plate; after a minute's interval, should no part of the image appear add a second drachm of No. 2, putting it into the graduate first and then pouring the developer from the tray into the graduate. The solution is again Howed over the plate, and if after a minute's interval no image appears, repeat by adding a drachm of No. 2 at a time until develop ment commences. In this way the picture will be brought out very gradually, the development will be under perfect control, and can be prolonged until all details appear, with out the slightest danger of fogging the plate. The principle involved is to add sufficient pyro at first to give proper density, and then add minute quantities of the alkali at stated intervals until the right strength is reached to commence the development.
In place of the No. 1 or the pyro in solution, dry pyromay be used with good effect, 6 to 8 grains being sufficient for 2 ounces of water.
If a plate has bad what is termed a drop shutter exposure or in other words an instantaneous exposure, to 2 ounces o water add $31 / 2$ drachms of No. 1 and 3 drachms of No. 2, increasing it a drachm at a time, in case the shadows fail to come out, up to 5 drachms.
The sky will appear rapidly, but the dark portions will develop gradually
Brilliant, clear, bluish-gray quick printing negatives are produced with this developer on almost any brand of plate the necessity of using clearing solutions is avoided, and all chance of stain to the negative disappears. The developing solution remains clear, and from 4 to 8 plates may be developed successively in it at one time. Should the negatives be too dense, the amount of No. 1 may be decreased a third to a half.
A mong the advantages claimed for the developer are simplicity, certainty of uniform action, and production of clear pegatives. The solutions being in concentrated form may be kept in small bottles, convenient for handling.

WEATHER STRIP.

Secured to the front of the door a short distance above the bottom edge is a moulding having a longitudinal groove in the bottom. A strip is hinged to the bottom of the front of the groove in such a manner that it can swing up and down. Pivoted in a recess in the back of the moulding is an upright latch lever, which has a corner noteb forming a shoulder at the lower end of one side edge, and a rounded projection at lower end of the other side. A stud projectiog from the back edge of the strip passes into the notch; and the free end of a spring held in the strip rests against the rounded

bennett's weather strip.

edge of the projection, thereby pressing the lower end of the lever against the stud. A rod extends from the upper end of the lever through a longitudinal groove in the back of the moulding, and projects from the inner side edge of the door, striking against a screw held in the casing. Secured to the top of the sill are angular clips or risers.
When the door is closed the strip hangs down in front of the sill, as shown in Fig. 2. If the door is opened, the under surface of the strip strikes against the risers, and it is swung upward when the stud passes into the notch and rests against the shoulder, as the spring presses the lever toward the stud (Fig. 3). If the door is closed, the end of the rod strikes aganst the screw, and is moved so as to force the lower part of the lever against the spring, whereby the stud is disengaged from the shoulder, and the strip drops. If the strip should not fall of its own weight, the lever pressing upon the spring would force it to drop.
This invention has been patented by Mr. W. D. Bennett, of Bedford, Iowa.

REVOLVING BOOK STAND.

The shelves of the revolving book support, on which the books are placed, are journaled between the arms of spiders rigidly secured upon a shaft jourualed in bearings secured in the lower inclosure of the bookcase. The shelves are provided with flanges for holding the books in place, and are

BOWMAN'S REVOLVING BOOK STAND.
feathered by counterweights, attached to the backs, that hold the shelves always in the proper position, that is, always facing the reader, no matter what position they may occupy with respect to the shaft, whether above or below, or in front or rear of it, or whether it be turned forward or backward. The weights are so attached that they may be adjusted so that the inclination of the shelves can be changed as desired.
Upon the shaft is a pulley over which passes a strong cord, which thence passes over a pulley attached to the back of the inclosure, thence around a pulley on the operating leve
and thence to a staple driven into the back of the inclosure. The other end of the cord passes from the shaft pulley up over a pulley secured to the top of the inclosure, thence under a pulley attached to a heavy weight, and thence to a staple driven into the top of the inclosure. The lever is fulcrumed upon the shaft, and is so arranged with reference to its distance of movement and to the size of the main puley that its extreme movement will cause the shaft to mak a complete revolution, bringing all the shelves successively to the front. This movement of the lever elevates the weight, which will act to turn the sbaft in the reverse direction. By holding the lever at intermediate points, any one of the shelves may be held in front of the reader. The lever is held in any position by a pawl engaging with a segmental rack.
The revolving book support is especially serviceable where several authors are to be consulted, and besides effecting a saving of time does not necessitate frequent handling of the books.
This invention has been patented by Mr. D. D. Bowman, of Eureka, Cal.

To Remove Foreign Bodies from the Eye.
Before resorting to any metallic instrument for this pur pose, Dr. C. D. Agnew (American Practitioner, May, 1884 would advise you to use an instrument made in the following manner: Take a splinter of soft wood, pine or cedar, and whittle it into the shape of a probe, making it about th length of an ordinary dressing probe. Then take a srall, loose flock of cotton, and, laying it upon your forefinger place the pointed end of the stick in the center of it. Then turn the flock of cotton over the end of the stick, winding it round and round, so as to make it adhere firmly. If you will look at the end of such a probe with a two inch lens you will see that it is quite rough, the fibers of cotton makyou will see that it is quite rougb, the fibers of cotton mak-
ing a file-like extremity, in the midst of which are little interstices. As the material is soft, it will do no harm to the cornea when brushed over its surface
When ready to remove the foreign body, bave the patient rest his head against your chest, draw the upper lid up with the forefinger of your left hand, and press the lower lid down with the middle finger, and then delicately sweep the surface in which the foreign body is embedded, with the end of the cotton probe. When the foreign body is lodged in the center of the cornea, it is most important not to break up the external elastic lamina; for if you do, opacity may follow, and the slightest opacity in the ceuter of the corne will cause a serious diminution in the sharpness of vision.

HAY CARRIER.

The track is supported from the frame timbers of a barn by angle bolts or other suitable means. The carrier frame is formed of two plates connected by bolts, and between the upper parts of which is the track. To the upper corners of each of the plates are pivoted rollers that rest upon the up. per side of the track. To the rear lower corners is attached the end of the traction rope, which passes over a pulley pivoted between the lower forward corners, and is then led over guide pulleys to the place where the horse is to be attached. Upon the rope between its end and the forward pulley is placed a pulley, with the block of which is connected the hay fork in the ordivary manner. To the block is rigidly fastened the bail, which projects upward to trip the operat ing parts of the carrier.
Between the forward parts of the plates is pivoted a two armed plate. The outer end of the upper arm, b, is rounded and has a hook formed upon its outer side edge; the lower arm, a, has a hook formed upon the outer end of its outside edge. Between the rear lower parts of the plates, and at a little higher level than the plate just described, is pivoted a three armed plate formed as clearly shown in the engraving. To the underside of the center of the track is attachsd a catch that is made double, so as to be used without change, when the car rier is upon either arm of the track. The catch has a dovetailed recess in the center of its lower side, the lower sides of its end parts are slightly concaved, and the outer ends are square. When the carrier is ovet the hay wagon, and the hook plates are in the position shown in Fig. 1, the pulley carrying the loaded fork rises to the carriers, the bail strikes the upper arm of the plate, b, and also raises the inner arm of the plate, e, thereby withdrawing the book, d, from the catch and allowing the carrier to be drawn forward by the rope, the hook plates being in the position shown in Fig. 2. When the carrier is drawn back for another load, the end shoulder on the arm, e, strikes the end of the catch, which turns the hook plate and withdraws hook, c, from hook, a, releasing the bail and allowing the fork to descend for another load. This movement raises the hook, d, into contact with the catch, and lowers hook, b, into contact with hook, c, so that the weight of the arm, b, will hold the hook, being moved. This invention has been recently patented by Mr. Edwin Woodward, of Stryker, Ohio, and is being manufactured by Woodward Bros. of same place.

SIDE HILL PLOW.

The side bill plow here shown is of simple and durable construction, and may be very easily handled. It is the in vention of Mr. John Rapp, of Collinsville, Conn. A shoe, B , is securely attached to the beam by a standard, \mathbf{C}, mortised in to the shoe after passing bet ween upright cleats fixed to the shoe; between the cleats the lower forward converging ends of the bandles also fit, the handles being also mor tised into the shoe, so that the standard and handles firmly hold the shoe against backward movement, while the cleats act as lateral braces. From the shoe the bandles diverge and pass at each side of the bean to which they are bolted. The mould board, H , is bolted to the standard, D , which has side extensions to resist the strain.
This standard is pivoted in the shoe and in the beam, so

hat the mould board can be swung to either side for cutting both ways on the side hill. The mould board is turned by lever, G, which is pivoted to the upper end of the standard and works over a cross bar, F, bolted to the beam, which serves as a fulcrum on which the mould board can be raised by the lever prior to reversing. The mould board is held in both positions by a book hung on a staple fixed to the standard, C, and hooked into eyes fastened to the back of the mould board near its opposite edges, as clearly shown in Fig. 2.

Kiln Drying Temperatures.

The following are the temperatures adopted by Franz Chodounsky, a well known Bohemian maltster. At the time of charging the kiln, a temperature of $1081 / 2^{\circ} \mathrm{F}$. should be indicated by the thermometer hung underneath the upper lnor of the kiln ; two hours afterward the temperature should be 111°; at the expiration of three hours, 113°; and at four hours, 11712°; after five hours, 122°; after six hours, 133°; after seven hours, $1441 / 2$; and at the expiration of 133°; after seven hours, $1441 / 2$; and at the expiration of
eight hours, from 156° to 160°. The maltster ought not to allow a variation of more than 4° from the above tempera tures. The temperature of the malt on the upper floor is thus under control, and ought to acquire the following temperatures at each successive hour: $87^{\circ}, 84^{\circ}, 86^{\circ}, 991 / 2^{\circ}, 102^{\circ}$, $111^{\circ}, 1171 /,^{\circ}$ and 131°. The malt should reach the lower

WOODWARD'S HAY CARRIER.
floor of the kiln at 129°, and pass from hour to hour to the following temperatures: $1171 / 2^{\circ}, 11612^{\circ}, 130^{\circ}, 133^{\circ}, 147^{\circ}$, $17112^{\circ}, 178^{\circ}$. The malt is charged at the rate of $1 \cdot 25$ hectoliters per square meter ($=$ nearly 3 bushels per square yard); the thickness of the layer of grain should be a little over 3 inches at first; after four hours, about $23 / 4$ inches; and after eight hours rather less than $21 / 2$ inches. On descending to the lower floor of the kiln, it should not exceed the last named thickness, and toward the middle of this stage the thickness should be reduced to 2 inches, and at the end of the kiln drying be a tritle less.

Shade and curtain fixture.

On the inner surface of each side bar of the upper sash is fastened a metal plate, from which projects a lug that is provided with a vertical screw threaded aperture extending from top to bottom, and in which screws the end of a wire arm. This arm projects borizontally a short distance from the socket, and is then curved downward and outward, so that its free end projects beyond the plane of the window casing. In the upper part of the plate is beld one end of a thin wire, which serves to put a strain on the arm and keep it from vibrating. The upper end of the wire arm passes through a sleere, which is provided with an additional aperture for receiving the bent end of the thin wire. Tbe sleeve is provided with a binding screw having a beveled end, which passes between the two wires so as to hold them firmly in place. On the upper end of the arm is held a clamp that is provided at the top and bottom wilh a V -shaped prong between which fits a bar extending transversely across the window frame. Held on this bar are similarly shaped clamps, from which project brackets provided with notches for receiving the end pivots of the shade rollers. If curtains are to be held in front of the bar, the curtain rod or window cornice from which the curtains are to be suspended is bung on the ends of hooks. (The arrangement of these parts is clearly shown in Fig. 2, which is a front elevation and in the sectional view, Fig. 3.) The curtain rollers, the shade, and all the appliances are thus suspended from two or more arms. This construction is applicable in all case where the window has a square top, or in windows having

ingalls' shade and curtain fixture.
a curved or arched top in which it is not desired to have the fanlight part covered by the shade; but if the fanlight is to be covered, and this shaded part is to be raised and lowered with the sash, a pointed or arched frame is used, on which the fanlight shade is secured.
Shades hung in accordance with this plan possess many advantages for ventilating both public and private rooms, and are especially adapted to sleeping rooms, sick rooms, and offices. By this means two or more shades can be used -a light one to admit light and cut off intrusive observation, a dark one to exclude light, or a colored shade to give such a tint to the light as may be desired. The fixtures are easily adjusted to windows of different widths and depth of jambs, and are applicable to bay windows, narrow face casings, mullioned windows with narrow mullions. By being attached to the sash they save the face casings from being injured.
This invention has been patented by Mr. John C. Ingalls, of Marquette, Mich.

Sheep's Horn for Horseshoes.

A new horseshoe bas lately been experimented with at Lyons, France. 'The shoe is made entirely of sheep's born, and is found particularly adapted to horses employed in towns and known not to have a steady foot on the pavement. The results of the experiments have proved very satisfactory, as horses thus shod bave been driven at a rapid pace on the pavement without slipping. Besides this advantage, the new shoe is very durable, and though a little more expensive than the ordinary one, seems destined sooner or later to replace the iron shoe, particularly for borses employed in large cities, where, besides the pavement, the streets are intersected by tramway rails, which from their slipperiness constitute a source of permanent danger.

Hudson's Bay as a Grain Route.

The Newfoundland sealing steamship Neptune-the same which two years ago was sent in search of Lieut. Greelysailed from Halifax, N. S., July 22, in command of Lieut A. R. Gordon, of the Canadian meteorological service, for the purpose of establishing stations for scientific observation in Hudson's Bay. The stations are to be located in the fol lowing places, six on the strait and one on the west sbore of lowidg pay:
No. 1 at Cape Chudley, at the southeast entrance to Hudson strait. No. 2 on Resolution Island, at the northast entrance to the strait, and about 45 miles across from tation one. No. 3 at Cape Hope, or on the south side of about the center of the strait, and about 250 miles from tations one and two. This will be the chief point of obser vation. No. 4 will be located directly north of No. 3 on the north bluff of one of the islands close by, according to cir cumstances. No. 5 on the southeast end of Nottingham Island, about 200 miles from station four. No. 6 on the north side of Mansfield Island, some 150 miles from station five. Observations of the northern part of the bay will be made from this point. No. 7 at Fort Churchill, at the mout of the Churchill River, on the west shore of the bay and about 600 miles from station six.
At all the stations the usual meteorological obeservation will be made; heavy tides will be measured; the drift of water will be noticed, and the cooditions and state of the ice. Each station party will consist of two men and an Esquimau interpreter, besides the officer in cbarge, and sufficient provisions and fuel for fifleen months will be supplied. The observatories are made in sections, and will be taken out by the steamer, and put up on the sites selected by the commander as the vessel progresses through the strait. Next year these stations will be revisited, and other parties left in charge. Tue most important work the parties will be called upon to per form will be to carefully watch and note the breaking up of the ice, the tides, and all other characteristics pertiuent to navigation.

The sum of $\$ 70,000$ has been appropriated by the Cana dian Government to make these explorations, but the immediate end in view is practical rather than scientitic. It is thought that, notwithstanding all the unfavorable reports so far received, it may be found that Hudson Strait is open a sufficiently long period in the late summer and early fall of each year to make it profitable to ship grain by that way to Liverpool from the Winnipeg Valley, which is directly connected with the western shore of Hudson's Bay by the Nelson and Churchill rivers. Lieut. Gorringe investigated this question about three years ago, on bebalf of the Northern Pacitic Railroad Company, but he reported that any successful trade in this way was impracticable, on account of the fogs as well as the ice, which would hardly leave an average period of six weeks for tolerably safe navigation, while even this period varied with the season, and during such time navigation was often interrupted. The Manitobans are not yet convinced, however, and the recent rapid growth of that province has induced the Dominion government to send out this expedition to make a more thorough investigation.

COMBINATION CELLAR GRATE

An invention recently patented by Mr. L. N. Byar relates to gratings that are used for cellar windows, the object being to combine an inner door or screen with the outer frame and grating without employing the usual wooden frame. At each end of the inside of the frame, A, are pivoted the frames, D and F, the former being provided with screens and the latter with panes of glass. When either or both of the frames are closed, they are held by a single turn buckle. By this means the window opening may be tightly closed by the glazed frames, or upon opening these proper ventilation will be effected through the screens without per mitting the entrance of in sects, and by opening the screens a still freer flow of air will take place.
In hanging the frames, the usual outer wooden frames are dispensed witb. On the frame, A, and on each of the screen frames are formed ears, opening being made in both sets On the frames, F, are pins, the upper pin being longer than the lower one
and the upper bars of these frames have a recess formed/stockings weighs about 2 to $21 / 2$ ounces, the antimony would adjacent to the pin. In fitting the parts together, the represent an appreciable though minute quantity, the effect frame, \mathbf{D}, is first adjusted in place, when the upper pin of which is a question, it is remarked, for medical experts is passed through the openings as far as the recess will allow. The lower pin can then be swung over the openings in the ears, so that on depressing the frame the pivoting will be effected. When coal, wood, etc., are to be put in the cellar, the outside grate is unlocked and swing outward. The many advantages of these grates, which are being manufactured at the foundry and machine works of Byar \& Bro., of Pottstown, Pa., will be readily perceived. decide.

Emigration from Italy to foreign countries is yearly increasing; in 1883 it reached, according to official statistics, 169,101, mostly peasants and the lowest lazzaroni. The two Americas receive a little over a third of all the emigrants, and latterly a drift from the Buenos Ayres coast to the United States has been noticeable.

BYaR's combination cellar grate.

The front, A, and side panels, E,are of woven wire stretched on suitable frames, the sides being inclined backward from the bottom upward ou the front edge. The sides and front are hinged together for holding the fender together when put away and for extending it to be put in use. The top panel, D, which may be partly of wire and partly of sheet metal or wholly of wire, is retained by studs projecting upward from the top of the front. On the bars of the side panels next to the fireplace front and at a suitable distance elow the top are clasps, F, to connect with the front plate

SHOEMAKER'S FOLDING FIREPLACE FENDER

of the fireplace by thumbscrews, as shown in Fig. 1, or by spring clasps, as shown in Fig. 2, to book behind the edge of the plate. To act as a blower to increase the draught when necessary, there is a sheet metal back plate, K , having a lug at each end, which drops down between the fender and the fireplace. Screw eyes may be attached to wood mantels for connecting the fender by books, as in Fig. 3. Attached to the side frames are handle studs that afford a convenient means of lifting the fender when it is to be taken from the fireplace or replaced. When not in use the fender can be folded compactly, and when in place it presents a neat appearance, and owing to the sloping point is not in the way and is not liable to catch the clothes of persons near it
This invention bas been patented by Mr. I. W. Shoe maker, of Rosston, Pa.

Antimony in Clothing.

The Centralblatt fur Textil Industrie records the fact that antimony is to be found in cotton yarn which bas been dyed with aniline colors, and remarks that unless great care has been taken in the cleansing of the yarn, it is possible for such a quantity to remain as to be injurious to the skin. Experiments made on different classes of yarn produced results varying according to the nature of the dyeing substance. The samples in which hot water acted as a dissolv ent showed only a small proportion of antimony, the highest proportion being found 0.014 per cent. The proportions of antimony which were soluhle in muriatic acid varied from 0.036 to 0.31 per cent of the weight of the yarn. Of course, practically speaking, only the portion soluble in water comes under consideration, but as a pair of long -

ater con

Why Business Mien Fail.

Let me give your readers, says a correspondent of the United States Economist, the benefit of the replies I have re ceived from leading men of our country to the question, "What, in your observation, have been the chief causes of the numerous failures in life of business and professional men?"
Governor St. John answers: "Idleness, intemperance." Alexander H. Stephens answers: "Want of punctuality, honesty, and truth." Hon. Darwin R. James answers: "In correct views of the great end and aim of life. Men are not contented to live plain lives of integrity and uprightness. They want to get abead too fast, and are led into temptation." President Bartlett, of Dartmouth College, names as causes of failure: "Lack of principle, of fixed purpose, of perseverance." President Eliot, of Harvard, replies: "Stupidity, laziness, rashness, and dishonesty." replies: "Stupidity, laziness, rashness, and dishonesty."
Dr. H. Ni Dr. H. Wi Dexter, of the Congregationalist, answers: "1.
Want of thoroughness of preparation. 2. Want of fixedness of purpose. 3. Waut of faith in the inevitable triumph of right and truth." Anthony Comstock's answers are "Unholy living and dishonest practices, lust and intemperauce, living beyond one's means." Mr. H. E. Simmons, of the American Tract Society, replies: "Fast living, mental, spiritual, and bodily; lack of attention to the details of business." General O. Howard onswers in substance: "Breaking the divine laws of the body by vice, those of the mind by overwork and idleness, and those of the heart by making an idol of self." Professor Homer B. Sprague, of Boston, answers: "1. Ill health. 2. Mistake in the choice of employment. 3. Lack of persistent and protracted effort. 4. A low ideal, making success to consist in personal aggrandizement, rather than in the training and development of a true and noble character." Dr. Lyman Abbott answers: "The combined spirit of laziness and self-conceit that makes a man unwilling to do anything unless be can choose just what he will do." Mr. A. W. Tenney, of Brooklyn, replies: " Outside of intemperance, failure to grasp and hold, scattering too much, want of integrity and promptness, unwillingness to achieve success by earning it in the old-fashioned way." The attorney-general of a neighboring State replies "Living beyond income, and speculating with borrowed funds; unwillingness to begin at the font of the ladder and work up. Young men want to be masters at the start, and assume to know before they bave learned." And another reason in the same line: "Desiring the success that another has, without being willing to work as that man does. Giving moneymaking a first place and right-doing a second place."

Judge Tourgee, author of "A Fool's Erraud," considers the frequent cause of business collapse to be: "Trying to carry too big a load." As to others, he says: "I don't know about a professional man's failing, if he works, keeps sober, and sleeps at home. Lawyers, ministers, and doctors live on the sins of the people, and, of course, grow fat under reasonable exertion, unless the competition is too great. It requires real genius to fail in citber of these walks of life." Hon. Joseph Medill, ex-mayor of Chicago, answers: "Liquor drinking, gambling, reckless speculation, dishonesty, tricky conduct, cheating, idleness, shirking hard work, frivolous reading, lack of manhood in the battle of life, failure to improve opportunities."
Among the causes of failure given by my correspondents many may be classified under the general fault of wavering, such as "wavering purpose," "non-stick-to-it-iveness," " failure to grasp and hold," " scattering too much," "trying to do too many things, rather than stick to the one thing one knows most about." A young man spends seven years in a grocery store, and when he has just learned the business be concludes to go into dry goods. By failing to choose that first he has thrown away seven years' experience. Probably, after learning the dry goods business, he will conclude to become a watchmaker, and at last become a "jack-at-all-trades," good at none. A prominent merchant says "Nearly all failures in legitimate business come from not serving an apprenticeship to it," that is, from leaving a business one knows for another which he does not understand.

Another cause of failure is the disposition to escape hard work, and get rich in haste-" desiring the success another man has, without being willing to work as that man does, and begin, as he did, at the foot of the ladder." How many who were in haste to get rich, to reap without patient indus try in sowing, have learned the truth of the old proverb: "The more haste, the worse speed"!

Photographic Printing in Colors.

In this process it is necessary to use colored negatives--tha is, ordinary negatives which have been hand painted in their proper tints with transparent colors.

1. Take a piece of ordinary sensitized paper, and wash it to remove any free silver nitrate.
2. Place the washed paper in a solution of protochlorid of tin, and expose to weak light until the silver chloride is reduced to subchloride, and the paper assumes a uniform gray color.
3. Float the paper in a mixed solution of chromate of potash and sulphate of copper, and dry in the dark.
The paper is now sensitive to all the colors of the spectrum, and by printing on it with a colored negative the colors of the negative will be reproduced. After printing, wash with cold water, and dry.-J. Sherlock, St. Helen's Photo. Assoc.

INSERTIBLE SAW TOOTH.

The accompanying engraving shows an invention recently patented by Mr. John H. Brown, of South Trenton, New York, which provides crosscut and circular saws capable of doing the greatest amount of work with the least effort and at the least expense. The inner parts, B, of the seats for the teeth are made circular, and the outer parts, C, are made flaring, forming inclined shoulders. Two of the teeth, Fig. 3, are placed in each seat, and are so formed as to fit against the curved and inclined walls. The edges of the teeth are grooved to fit upon the correspondingly shaped edge of the saw plate, thus preventing lateral movement. The

rear edges are straight and at right angles to the length of the saw. The teeth are made of such a size as to leave a narrow space between the straight edges of each pair to receive the tracer spur, F, Fig. 4. These spurs are made of hardened steel wire, a gauge or two thicker than the saw plate, and are slightly tapered upon the outer sides to preven binding. They fit into grooves in the straight edges of the teeth, are a little longer than the teeth, and their outer ends are notched in live with the saw plate to form points or spurs, which trace parallel lines in the bottom of the kerf, thereby forming a kerf a little wider than the thickness of the saw plate, so that the teeth will not require setting. The inclination of the points, E , is such that they will operate upon the wood in the same manner and at about the same angle as the iron of the ordinary hand plane. In the edge of the saw plate, between the teeth, are formed semicircular recesses to receive the shavings and carry them out of the kerf. In the inner part of each tooth is a hole, H , I, to receive a rivet to press against the tracer spur and lock it in place. With this construction the teeth will not require to be either set or filed, and when dulled or broken can be readily removed and replaced with new ones at a trifling expense.

IMPROVED OAR

The blade of the oar is made of sheet metal and is provided at its upper end with a tapered metal socket for receiving the tapered stock of the bar. The socket is firmly beld by

rivets, as shown in Fig. 2. The blade can be made flat and in the same plane throughout, or it can be constructed to form a spoon oar, or its side edges can be rounded to form a paddle for a canoe. An oar constructed after this plan possesses
many excellent features: the metal blade is more durable than a wooden one, it will not warp nor split, springs easily, and the upper end of the blade and the lower end of the back water
This invention has been patented by Mr. George B. Stan tou, of Long Lake, N. Y

Tempered Glass.
It is not very long since the discovery of M. Alfred de la Bastie filled all our newspapers with paragraphs, more or less ridiculous, about the properties of this glass. Some claimed it was malleable; others that it could not be broken. In fact, tempered glass was called upon to supersede all other materials. The excitement being over, tempered glass may now take its rank among valuable inventions, subject, however, to many defects in its present state.
The process of tempering glass, as is well known, consists in heating a piece of glass, say a window pane, to such a degree as to approach malleability, but not hot enough to lose its shape; the glass in this state is instantly plunged into a bath composed of fatty and resinous matter, which is heated and maintained liquid at a temperature ranging from 300° to 600°, according to the quality of the glass The dif ference of temperature between the malleable state, about $1,400^{\circ}$, and that of the bath constitutes the temper.
Glass in the plastic state, when plunged into cold water, will fly to pieces if dropped indiscriminately, but if a piece of very fluid glass is allowed to fall into water in the shape of a tear or drop, it will be perceived that the outside of the glass cools at once, while the inside remains partly fluid for some time, as can be distinguished by the red color showing through the water. This cooling will continue until the mass is perfectly solid. This indicates that the outside layer becomes at once condeused by cooling, while the inside remains fluid and consequently more distended. This cooling process goes on, the outside layer compressing the next adjoining, uutil the whole mass is thoroughly cooled. This peculiar form and state of glass is known as Prince Rupert's drops. Though a bard blow may be struck upon the thick part of these drops, it has no perceptible effect, but if the thin tail end is ruptured the whole mass instantly flies to pieces. The glass appears to be under a great state of tension, and the least rupture of the equilibrium, such as the breaking of the slender thread terminating the drop, is sufficient to destroy the mass.

Until the discovery of tempered glass by M. De la Bastie, it had always been considered that unless a lamp chimney or any other piece of glass was perfectly annealed, differences of temperature brought on suddenly would invariably cause a breakage. The Bastie glass would seem to prove this view to be crroneous, as the tempered glass can sustain sudden and extreme changes of temperature without breaking. Molten lead has been poured into a glass bowl or tumbler without producing a fracture. A piece of plate glass tempered by the Bastie process, having been heated among coals, was suddenly plunged into cold water without producing any effect. This experiment, repeated five times in suc cession, did not seem to impair the qualities of the glass, for on dropping it from a fifth story window it did not break. It may be said, bowever, that if in the heating the tempera ture should reach the point at which it would be annealed, the temper would be destroyed. This action does not seem to take place when the period of reheating is not continued too long. A plate of glass $61 / 4 \times 43 / 4$ inches and three-sixteenths inch thick could only be broken under the shock of a weight of 7 ounces falling 13 feet, while an ordinary piece of glass of the same dimensions would break under half of that weight falling about sixteen inches.
M. Siemens, of Dresden, says that the strength of glass is increased fifty times by being tempered. A bent plate of glass laid upon the floor with the convex side upward is capable of resisting the weight of an ordinary sized man with out breaking. The glass while subjected to the weight will flatten out, but as soon as the pressure is removed it will spring back at once to its original shape. Hardened glass seems to be less dense than ordinary glass; it is harder, however, and is moredifficult to cut by the diamond and tempered tools; it also possesses a much superior elasticity over the ordinary glass
Since tempered glass, however, cannot be cut with the diamond without flying to pieces, its use must necessarily be limited to definite sizes not requiring to be modified; this is quite a drawback to its use. It would seem, however, that some of the defects have already been overcome, for at the Paris Exposition quite a display of tempered goods was made by the Societe Anonyme du Verre Trempe, of Paris. Among other things was quite a display of druggists' and chemical glassware, mortars, pestles, beakers, covered bowls, funnels; also a variety of plain and cut glass tumbowls, funnels; also a variety of plain and cut glass tum-
blers, goblets, decanters, globes, and chimneys; opal plates; a depolished bowl with cut facets; colored glass, engraved, cut, etc. It is said that the making of articles varying in thickness is hazardous, as many of them are apt to fly to pieces either in the making or cutting.-Glassware Reporter.

Medical Photography.

Dr. A. L. Cory says: "As to the use of photographic outfits in medicine, I would say I find mine a great benefit. I have used it in cases of skin diseases, small pox, spina be fida, etc., and can see now where I should have kept photos of many cases if I had possessed it before. While in charge of Lake health department I took frequent copies of small pox cases. It is so little trouble to keep the plate holde filled and the camera in one corner of the consultation room. A photo of any case can be had at a minute's notice, the plate to be developed when convenient. I frequently take mine in the buggy when called to a case I think may be interesting, and use it if opportunity offers. Nothing that I know of offers us so easy and accurate a method of record ing interesting cases."

Curctapudemtr.

Keeping Beer with Oil.

To the Editor of the Scientific American:
In this country we continually have thunderstorms from March to October. For months together a night never passes without one more or less severe, generally the latter. I always keep beer on draught, and find it never goes sou if it is hermetically sealed hy having oil poured on the top. This should be poured into the barrel when tapped. On the other hand, without the oil the beer does not keep week.
Assam, Bengal, April 30, 1884.

How Earthenware is Made.

The Trenton potters use for their white ware, clays from the State of Delaware and Delaware County, Pennsylvania which are totally or almost entirely free from oxide of iron These clays are found in the place of their first deposit, and therefore contain all the sand of the gneiss or granitic rock of the disintegration of which they are the product. New Jersey clay, which is not found free from oxide of iron, but is very much more plastic, is mixed with these clays to render them manageable. All of the seggars, however, that are used in the Trenton potteries are made of New Jersey fire clays. The value of good fire clay to the potter will be understood, when it is considered that true porcelain could not be made in England, owing to the scarcity of a cheap material for seggars, ten per cent of the ordinary seggars being lost in the firing of true porcelain.
The process of preparation of clay for making good ware is as follows: After having been washed, the clays, reduced to the consistency of cream, are separately passed through lawn sieves, and are then mixed by measure in proportions that will give the required plasticity in the mixture. The mixture is now allowed to evaporate in troughs or "slip kilns," under which furnace flues run. When a uniformly doughy mass is obtained, the prepared clay is taken from the troughs, passed through a pug mill, cut into rough lumps, and is stored for a time not exceeding one year in a damp cellar, where it disintegrates by fermentation. The process of preparing the rotted clay for actual use is called "slapping" or " wedging." A large mass of clay is placed upon a bench, and the workman, cutting it through with a wire, lifts up the upper half, turns it about half way round, and throws it down violently upon the half which remains on the bench. The operation is repeated until the mass is intimately mixed, and every vesicle containing air has been broken and the air expressed.
The process of preparing porcelain paste is much the same as that employed for the stoneware paste, a stirring vat be ing employed to knead up the mass of water with clay before it passes to the subsiding vats. The grinding of the feldspar, chalk, broken porcelain, etc., which enter into the composition of the paste, must be well done, and all particles of iron, mica, and such foreign substances must be removed. The ingredients are mixed either in the form of slip or in the form of dry powder, the latter being the least convenient method, but more accurate. Analysis of the best Sevres porcelain manufactured between the years 1770 and 1836 gave this result:

The mixture is freed of superfluous water by being sub jected to hydraulic pressure in closely woven sacks.
There are three methods of fashioning the innumerable and various articles made from clay. The first and most ancient is that of throwing, in which the thrower or jigger throws down a lump of clay upon the revolving table of bis lathe. Using both hands he works the lump into the shape of a rude cone, and then flattens the mass within a few inches of the table, the object of the operations being to force out any air bubbles that may still remain in the clay. By means of his hands and fingers, and referring continually to measuring sticks, he fashions the vessel according to a model or after his own fancy.
Few jiggers are employed in our potteries, the best example of this art being found in the country eartbenware potteries. Presswork is the method commonly employed. This work is done in moulds made of plaster of Paris, onehalf of the pattern being formed in one side of the mould, and the other half in the other side. The two moulding pieces are then fitted accurately together. Handles are moulded separately and fastened on with slip. Handles of teapots, fluted solid rods, and all such slender ornaments are made by forcing clay, under great pressure, through a narrow bole in the bottom of a piston previously charger with
dough clav. As the thread of clay issues, it is cut in suit able lengths. From these pieces, the ornaments are bent and fastened on with slip by the bandlers. For articles of very irregular sbape a method called casting is employed The two halves of the mould are fastened together, and slip is poured in until the cavity is quite full. As the moulds are previously thoroughly dried, the absorbent power of the plaster soon abstracts the water and makes the coating of clay next to it stiff and doughy. When the liquid is now
poured out, this doughy coating remains. If each half has poured out, this doughy coating remains. If each half ha
been cast separately, as is the usual practice, the halves are allowed to dry to the green or most tenacious state, and are
then joined with slip. The method of casting is that usually employed in moulding porcelain.
Anotber method of forming articles in porcelain we may call the crust method. The dough is spread with a rolling pin upon a moistened sheepskin, and is transferred over th mould by lifting it carefully upon the skin. All pieces, whetber pottery or porcelain, are finished upon the lathe whetber pottery or porcelain, are finished upon the lathe
when they have dried to their greatest tenacity. A mois when they have dried to their greatest tenacity. A mois
sponge and knives are the implements used in turning sponge and knives are the implements used in turning.
Owing to the low degree of tenacity possessed by the porceOwing to the low degree of tenacity possessed by the porce-
lain paste, hardly more than one-sixtietb as many pieces can be finished for fring in porcelain paste as in stoneware paste, by the same force in the same time.
Seggars are vessels of fire clay, in which all articles except the commonest earthenware are burnt. They are fashioned of clay slabs roughly cut with a spade and compacted with a mallet, over an oval-shaped form. The bottom is put on separately and the whole is fired. The ware is placed in seggars, which are piled upon one another so that the bottom of each succeeding seggar forms a cover for the one immediately below. Only a single article of porce-
lain paste can be burnt in a seggar, and the bottom of the seggar must be sprinkled with infusible quartz sand to pre vent adhesion between the porcelain and the seggar. Seggars for stoneware may be filled, the pieces being separated by variously shaped cockspurs, etc. Stoneware, W. G. heat, which is continued for thirty-six hours. The fires are then allowed to cool, the seggars removed, and the biscuit taken out. This biscuit is very porous, and, when dressed of all rough prominences, is ready for the glaze.
The glaze for these wares is usually a "frit," composed of ground feldspar, twenty-five per cent; ground quartz twenty-five per cent; sal soda, twenty-five per cent; plastic clay, fifteen per cent; and boracic acid, ten per cent which is fused in a reverberatory furnace, ground in a mill, and mixed with water in glaze tubs. The bisouit is dipped in the slip contained in these tubs, the marks are affixed, and
the articles allowed to dry. Since the glaze is much more fusible than the ware, a cherry-red heat is sufficient to fus the glaze. Λ porcelain furnace has two stories. In the up per the ware is first fired, the ware being converted into a oft, as distinct from a hard or stoneware biscuit. Thi biscuit is dipped in a glaze of ground quartz, feldspar, lime, and porcelain clay. In the second firing, which is done in the lower story of the kiln, the glaze and the biscuit are fused together, producing a translucent mass. Stoneware granite ware, etc., are chiefly decorated by a process called printing or transferring. The intended design is engraved upon copper or stone, and is then transferred in transfer ink to the surface of a prepared elastic sheet. This sheet is stretched on a frame until the design is brought to the size of the article to be decorated. The pattern is now retrans ferred to zinc plate by the ordinary process of lithograph printing. The zinc plate is engraved by electricity, and then presents all the gradations in depth and tone of the original design. The printed pattern is applied either to the biscuit or above the glaze, and may be finished by hand and brush after the printing. Decoration is alwe gs applied to porcelain over the glaze, the ware being atterward placed in a muffle and subjected to a heat just sufficient to vitrify the colors, which must be of earthy character so as to form colors, which must be of earthy ct
colored glasses.-Glassware Reporter.

Benzene a Product of Paraffine.

By Drs. Armstrong and Miller, communicated to the Chemical Society.-The authors described the results of their examination of the liquid obtained on compressing oil gas, such as is made by passing the vapor of petroleum through higbly heated retorts. They point out that their material is in every respect similar to that examined by Faraday in 1825; and in which he discovered benzene. Be sides benzene and its homologues, the liquid from oil gas contains hydrocarbons of the ethylene and acetylene series It is noteworthy, they say, that the latter are none of them true homologues of acetylene, as they are incapable of form-
ing metallic compounds analogous to acetylide of copper. They are probably all derivatives of allene $\left(\mathrm{CH}_{2} . \mathrm{C} . \mathrm{CH}_{2}\right)$, the isomer of allylene or methyl-acetylene. From the fractions boiling below benzene, two hydrocarbons of the acety lene series ba ve been isolated, methylallene $\left(\mathrm{CH}_{3} \mathrm{CH} . \mathrm{C} . \mathrm{CH}_{2}\right)$, identical with the crotonylene separated by Caventon from the mixture of hydrocarbons condensed by compressing coa gas, and hexoylene ($\mathrm{C}_{6} \mathrm{H}_{10}$), identical with that described by Schorlemmer.
The crystalline tetrabromides of these hydrocarbons have oth been obtained in large quantity in a pure condition As yet it has not been found possible to isolate the interme diate hydrocarbon- $\mathrm{C}_{5} \mathrm{H}_{8}$. The fractions below benzene contain two olefines-viz., amylene and hexylene. A study of their oxidation products shows that both of these are the normal hydrocarbons. The amylene furnishes, on oxida tion with permanganate, normal butyric acid. The hexyl ene is converted into normal valeric acid. In other words, the amylene is normal propyl-eth ylene; the hexylene, normal butyl-ethylene. In conclusion, it was pointed out that this is an extension of the investigation of Thorpe and Young. By heating paraffine under pressure at a comparatively moderate temperature, they obtained a mixture, with cor responding olefines, of lower (normal) paraffines down to the paraffines the higher temperature of the oilgas retorts, enes, benzenes, etc. It is not improbable, they state, that
he benzenes are products in a direct line of the action of heat on the paraffines; and that they are not built up, as has been supposed, from hydrocarbons of the acetylene series.

decisions relating to patents.

i Pennsylvania
stutz v. ARMSTRONG \& SON.-PATENT COAL WASHing
Acheson, J.
Where it appears from the original papers in a case tha certain feature was within the contemplation of the in ventor as a valuable element in a patentable combination and it is proved that a claim embracing such feature was rased from the original application through a misundertanding of the invention by the solicitors, Held that the Commissioner of Patents committed no error in granting a eissue containing a claim embracing such feature.
The fact that a reissue application was filed within two years after the grant of an original patent, while it may not be conclusive against the charge of unreasonable delay, i entitled to some consideration in view of that provision o the patent laws by which nothing less than two full years public use of an invention is a bar to an application for a patent.
In determining whether an inventor is guilty of inexcusa ble delay, the fact that the correction of a mistake by reisue was before any adverse rights had accrued is a consider ation of paramount importance, and it ought to count some thing in his favor that, being of foreign birth, education and an alien tongue, he encountered difficulties in acquiring knowledge of our language and laws.
There is $\mathbf{n} 0$ patentable combination in a mere aggregation of old devices which produce no new effect or result due to their concurrent or successive joint and co-operating action; but it is by no means essential to a patentable com bination that the several devices or elements thereof should coact upon each other. It is sufficient if all the devices co perate with respect to the work to be done and in furtherance thereof, although each device may perform its own articular function only.
If a patentee might have claimed an element generally and broadly, most assuredly his more limited claim cannot be successfully impeached.
It is settled that a disclaimer need not be filed until the court has passed upon the contested claims.

United States Circuit Court.-Northern District of New York.
crandal et al. v. the parker carriage goods company. -patent loop for carriage top.
Coxe, J.
A device which could not be used as a substitute for the patentee's invention without the exercise of invention is not n anticipation of it
Where it can be seen that the patentee seeks by apt words of description to secure what he has honestly invented, and nothing more, the court should hesitate to regard with favo the accusation now so freely made against reissued patents.

A Brief Sermon on Cranks.

The Burlington Hawkeye publishes a great deal of non ense, but sometimes in its amusing way it states indispu table facts. The following is from a recent issue:
What would we do were it not for the cranks? How lowly the tired old world would move, did not the cranks keepit rushing along! Columbus was a crank on the subject of American discovery and circumnavigation, and at last he met the fate of most cranks, was thrown into prison, and died in poverty and disgrace. Greatly venerated now! Oh yes, Telemachus, we usually esteem a crank most profoundly fter we starve him to death. Harvey was a crank on the nbject of the circulation of the blood; Galileo was an astro nomical crank; Fulton was a crank on the subject of steam avigation; Morse was a telegraph crank. All the old abo litionists were cranks. The Pilgrim Fathers were cranks John Bunyan was a crank; any man who doesn't think as you do, my sou, is a crank. And by and by the crank you despise will have his uame in every man's mouth, and a half completed monument to his memory crumbling down in a dozen cities, while nobody outside of your native village will know that you ever lived. Deal gently with the crank, my boy. Of course, some cranks are crankier than others, but do you be very slow to sneer at a man because he knows only one thing and you can't understand him. A crank Telemachus, is a thing that turns something, it makes the wheels go round, it insures progress. True, it turns the same wheel all the time, and it can't do anything else, but that's what keeps the ship going ahead. The thing thai goes in for variety, versatility, that changes its position a hundred times a day, that is no crank; that is the weather vane, my son. What? You nevertheless thank heaven you are not a crank? Don't do that, my son. May be you couldn't be a crank, if you would. Hearen is not very particular when it wants a weather vane; almost any man will do for that. But when it wants a crank, my boy, it looks about very carefully for the best man in the community. Before you thank heaven that you are not a crank, examine your self carefully, and see what is the great deficiency that debars you from such an election.

Turning Bessemer Steel

A job in a machine shop of Bessemer steel worked in the lathe with the ordinary turning tool would not come out right; the material appeared to lack tenacity; it crumbled when brought up by the turning tool to an edge. As an instance, some axles for cars on an elevated railroad were scored circumferentially. They were made of excellent Bessemer steel. The scores, somewhat more than a quarter of an inch deep, were turned in the usual way, but before the vees could be finished to a depth of about five-sixtcenths of an inch, the metal crumbled at the top of the vee, and the entire job had a ragged look. It was found that the only way to do a good job on this material was to make a collection of toothed mills, and mill the scores instead of turning them. If the axles had been made of tenacious material like Norway or Low moor iron, there would have been no diffculty in cutting clean vee scores possessing all the toughness of the solid material.

Safety of Railroad Traveling

According to published statements, not a single individual riding on a passenger train in Massachusetts was killed the past year, unless the cause was directly traceable to the carelessness of the person killed. Over $61,000,000$ passengers were carried, at an average distance of fifteen miles each. According to this statement, it is safer to be on a passenger train in Massachusetts than to be almost anywhere else. It is a remarkable fact that fewer accidents causing death occur on suburban tains, or those running through thickly settled districts, than in the open and sparsely settled country. The Northwestern Lumberman concludes that the reason for this is that more care is taken with such trains; that the shocking railroad accidents that are continually bappening are the result of gross and crim inal carelessness on the part of both managers and employes.

ROCK CUTTING MACHINE.

The rock extracting industry seems to ever remain at the same point. Little progress has been made in the method of quarrying, and, nearly everywhere, use is still made of the wedge, the lever, and powder. Aside from the cost of the work and its defectiveness, there results considerable waste, while the blocks extracted are irregular in shape. We therefore believe it our duty to make known to our readers a new machine for cutting rocks, the invention of an engineer, Mr. Rapp.
This machine, which is easy to maneuver and move about, appears to us to obviate all the inconveniences that we have just noted. It may be briefly described as follows: Upon a platform, A, are fixed two uprights, B, between which there are two cylinders, C and D, that are connected with a slide, against which the cutting tools, E, are fixed by means of pivoted supports, F. The steam which is introduced through a pipe, R, is capable of giving the piston a velocity of 300 strokes per minute.
The steam cylinder, D through a gearing formed of a wheel, S , and pinion, T , is capable of being moved ver tically, thus permitting the cutting tools to work to a depth of 0.25 meter. In orde to reach a greater depth it is only necessary to un screw the supports, F, and place the tool in the succeed ing aperture.
The cylinder, C, contain air, which, through its sud den compression, forms a spring and prevents the ma chine from being damaged in cases where the cutting tool happen to meet with insuffic ent resistance. By means of an ingenious mechanism each stroke of the piston gives the machine a to-and
fro motion, whose extent may be regulated by the operator according to the nature of the rock.
The total weight of the apparatus is 1,800 kilogrammes; the steam power required is that of from three to four horses, and the work effected per day varies between 6 square meters in marble and 20 in soft rock. One man and a boy assistant suffice to run it.
Mr. Rapp's rock cutter may be employed elsewhere than in quarries, and serves for all works of excavation, such as
digging trenches, large canals, etc. For this latter purpos it offers the great advantages of permitting of the use of dynamite without any fear of lateral caving, since an absolute break will always be made between the bank and the ube to be taken out.-La Nature.

DRAWBRIDGE SIGNAL

The invention herewith illustrated relates to signats for drawbridges, and aims to prevent accidents either in railroads or common roads where the drawbridge is located, by indicating to approaching trains or vebicles whether the draw is open or closed, at such a distance from the bridge that the train or vehicle may be stopped in time, should the draw be open. This object is attained by a mechanism at

WILLIAMS' DRAWBRIDGE SIGNAL

fastened, and so arranged that they cannot be unfastened except by the turning back of the bridge to its origina position, when the gates, being released, swing back wher they properly belong. The distant signal may be dispensed with on bridges used entirely for vehicles.
Further information concerning this invention may be obtained from the patentee, Mr. James N. Williams, Scot Street, Mobile. Alabama.

The Economy of Are Lighting.

So much has been said by interested parties to make it appear that the arc light, as applied to street illumination is expensive and even extravagant, that it is eminently desir able to get at figures which grow out of actual experience and learn the lesson which they teach Fortunately, just such figures are obtain able from the city of Hartford, in Connec ticut, where the arc light has now been in use for some time, although on a limited cale up to the present time. It should be premised that the electric light was firs introduced into Hartford about a year ago and that it has stoutly held its own, not withstanding the violent and almost viru lent opposition of the gas company, which has done its best to bring it into disfavo and disrepute, and to oppose its introduc tion at every possible point. At last it urn seems to have come, for the authori ties are loud in its favor, and in deciding to very materially increase the number of electric lights, report that each light in us actually displaces six and one-half stree gas burners, giving, at the same ttme, at least ten times as much light. Now, each street gas lamp costs the city $\$ 35$ pe annum, the lamps burning 326 nights in the year. Six and one-balf of these lamps, at $\$ 35$ per year, cost the city $\$ 227.50$ pe anum. Ou the other hand, one electric
ched to the draw and the other standing parts of the bridge, and the action of which is sure and perfect. The bridge attendant bas no control whatever over the attach ments or signals, which are automatic in their action. The device is easy and simple to construct, and as castings are not essential an ordinary blacksmith could place one in position in a very short time. It would add but little to the weight of the bridge, and it could be attached to any drawbridge now built.
The distant signal is located from two to six hundred feet away from the bridge, where there is a small house for the signal, which is raised about ten feet from the ground. Wires are led from the bridge to this house, where they connect with the signal arm, upon which is a red ball about two feet in diameter; this constitutes the day signal, but at night the ball is removed and a red danger lamp bung in its place. The turning of the draw causes the signal to be swung out of the house at a right angle and within two feet of the passing train.

ROCK CUTTING MACHINE. isht, which displaces these six and one-balf ras lamps, costs the city 65 cents per night for 326 nights, or $\$ 211.90$ pe annum, a saving of $\$ 15.60$ effected by each electric light per annum. Supposing Hartford to use one hundred arc lamps in its streets-and it is certain that the number in use will be increased to that figure within a very few monthsthe annual cash saving by displacing 650 gas lamps will be over $\$ 1,500$, besides the cost of lighting and extinguishing, and the light furnished will not only be ten times as great in volume, but of a far better and pleasanter quality.
It will naturally be asked how it is that in Hartford one electric light displaces six and one-balf gas-burners, while it was reported not long since that in Boston each arc light replaced but three and one-half gas burners. The answer is that in Boston many gas lights were kept burning so near the electric lights that their flames actually cast a shadow on the sidewalk, and that, in perhaps a majority of in stances, the electric lights were not so placed as to render the greatest possible service. Whatever the cause may have been, it is very certain that certain influences were at work in Boston to throw dis favor on the electric light, and that it was not difficult for those in authority to so "cook" the returns as to make the worse appear the better cause
But the reports that come from Hartford are those of persons who, at the outset, were bitterly opposed to the electric light, but who now, seeing its numerous advan tages and fully convinced by their own experience of its superior economy, advocate its general introduction for treet illumination.
For ourselves, we can say bat we have never for a moment doubted the permanent use of the arc light for al purposes, including street phting where large street re to be illuminated space have already said, ten years hence we expect to see ten and perhaps twenty arc lights in use in this and every city where one now burns, and we expect to see such improvements as will render cheaper, more simple, and

At the same time another sigual, located at the end of the bridge or pier, is displayed. This consists of a gate built of light bar iron, and having a central opening about two feet in diameter faced around with a sheet iron collar, the whole being painted red. The night danger signal is hung from a hook in the central opening, and there is a tube or shield extending through the opening for the purpose of biding the light from the engineer when the draw is closed. When the bridge has been swung open the gates are securely

We are going to get far more
far better than it is to-day. We are going to get far more electricity for the same expenditure of power, and far more power for the same expenditure of moncy. The incandescent light is invaluable in its place, but so, too, is the arc light in its place, and it has come to stay.-Electrical Review

Arizona's total production of copper this year is expected to be nearly 50 per cent greater than last year's yield, which amounted to $17,000,000$ pounds.

THE SUN LAMP APPLIED TO PHOTOGRAPHY. Ever since lighting by means of electricity became prac tical, the idea bas occurred to utilize it for photography. In fact, the new processes seemed to possess very greal advantages over solar light, as the latter depends upon the state of the atmosphere, and is often insufficient in our latitude for full a third of the year.

The systems of lamps that were first used in the public streets, and which were consequeutly the best known, were the ones first employed, and for this reason it was the Jablochkoff candle that, in France, served to establish those photographic installations which were attempting to make progress in a new route. Every one will remember the little gallery which was conducted by Mr. Leibert in one of the salons on the first story at the Palace of Industry Here the apparatus which served to contain the electric light (which consisted of a Jablochkoff candle), and to project the same, were as yet very primitive and difficult to maneuver. The large parabolic copper reflector was designed for concentrating the luminous rays upon a limited surface, in order to give sufficient luminous intensity to the parts of the subject to be reproduced; so nothing but busts could be taken, and, moreover, the lights and shades were extremely pronounced, and the flesb, on account of the vio-
present the lamp and machines are much superior to what they were at first, and it is indeed strange that this light has not found more applications in Paris, where it would give more satisfactory results than all those that are at present illuminating the great industrial and commercial centers and the theaters and other places of amusement.
We give, in the accompanying engraving, the details of an application of this lamp to photography in Mr. Boscher's gallery. There are four of the sun lamps, and they are arranged as follows: The first is suspended from the center of the posing room, beneath a white drapery. The illuminating surface, which is covered with a slightly ground globe, is directed toward the drapery, and the latter serves to reflect the light. The lamp, which is suspended from a longitudinal cable, may be slid along by means of a pulley, and be removed from or brought near the subject to be photographed, in such a way as to well ligbt the upper part. Two like frames, which are mounted upon rollers, carry three other lamps (provided with opalescent globes), which may be placed laterally so as to send the light toward the center of the body and that portion of the floor upon which the feet of the subject or of the persons forming a group are resting. In order to prevent the raysfrom falling too directly (which would give glaring whites, and shades without trans-

Brazilian Diamond Mines.

The diamond beds of Bahia and Minas Geraes, in Brazil are very similar in character as regards the minerals composing them and their plateau form, or situation on watercourses. A new bed has been recently opened ou the Rio Pardo in Bahia, which presents some differences to those hitherto known in Brazil. The country around is low and marshy, and covered with forests. The working of these forests has led to the discovery of the diamonds, which are found in a white clay along with beds of decomposed leaves. The deposit appears of modern formation. The minerals of the clay accompanying the diamond are, according to M. Gorceux, quartz, silex, monazite, zircon, disthene, staurotede, grenat almandine, corindon, and some oxides of iron. There are no oxides of titanium, or tourmalines, as is frequently the case in diamond beds. The clay appears to be from its character and situation the debris of the granite mountains bordering on the Bahia coasts.

Easy Method of Reducing Bromide of Silver
 Residues.

M. Scola communicates to the Bulletin of the French Pho tographic Society an easy method of reducing waste bro mide of silver to the metallic state, and not only obtaining

A PHOTOGRAPHIC GALLERY LIGHTED BY THE SUN LAMP.
let rays emitted hy the lamp, exhibited livid reflections whose coloration and inteusity varied according to the caprices of the unstable light.
The sun lamp, which possesses all the qualities of coloration and steadiness of the incandescent light, and, at the same time, a luminous intensity as great as that given by the arc light, ought to be admirably adapted for photographic purposes. But, while waiting for carriages to a distance and distribution of electricity to enter the industrial domain (which it will ere long), the management of a truly practical gallery for utilizing Mr. Clerc's invention would have necessitated too great an expense, and it was a mere accident that permitted the installation to be arranged that we now have under consideration.
Alongside of the sun lamp works, in Wagram Avenue, is situated Mr. Boscher's photographic gallery, and it was therefore easy to arrange a few meters of cable to carry the current to lamps arranged for photographic operations. The steam engine is running all day long in the lamp works, and, in the evening, it is only necessary to notify the engine man to continue bis work in order to have a beautiful light that permits of taking, just as in broad daylight, the most varied regatives.
The sun lamp is well known to the public, which has, at various times, had an opportunity of judging of its merits during the experiments at the Continental Hotel, on the Jouffroy road, in the picture gallery of the Exhibition of Electricity, and in the grand foyer of the Opera House. At
which rose or other colored gauzes may likewise be placed, is interposed between the lamps and the model. Another opaque screen is placed alongside of the objective during the operation, in order to prevent the luminous rays from strik ing the gelatino-bromide plate too directly.
All the walls of the apartment, moreover, are of a very light tint, and, through the a:rangements that we have just indicated, there is obtained a diffused light, whose intensity may he very easily varied at any given point. The time of exposure necessary in order to obtain good results is scarcely longer than with daylight, and the proofs of album cards that we bave examined in Wagram Avenue demonstrate that hereafter lovers of beautiful photographs will not have to be dependent upon the caprices of the light of the sun.La Lumiere Electrique.

Great Meteor.

Mr. L. C. Yale, of Norwood, St. Lawrence Co., N. Y,. writes to the Neoos of that place describing a remarkable meteor which he saw there at 8:30 P. M., on July 3. It moved slowly from east to west, had a long tail, a nucleus like a globe, as large as the moon, surrounded by a bright ring, two dark lines crossing the nucleus in vertical direction, the lines larger in middle, straight on inside, curved on outside, tapering both ways to points. The tail was 30 degrees length. The general appearance was that of a gigantic sword of fire, moving handle first through space.
the bromide in a useful form, but also generating an electric current at the same time.
To separate the bromide of silver from the waste emulsion, M. Scola recommends that two or three per cent of sulphuric acid should be added, and the mixture should be boiled for some minutes, after which the bromide settles rapidly to the bottom of the vessel. It is now washed and dried, when it is ready to be cast into sticks for use in the battery about to be described.
The battery in which the reduction is effected is constructed on precisely the same principles as the chloride of silver battery of Warren de la Rue, and one form of this, as is well known, consists of a rod of amalgamated zinc immersed in acidulated water, and opposed to a similar rod of fused cbloride of silver, a platinum wire being embedded in this latter to serve as a conducting terminal. When the plates of the battery are connected by a conducting circuit, the chloride of silver becomes reduced to the condition of metallic silver, while the chlorine unites with some of the zinc to form chloride of zinc.
If the negative plate of the battery is made of fused bromide of silver, reduction takes place quite readily when the terminals are united; and when the battery is exhausted it is merely necessary to fuse the resulting spongy silver in order to obtain it in a convenient condition for use in making a fresh supply of nitrate, while the whole of the bromine takes the form of bromide of zinc, and remains in solution.

A Genius of the Jack Knife, bx dr. g. Arbhie stockwell

Carving in wood is far from being a new or even recent art, though it has received vigorous impulse of late, owing to the " $æ$ sthetic craze" that replaces the stove with the open grate, and tabooes mantels of slate and marble, substituting instead the product of our native forests, handsomely o uglily graven as the case may be. Economy cannot be claimed therefor, since grotesque carvings, unheard of pil claimed therefor, since grotesque carvings, uv bearlos
lars and pilasters, hideous heads, meaningless emblems, and zoological distortions are made to meet the requirements of the longest purse; their only utility, so far as discovered, being counter-irritants to the placidity of the house wife, and traps for the reception of dust and dirt.
Wood carving, however, can be made both beautiful and ornamental; and I was recently delighted by an examination of a host of such, not one of which was from the hand of the professional artist, but the product of an illiterate cripple, whose only tool, aside from a carpenter's saw, is a sin gle-bladed pocket knife.

Whitlling William," for such is the pseudonym bestowed upon him by his neighbors, was introduced to my notice while sojourning in the little village of Kirk wood, twelve miles out of St. Louis, Mo. The accounts I bad previously received of the man, coupled with the exhibition of speciimens of his work in the way of busts of Sir Walter Scott, Napoleon the Great, Lord Byron, etc., further whetted my curiosity, and accordingly I made it in my way to visit the little old church occupied by him as a workshop and domicile.

Here a perfect wilderness of oddities met my eye, the walls and shelves being covered with an incongruous assortment of curiosities, from chains, frames, statuettes, miniature copies of mechanies' tools, carved frames, brackets, boats,
canoes, steam and sailing craft, architectural designs, flutes, toy houses and furniture, animals, birds, and a cuckoo clock, to models of various forms of machinery, including statiouary, locomotive, and marine engines, looms, tbrashing machines, etc.; and though all were in wood, they were apparently complete even to the most minute details. Even flowers and leaves were in some cases imitated with scrupulous fidelity, and after viewing a carved tree branch, with nest and eggs of a thrush, with the parent bird close by, I could readily believe that no undertaking was ton difficult or too chimerical for this genius to undertake; though he subsequently acknowledged that "scroll work was long the great bother" of his life.
Rather prone to reticence, and withal somewhat shy and modest, it was with some difficulty that I succeeded in obtaining Mr. Yoe's history, which after all proved uneventful enough, even quite commonplace. Born in the city of St. Louis, be was early apprenticed to a millwright, from whom he ran away, forfeiting his indentures, while still in his teens. With the breaking out of the Civil War he entered the army, from which be was discharged after the lapse of eighteen months, having suffered amputation of his right foont as the sequel to a gunshot wound. Though always considered "handy" with the knife, it was not until his twenty-third year that he became fully a ware of his peculiar talent, which was then brought out in the construction of a doll's house undertaken to please a younger sister. This excited so much praise and admiration that he at last conceived the project of turning it to profit, and accordingly adopted his present occupation, which, he assures me, is fairly remunerative.
His first essays were of rather a low order, consisting, for the most part, of walking sticks, chains, puzzles, and nondescripts put together in narrow neck bottles so as to fully occupy the interior-feats by no means uncommon among the rural youth of New England. Later, on viewing a socalled model of " Bingen Castle," he was seized with a desire to duplicate it, which he acomplished successfully, including its six hundred windows and doors and many odd shaped towers and turrets. For this piece of work he realized the munificent sum of $\$ 20$
His next feat was a model, four feet long, of the celebrated Bristol, of the Narragansett line of Sound steamers, his only guide being one of Endicott's colored lithographs; and in this he was so far successful as to find a purchaser as som as completed in the person of a gentleman from Texas.
Other steamers and ships innumerable have since left his lands, wonderfully perfect and complete in detail, though he is devoid of all nautical knowledge save as gleaned from various models, dra wings, engravings, and from the "Kedge Anchor; or, Young Sailor's Assistant." How his eye and hand so readily master secrets that frequently puzzle the initiated is a mystery, since be understands neither the principles of proportion or perspective, nor the art of delineation with pencil and pen!
Recently a miniature ocean steamship was constructed to order for parties residing in Great Britain, which on being fitted by the purchasers with miniature machinery in brass, including engines, boilers, and screw, is said to have developed a speed ou her trial trip equivalent to sixteen miles per hour; this statement, however, may be taken with some allowance, since the craft was less thau five feet in length
over all, and the scene of her performance a pond scarce over all, and the scene of her performance a pond scarce
twenty rods in diameter. For this he received a trifle iess than two hundred guineas.
Mr. Yoe bnasts, in lis modest way, of his ability to duplicate with his knife alone any piece of work undertaken by joiner, cabinetmaker, wheelwright, professional carver, or
other worker in woods with a complete outtit of edged tools, if only allowed his own choice of material; also that the
Patent Office at Washington contains more than three hunPatent Office at Washington contains more than three hun-
dred models, the product of his skill in behalf of would-be patentees. He is ambitious also in certain ways; he desires to visit Europe to view and study certain celebrated and historical structures which be desires to imitate, such as West minster Abbey, St. Paul's, St. Peter's, the Cathedral of Cologne, Tower of Pisa, Escurial at Madrid, and tomb of Napoleon. Tbis seems to be about the sum and substance of his knowledge of architecture abroad; to found a museum of jackknifery, so to speak, in St. Louis or some other large city that will afford him encouragement, whicb will astonish the world; and finally to be considered and known as the "Champion Whittler of the World," and, if possible, meet some other would-be champion in contest of pine and shavings.
One of the designs now latent in his braiu is a copy of each of the capitol buildings of the original thirteen States, artistically grouped around the National capitol. The State artisticaly grouped around the National capitol. The State
houses of Missouri and Texas have been imitated with flathouses of Missouri and Texas have been imitated with fatt-
tering success, the former yet in Mr. Yoe's workshop a waiting a purchaser, while the latter has passed into the posses sion of a gentleman at Austin.
At this writing, he is engaged upon a momentous undertaking, which, if successful, he believes will be the master piece of his life-an automaton water and landscape of nearly 300,000 pieces and 1,100 movements, to be put in motion by means of an overshot wheel driven by a stream of sand falling from a hopper. This will occupy a space of forty-eight by sixteen feet, is already more than half completed, and embraces windmills, light houses, towers, bridges, railways and trains, canal boats, steamers and sailing crafts, hills, dwellings, etc., besides a Norh's ark, a copy of the Strassburg Cathedral and its wonderful clock, model of the New York, West Shore, and Buffalo Railway Depot at Buffalo, and a hust of moving and performing figures.
Of these, a brig weighing less than lalf a pound and complete in all details, contains 1,800 distinct pieces; Noal's ark,forty inches long, 3,400 pieces; the depot, eleven by fourteen and nine feet bigh, is a wonderful piece of work, out of which trains will dart at intervals, the same movement put ting in motion some ninety figures on the platform and in and about the building. Besides the ordinary features of the Strassbourg clock, the chimes in the spire, on striking, cause the Virgin to appear before the cross on the altar of the cathedral in a supplicating attitude; two hundred figures leave the choir, and moving down the main aisle pause for a altar piece. At stated periods, also, the inhabitants of the ark sally forth by a gangway, and defiling down the side of the hill, return by a circuitous route, entering in the same way at the opposite side. Canal boats pass up the river; vessels in harbor toss upon the water; figures in door yards pursue their usual vocations, while in one instance a man constantly saws wood, while another as monotonously plies the ax.
One of the peculiar features of the work is that each subject is complete in itself, and independent of the others-may be used separately or connectedly at the will of the operator. Again, aside from paint and cloth nothing but wood enters into the construction, saving the chimes of the cathedral and the iron shaft of the main wheel. When I saw the affair, I was told that it had proceeded to the extent of twenty-five bundred cigar boxes and eight hundred feet of
pine and white wood, and would require as much more and more than a year's hard labor before arriving at com. pletion.
It would appear too ponderous for removal or exhibition, but the builder asserts his ability to take down and pack in small compass suitable for transportation in less than three hours, and again to unpack and put together again in less than half a day. All in all it is a queer combination, and in spite of its incongruity and possible defects-for he is forced to draw upon his imagination for many
-it is a most interesting piece of mechanism.
That the man is a prodigy cannot be gainsaid, and be is far from being the egotistical character one would suppose, exeept in his desire to be considered a "champion" etc., but "channpious" are all the rage now. He claims his gift as a natural, inborn one, as it doubtless is, and declares he is often lost in astonishment and wonder at the completeness and results of his labors, and the ease with which difficulties are surmounted when once fairly reached. All offers of instruction in drawing, mechanics, or mathematics be obstinately refuses, since he is just superstitious enough to believe they would tend to mar his genins, if not cause it to alto-
gether desert him. Undoubtedly half way instruction would lave some such effect by causing bim to mistrust theability of which be is now so confident.
After viewing the many evidences of Mr. Yoes handiwork, I can readily conceive how many a boy may work out a future by the aid of a knife, provided he has patience, perseverance, aptitude, and endurance; it may lay the foundation of a career in mechanics or architecture, as a de-
signer and in ventor, or one of a host of other useful arts. I feel this the more in that, though moderately skillful with the pencil and to a degree familiar with the pen, I could never develop sufficient genius to mend my own quills or manufacture a respectable toothpick. Edison, who has
gained some fame as an inventor, I knew well, even intimately, in his boylood, and he was an unwearying, insatiabie, devotee of the jack knife!

Prevention of Yellow fever Mortality by vaccina-
Dr. Freire, of Rio Janeiro, in a recent letter to the SaniInry Nevos, writes as follows:
In compliance with your request, I will give you an account of the chief points of interest connected with my studies on yellow fever. I can, of course, give you only a very brief summary, and for further information may refer you to my two memoirs-" The Cause, Nature, and Treatment of Yellow Fever" and " The Contagion of Yellow ment of Yellow Fever" and "The Contagion of Yellow
Fever." An extended report on all the theoretical and practical bearings of my researches is now in press, and a copy will be sent to you as soon as issued.
The method of culture which I bave followed is Pasteur's. wilbdraw blood, or any other organic liquid, from persons sick with yellow fever, or from the bodies of the dead, using the most scrupulous precautions, and introduce these liquids into Pasteur's flasks, previously sterilized, and containing a solution of gelatine or beef "bouillon." In these conditions the microbe develops abundantly, and be. comes of itself attenuated by the action of the air, which filters through the tampion or amianthus with which the flask is corked. The purity of these cultures is demonstrated by microscopic examinations, of which you will find a good illustration in my memoir, "Experimental Studies ou the Contagion of Yellow Fever."
The microbe appears in the form of little black points, like grains of sand (780 diameters); in the mature form it presents the appearance of round cells with an ash-gray or black rim, containing in their interior yellow and black pigment and some granulations which will be the future spores. These cells burst at a given momest, and pour out their contents, i.e., the spores, the pigments, and a nitrogenous substance composed of ptomaines, which I bave isolated not only from vomited matter, but also from the blood itself, and from the urine. The yellow pigment, being very soluble, produces the icteric infiltration of all the tissues by a sort of tinctorial imbibition which may go on even after death; the black pigment, as well as the detritus, resulting from the rupture of the cells, being insoluble, is carried into the general circulation, and produces obstructions in the sanguine capillaries, whence the apoplectic symptoms so common in yellow fever and in the urinary tubules, whence the suppression of the urine, a very frequent and terrible symptom in this disease.
I have described this microscopic organism under the name of Cryptococcus xanthogenicus; its development resembling that of this genus of alge.
After having demonstrated the contagious nature of yellow fever by experiments upon barn-door fowls (see my memoir), I made experiments in preventive inoculations, first upon animals and afterward upon men; I did not fear to do this, because a multitude of experiments upon animals had previously convinced me of the perfect safety of inoculation with attenuated cultures.
Up to this date I have vaccinated 450 persons, for the most part foreigners recently arrived. Freedom from yellow fever bas been pronounced among those thus vaccinated, for they have passed through a quite severe epidemic, and only six deaths bave occurred among the 450 vaccinated persons, that is to say, less than two in a hundred, while more than a thousand deaths have occurred among the non-vaccinated, the mortality of the non-vaccinated sick being about thirty to forty per bundred. Thus, if we take one bundred vaccinated persons, under the most favorable conditions as regards receptivity, we have only two deaths during the entire epidemic; if we take one bundred non-vaccinated sick, we have thirty to forty decedents, which gives a mortality fifteen times greater amoug the non-vaccinated. Even if the mortality were only teu times or five times less great among the vaccinated, the preventive measure would be worthy of adoption. The protective inoculation for cbarbon gives au immunity to one-tenth, and that of vaccination for small-pox guarantees an immunity to one-fifth, according to the calculations of Bousquet

Dr. Domingos Freire,
Professor in the Fuculty of Medicine of Rio Janeiro,
President of the Central Junta of Public Hygiene.

A New System or Painting Iron

A process, on a new principle, for protecting irou and steel from corrosion (especially when submerged) has been suggested by Mr. F. Maxwell-Lyte, F.C.S. The theory of the process is essentially electrical; and its utility is based upon the bypothesis that the oxidation of iron and steel is much accelerated by, if not wholly due to, galvanic action. The metal to be protected is first coated with one or two primings of an oxide of a metal electro-positive to iron, upon which any of the ordinary anti-fouling or oxide paiants may be applied. These latter always contain the oxide of a metal electro-negative to iron; and this oxide will conse quently always be reduced, and the iron oxidized iu time. The priming employed by Mr. Maxwell-Lyte is composed of oxide of zinc or magnesia, particularly the latter; and this not only protects the iron, but keeps it, from contact with the outer coat. It is claimed that something of this kind has always been used whenevel painting of iron has been even partially successful; but that the guiding principle-the use in the first place of a material electro-positive to iron-has been overlooked. Red lead as a priming does fairly well for a time; because though lead is electro-negative to iron,
it is only slightly so. Better protection is assured by the use of a distinctly basic material.

ENGINEERING INVENTIONS.

A gas engine has been patented by Mr. Johannes Spiel, of Berlin, Germany. It has two explosion chambers united by a tube, so that after the
explosion in one chamber the burning gases will ignite the gases in the other cylinder or chamber automatically; a perforated metal ball is also arranged in the bottom of each cylinder, and connected with a water pipe for condensing water into these balls, which water is
engine.

MECHANICAL INVENTIONS.

A.hinge mortise $m a_{n} i_{n} e$ has heen patented by Mr. Joseph D. Thurston, of South Union, Me. The angle plate has a slot and a bracket, and the sliding plate or tool carrier has a stem extending up
through a guide socket of the bracket, the carrier also having perpendicular cutters, with other novel devices to facilitate the making of mortises to receive the plates of butt hinges.
A motor has been patented by Mr. George H. Furman, of New London, Huron County, O. An inner cylinder or drum, having pockets, is combined with an outer drum with pockets, the inner cylinder being attached to a shaft and formed wi.h peripheral inclined pockets, in combination with the independenty revolving surrounding cylinder or drum, weights in
the pockets causing the sbaft to revolve continuously.

agricultural inventions.

A cotton seed planter bas been patented by Mr. Thomas P. Hopper, of Sherman. Texas. This whereby the seed may be fed from the hopper regularly and in uniform quantity, and will be separated beore they are dropped to the ground.
A plowshare has been patented by Mr. James C. Pugh, of Ashton, Dakota Ter. The plate forming the cutting edge has its longitudinal center and landside edge thicker than its main part, the plate
forming the cutting edge being adjustable, so it can be easily sharpened, and, owing to its shape, the original width of the cutt can be maintained.
Aplow attachment has been patented by Mr. Reuben Jones, of Hogansville, Ga. A guard is attached to the plow beam, suspended by inks that are or lower position, for the purpose of gauging the depth of furrow or quantity of soil thrown up around young
A grain thrasher and separator has been patented by Messrs. Albert J. and Josiah H. Marshall, of Evansville, Wis. The straw carrier and separator fingers, springs for accelerating the closing action of the fingers, with other novel features, whereby the work is done quickly and thoroughly, w
of the carrier being clogged by the straw
A seed plauter has been patented by Messrs. Louis Pietzsch, John J. Armstrong, and Joseph R. Lowrey, of Weimar, Texas. This invention covers improvem ents on a cotton seed planting machine formerly patented, whereby the dropping apparatus may be
arr nged forcorn and or other seeds, and so the machine may be used to better advantage for cultivating the ground.
A potato dig ger has been pateuted by Mr. Reuben R. James, of Rising Sun, Ind. This invention relates to plows for turning potatoes out of the ground,
curved bars or fingers being substituted for the mould curved bars or fingers being substituted for the mould
board for raking out the potatoes, and to turn away board for raking out the potatoes, and to turn away
weeds, vines, etc., while there is an attachment for raking the soil and laying bare any potatoes that may be covered, with other novel featnres.

miscellaneous inventions.

A derrick has been patented by Mr. Cornele G. Ross, of Rutland, Vt. The invention covers a novel combination of worm and friction gearing. whereby
the mast and boom of a derrick can be readily turned either to the right or left, at the same time a load is being raised or lowered.
A prol and billiard cue chalker has been patented by Mr. Emil T. Mueller, of La Crosse, Wis. It is an improved device for holding a piece of chalk for chalking billiard cues, and is adapted to be secured to the side or
or pool table.
A horse training apparatus has been patented by Mr. Robert R. Parshall, of Westield, Pa. The of straps, loops, and side pieces. designed more espe.-
cially to prevent trotting horses from breaking when of straps, loops, and sid
cially to prevent trotti
driven at high speed.
A washing $\mathrm{m} \mathrm{a}_{\mathrm{c}}$ ine bas been patented by Mr. Richard E. Harper, of Butler, Mo. In this invention the construction is such that the tub is rotated only when the pounder is lifted out of contact with the clothes, in order not to tear them, and the c
makes a simple and easily operated device.
A bran duster has been patented by Mr. Joseph W. Wilson, of Brookvile brushes, operating in convection with a fan, rub the
annular stream of bran passing through the machine against the cloth of a bolt, and there are several other new features and novel combinations.
A neck wear fastener has been patented by Mr. Joseph H. Wright, of New York city. The invention covers a spring wire frame with two upwardly projecting prongs bent downwardly from their upper parts, and then bent lateraliy in opposite directions,
making a fasicncr which can be easily secured shield or detached therefrom.

A dumping scow has been patented by Mr. Franklin P. Eastman, of New York city. The hinged Frankin P. Eastman, of New York city. The hinged
or pivotod wings arc so connected to the side walls of
the well of the scow that the angle of inclination may he varied, and its capacity increased or decreased ac-
cording to the nature of the contents with which it is
desired to load the scow. A process and composition for tanning and
and dressing old leather and leather articles bas been pa-
tented by Mr. Edwin W. Hewitt, of Louisville, Ky. A tented by Mr. Edwin W. Hewitt, of Looisvilile, Ky. A
solution is used of sumac, American water pepper, dog fennel, lye, and carbonate of soda, made and used in a specitiel way
and
inished.
A combined knife and fork has been patented by Mr. Albert H. Forsyth, of Worcester, Mass, This invention covers novel means for fastening the knife and fork to their handles. the blade of the knife and the prongs of the fork being passed into recesses in the handes so they can be readily carried, and ther A hand bag has been patented by Mr Robert Weincraud, of Offenbach-on-the-Main, Ger purse, pockelbook, orlike article, so that they can be easily taken from the bag for use, and cannot become detached and ger mingled with other articles when the
A bydraulic jack has been patented by Mr. Thomas A. Watson, of Brooklyn, N. Y. The inve ion covers improvementin the pump cylinder, so the face face against which the plunger or piston acts, wth
mproved arrangements for the valves of the ram and the pump plunger, with other novel devices. John T. Dupont and william J. Cooke, of New York city. By this invention the front wall of the trunk is cemovable, and trays are arranged to slide horizontally
rity in the trunk, and with this advantage is secured otker
novel features of construction; besides, the trunk strong and durable, and easy to open and close
A stem holding device for watches has heen patented by Mr. George T. Banghman, of Bellerontaine, O. The invention consists mainly of a coll baving an inuer shoulder is permitted to turn freely the collet having one or mo'e screws or pins arranged o enter the hole or holes in the pendant in which the ends of the bows fit.
A detachable book cover has been paten ed by Mr. James Gordon, of Stratford, Ontario, Cana da. Combined with the covers of the holder is a binde ormed of two relatively fived plates between which strip is clamped, and by which the binder is fastene to bind the book or articles to be held firmly but

An educational
An educational device has been patented y Mr. Hugh V. Dunn, of Scott's Depot, West Va. On levers and finger board. by which can be displayed to a class of children the alphabet and varions words, he multiplication table and simpl attention of the children will
A permutation
A permutation lock has been patented by Mr. Charles Tregoning, of Lead City, Dakota Ter. The operated by one visible dial, and means whereby series of dials may all be liberated at once to be set relatively to each other. the arrangement of two disk to be registered by one dial preventing any
the combination while the lock is unlocked.
An electric temperature regulator has been patented by Mr. Charles A. Tucker, of Islip, N. Y. A
window frame with slats ie so connected with a pivoted lever carrying an armature, an electro magnet, and batwindow slats will be opened when the temperature rises to a certain point, and closed as the temperature A fence has been patented by Mr. John D. Davis, of Wilmington, Del. It is a durable and on namental fence for grounds, verandas, etc., made mostly of mercbant iron, not altered in shape except by per-
forations, forming four tenons to a panel, and flattening the pickets to shape the heads, the ornaments meing cast in form to apply to the fence wit
A fireplace stove has been patented by $\mathbf{M r}$ James D. Richards,of Patriot, Ind. Theroof of the stove he plate being adapted to slide for ward and back ward, and by proper adjustment the draught may be made to pass up in front of the plate or behind it, with other novel features to economize hot air and
well as to facilitate thorough ventilation.
An apparatus for cooking or steaming ruits, vegetables, etc., has been patented by Mr. James . Smith, of Milford, Del. There is an elevated cookinwardly projecting flanges, on which the coil is sup ported in a horizontal position, and pipes connecting the ends of the coil with the steaming vessel, with A hose coupling has been patented by Messrs. Robert A. Brauer and Thomas Roche, of Oshkosh, Wis. It is formed of a female and male part of
which the former has a pring hook with a staple, Which the former has a ' pring hook with a staple, end the male part has a notch with a hook adapted to pass
into the staple; tbere are also beveled projections on he hose coupling sections to protect the locking de

Improved shelving forms the subject of a patent issued to Mr. John Zerr, of Keokuk, Iowa. Legs
having apertured cross bars have shelves held thereon by screws passed through the ends of the shelves into the cross bars, the shelves preferably having angle
plates secured on their ends, and being also supported by intermediate legs between the legs supporting the ends of the shelves.

A window shade bracket has been patented by Mr. John F. Miller, of Newton, Kansas. Combined the outer cnd of the first one, at right angles to it, the transver:e side having an arm for holding one end of
can be used on any window, the roller projecting more less over the side of the window casing.
A sacking, weighing, and registering maRhine has been patented by Mr. George H. Caughrean, Rrating frame having platforms and sack holders, con necting rods, levers and a slotted scale bar with ad justable slots and a travelirg weight, whereby the weight of the filled sacks will reverse the cut-off, taking the productas it comes from thrashing machines, corn
A button hole cutting attachment for buton hole stitching machines has been patented by Mr.
Arthur Felber, of Brooklyn, N. Y. The invention consists principally in applying a narrow blade to the need!e bar for catting the button hole through the maerial, the blade being arranged in line with the needle and adapted to be held out of contact with the goods except when making the e
first side of the button hole.
A cartridge loading machine has been pa tented by Mr. Bryant W. Annin, of Hannibal, Mo. The invention covers a no 'ding disk with apertures to hold the cartridge shells in upright position, an adju stable loading gauge with receptacles for ammunition, a movdevice, with varions other novel fetures, whereby large number of shells can be loaded simultaneously and expeditiously.

A fisherman's minnow bucket has been patented by Mr. George W. Barton, of Bethlehem, Ky. A central guide rod is secured to the bottom of the
bucket, and a false bottom is adapted to slide on this rod, and with a handle having spring catches engaging with the guide rod, so the minnows in the bucket may all be raised to the surface of the water and caugbt in
the hand withour rolling up the sleeves and feeling in he water for them.
Metal roofing forms the subject of a patent issued to Mr. John H. Dellmon, of Pine Bluff, Ark. strips or sheets of met;al being turned and beofing, the opposite side edges, so that when fitted to each othe and supported they will expaml and contract without breaking the metal, there wilmenoleakage at the seam it rests.
An automatic power windlass has been patented by Mr. Reuben G. Cheney, of Atchison, Kan. This in vention relates to windlasses where a shaft and clutch are constantly revolved in one direction, clutch at the will of the operator, and by this im provement the spool is engaged with the clutch by in starting and to disengage it at the proper time, adjusting the device when thus disengaged.

NEW BOOKS AND PUBLICATIONS

Mine Ventilation. By Eugene B. Wilson.
John Wiley \& Sons, New York. ohn Wiley \& Sons, New York.
The author treats concisely of the practical as well
as the theoretical in mine ventilation, with perhaps as the theoretical in mine ventilation, with perhaps
rather more use of figures than most miners will appreciate, although the book is stated to be rather for

The Charge for Insertion under this head is one Dollar
a line for each insertion about eight a line for each insertion; about eight words to a line.
Advertisements must be received at publication office asear ly as T'luursday vorning to appear in next issue

Sturtevant Blowers, Lidgerwood Hoisting Engines,
New York Safety Steam Power New York Safety Steam Power Co.'s Engines, Water's
Governors, Duplex Pumps, are for sale by Henry I Governors. Duplex Pumps,
Snell, 135 N . 3 d St., Phila., Pa.
Soapstone Paミking, Empire Gum Core, and all kinds Present your baby with elecant hand wor
Present your baby with elegant hand worked blanket J. E. M. Bowen, late Principal Examiner Patent Office. acts as solicitor for inventors in procuring good
patents. Offlices, 605 Seventh St.. N. W., Washington D. C.; and 137 Temple Con rt, New York city

For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boiler feed, fre and low
pressure pumps, independent condensing outf ts vacum, hydraulic, artesian, and deep well pumps, air compressors. address Geo. F. Blake Mfg. Co.. 44 Washing-
ton St., Boston; 97 Liberty St., N Y. Send for Catalogue. Quinn's device for stopping leaks in boiler tubes. address S. M. Co., South Newmarket, N. H. Cyclone Steam Flue Cleaner saves Fuel, Labor, and
Repairs." Investigate." Crescent Heavy English Walrus Leather, for polishers. Hercules Water Wheel--most pow Hercules Water Wheel--most power for its size and
highest average percentage from full to half Gate of any wheel. Every size tested and tables guaranteed. Send for
talogue, Holyoke Machine Co., Holyoke and Worcester, Mase. If you want the best cushioned Helve Hammer in the Mills, Engines, and Boilers for all purposes and of very description. Send for circulars. Newell Univer
50, 60, and 75 H . P. Corliss Engines ; second-hand;
ingood order. Henry I. Snell. 13 J N .3 d St., Phila., Pa. Wanted.--Patentet articles or machinery to manufacBrush Electric Arc Lights and Co.. Lexington, Ky Twenty thousand Arc Lights already sold. Our larges Twent thousand Arc Lights already sola. Our targest
machine gives 5 Arc Lights with 45 horse power. Our
Storage Battery is the only practical one in the market. Storage Battery is the only pract
Brush Electric Co., Cleveland, \mathbf{O}.
For Freight and Passenger Elevators send to L. S "How to Keep Boilers Clean." Book sent free by Hotchkiss, 86 John S
Stationary, Marine, Portable, and Locomotive Boilers
specialty. Lake Erie Boiler Works, Buffalo, N. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.

T\&e Hy. tt filters and methods guaranteed to render
all kmds of turbid water pure and sparkling at economiall km ds of turbid water pure and sparkling, at economiRailway and Machine Shop Equipment. Send for Monthly Machinery List Send for Monthly Machinery List
to the George Place Machinery Company,
Chambers and 103 Reade Streets, New York Sieam Boilers, Rotary Bleachers. Wrought Iron Turn "The Sweetland Chuck." See ad. p. 44. Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co., New Haven, Conn. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. If an inventiou has not been patented in the United tates for more than one year, it may stin be patented in Canada. Cost for Canadian patent, \$10. Various other
foreign patents mayalso be obtained. For instructions address Munn \& Co., Scientific american Patent agency, 361 Broad way, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every descripNickel Plating.-Sole manufacturers cast nickel anodese oure nit tor plating, etc. Hanson \& Van Winkle, plete outnt yor plating, etc. Hanson \& Van Wink
Newark, N. J., and 92 and 94 Liberty St., New York. Supplement Catalogne.--Persons in pursuit of information on uny special engineering. mechan ical, or scien-
titic subj ect. can have catalogue of contents of the Scrtitic subject. can have catalogue of contents of the SCI-
ENTIFIC AMElICAN SUPPLEMMNT sent to them free The Suppramevt contains lengthy articles embracing the whole range of ent ineering, mechanics, and physi-
cal science. Address Munn x Co . Puobishers, New York. Machinery for Light. Manufacturing, on band and
built to order. ©. E. Garvin \& Co., 139 Center St., N. Y. , Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. See p. 14. Drop Forgings. Billings \& Spencer Co., Hartford, Conn. Electrical Alarms, Bells, Batteries. See Workshop
Receipts, v. $3 . \$ 2.00$. E. $\&$ F. N. Spon, $35 y$ urray St., N.Y. Brass \& Copper in sheets wire \& blanks. See ad.p. 62. The Chester Steel Castings Co., office 407 Library St., Philadelphia. Pa.. can prove hy 20,000 Crank Shafts and 15,000 Gear Wheels. now in use.the superiority of their
Castings overall others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tube
Expanders. R. Dudgeon. 24 Columbia St. New York. Friction Clutch Pulleys. D. Frisbie \& Co., Phila. Tightand Slack Barrel Machinery a specialty. John解 Corundum Wheels ; cut faster and wear longer than Catechism of the ings. Most accurate. complete. and easily understood book on the Locomotive. Price $\$ 2.50$. Send for catalogue
of railroad books. The Railroad Gazette, 73 B'way. N. For Sule.-Parent Self-ventilating Funnel. Best thing outfor making money. G. M. Wickliffe, Brook Neal.Va.

Matcre (0huris

HINTS TO CORRESPONDENTS

(1) N. S. C. asks a recipe for making a waterproof blacking which will give a fine polish A well known waterproof blacking has the following
 Melt the wax, add powdered horax, and stir till a cati, add the asphalt varnish, previously mixed with add the coner provir well and add to the wax. Lastly of the color previously rubbed smooth with a little good black varnish which will dry instantaneously.
A. A good varnish is prepared by lution of 80 parts of shellac in 15 parts of alcohol with 3 parts of w\&, 2 parts of castor oil, and a sufficient quantity of pigment. The mixture is evaporated in a vacuum to a sirup. The varmsh is applied to the
leather with a brush moistened with alcohol or with a ores alichoruish.
(2) H. K. asks how to make a black hectographink. A. Dissolve one part nigrosine in about
five parts water and one of alcohol, and add one part ve parts water and one of alcoh ol, and add one part
of glycerine. It is impossible to obtain as satisfactory of glycerine. It is impossible to obtain as satisfactory
an impression or as large a num her of copies with the black ink as with the purple colored one.
(3) D. D. S. wants a process for making iron castings malleable. A. Iron castings cannot be made malleable. The making of malleable iron cast-
ings is a special process, in which the carbon is nearly burned out before the metal is poured.
(4) F. H. W. asks what he can put on slaeet A. Melted paraffine.
(5) G. G. P. asks: How are carpet tacks made? Are they struck cold or hot? A. Tacks are made on machines that cut the tack blank off the end
of a strip of sheet iron, cold, the width of the strip reof a strip of sheet iron, cold, the width of the strip re-
presenting the length necessary for the finisied tack. presenting the ength necessary for the finisined
The eame machine upsets and forms the head,
or carpet tacks the material is worked cold.
(6) J. P. D.-I wish to plane off a pair of cast iron clamps ssed for bending sheet iron, but they
are too hard;
briw can I soften them? A. Heat them bright red, sprinkle powdered borax on them, and cool
them in ashes. Why not grind them instead of planing them?
(7) T. P. H. asks the length of the Cincinnat suspension bridge. A. The totallength, including
approaches, is 2,252 feet; there is a single span of approaches, is, center to cenier of towers, and two
1,057 feel from cent
half spans of
(8) B. K. asks: 1. Can terra cotta be made from common clay? A. Yes, but it must be free from
pebbles and other particles. . . Can you tell me the name of a book that treats fully on the manufacture of terra cotta and pressed brick, also ordinary brick? A. Davis on Bricks, Tiles, and Terra Cota, publishen by
Henry Carey Baird \& Co., Philadelphia. S. In what State are the best pressed brick made? A. PennsylState
vania. 4. Doest not the smooth surface of pressed
. brick i. inpair its adhesive quality somewhat? A. Yes.
5. Are the brick made the same size in all States? A. There is a slight difference in the sizes. Maine brick average $7.5533375 x \cdot 3 \cdot 375$ in.; North River hrick, $8 \times 3 \cdot 5 x$ 2.25 in; Philadelpbia front, $8.2554 \cdot 1125 x 2375$ in, ; varydifferent degrees of intensity in their burning What is the crushing resistance of pressed and ordi nary brick? A. Crushing weight per square inch: Com-
mon brick 800 to 4000 pounds. Hard pressed brick, mon brick 800 to 4,000
(9) H. H. W. asks how to use silver solder
A. Melt silver solder with blow pipe, or in firethe eame
(10) F. A. T. Z. says: I would like to know how to melt and run aluminum into a bar. Itried with
different kinds of flux, but it seems to burn away instead of melting into a button. Is there any alloy which I could mix with aluminum, in order to produce the so-called aluminum gold? In one of your papers, I see
recommended a mixture of ten parts of aluminum with ninety parts of copper; would this metal tarnish when exposed to the air? I am a metal beater by trade;
have tried several compositions, but they all seem to have tried several compositions, but they all seem to
tarnish when exposed any length of time. A. To melt alumina, use a black lead crucible. Drive the alumina foilinto an iron cone much the same shape as the bot be, and cover with crude sodo and chareal pulvizid ogether. Heat sowly, "o make aluminum gold bronze, melt 90 parts copper, with soda and bora for a flux, then add ten parts aluminum (all by weight a litte at a time by putting smali pieces in a spilit stich of hard wood and pushing down to the bottom of the
crucible. This mixture is of the color of gold, tough nd malleable, and does not tarnish.
(11) W. B. R. says: When in Florida last winter, I put up by canning process some lemon juice in Mason jars with Boyd's caps, and shipped same.
The acid ate the caps entirely through in many places, The acio ate the caps entirely through in many places,
and most of the jars were empty. I mention this that others may not meet with same loss. Is metal that
lemon juice will corrode so rapidy suitable for canning currants, strawberries, pie plant, etc.? Is the lemon juice left in the jars fit for food, or does it probably hold in solution the metal of the caps to such an amount as to be poisonous? A. The citric acid of the
lemon juice absorbs tin, lead, and zinc, or any of their ompounds. The specimen cover appears to be an alloy of tinand zinc. It is unfit for jar covers for any
fruits containing citric acid. Jars are now made with glass tops which should be used for these fruits.
(12) D. G. asks whether there is anything with which to cut sand paper. A. . Cat
(13) W.A. L. asks as to the best material fo the floor of a roller skating rink. A. A roller skating rink should be no more nor less than a good ball room
for the size of your town, something that you can use or all purposes. Narrow maple makes a good floor When used for skating, a little powdered resin no more used than will prevent slipping, will make thi the acme of a skating rink.
(14) J. W. M. asks the proper distance for grate bars from boilers 14 feet long, boiler 42 inches long; bridge wall 7 inches from boil ers. A. 24 inches
(15) R. N. C. asks: Will you please inform me which is the longest and the largest artificial bridse in the world? Also how many cruadaes were there A. Parkersburg, W. Va., is said to have the longest bridge in the world, its length being 2,147 meters; but
we should style the New York and Brooklyn bridge the largest bridge as it is the ereatest and has the longest single span.-There were five crusades in which Jeruanlem was the orjjective point, besides one by Saint
(16) J. K. asks: 1. Is the pressure greater on 2 slide evalve in the shape commonly adopted by
engine builders than it would be on a straight or plain piece, same size each way as the valve where it rest on seat? A. Never greater than its area multiplied by ting offs and the slight pressure from the exhaust. Is there more piston pressure and area on a co piston head than on a plain one? A. There is
more surface, but not more pressure. 3. To kee melted cast iron hot in a ladle, we drop in a small
chunk of lead, and apparenty it boils. What is it that chunk of lead, and apparently yt boils. What is it that
produces the effect? Does the lead burn? A. The lead produces the effect? Does the lead burn? A. The lead
caused boiling from the evaporation of a small portion caused boiling from the evaporation of ted iron, or possipart of the carbon of the iron as
(17) P. B. A. says: I am about to make Pi.EMENT No. 182. Will you give me a mititle further information on the subject. 1. Are all mercury flask the same size (i. e., about 41/2x12 inch), or are there size. 2. Will a boiler made of 9 flasks below (for water) and 2 above (to hold steam and draw from) be large enough to supply my engine-3 inch bore, 4 inch
stroke? Shall feed with "Korting" inspirator. Can I stroke? Shall feed with "Korting" inspirator. Can I
not feed as slowly as the water evaporates? These not feed as slowly as the water evaporates? These
flasks are so very thick and small in proportion that, allowing for the inferinity of the iron (which is not 300 poal hammered), they should stand a pressu 300 pounds and not burst. I shall set the safety val at 80 pounds, and run with between 60 and 80
pounds, which ought to be perfectly safe, if one flask does not rob another. In your issue of May 24,
in answer to W.H. P, you condemn twin boiless with in answer to W.H. P., you condemn twin boilers with
one common connection; so do I, but how else can I one common connection; so do I, but how else can
unite my flasks? The center one will of course get the unite my flasks? The center one will of course get the
most heat, being directly over center of fire; will it expel its water into the outside row of tasts? boiler made of 9 mercury flasks will not be large power. Feeding only as you make steam, or the jet system, has not been a success, although often tried.
There is no trouble about the There is no trouble about the strength of a flask
boiler. The trouble will be to control the generation of steam without a reservoir of water in the boiler. If ou make all of the connections large, and carry the you will not have much difficulty in making all the steam the surface will be capable of, but the surface of the water being small makes it liable to foam up
into the steam chamber
(18) T. R. S. says: I am trying to make thle model cylinder 2 by 4 inches; how large a boile would it lake to drive it? What would you make the pattern out of? Do you think lead would do to make o please excuse me asking these simple questions oo please excuse me asking these simple questions
A. About 6 square feet of fire surface; make your pat tern of pine.
(19) Waho asks if there is anything that will act as an absorbent of nicotine? A. Anything in
which nicotine is soluble will absorb it, such as water lcohol, ether, and fat oils.
(20) C. D. P.-Your modes of propulsion re both inferior to simple oars, and will not give so (1) F. V. R. power applied.
(21) F. V. R. asks: What is the explosive named panclastite made of? A. Carbon disulphide and yponitric acia.
(22) A. H. L. says: I have been using puri fied animal charcoal, asbestos, and sand in a filter, and although these materials have all been purified (the comes through sometimes with a putrid taste and odor and sometimes with a flavor of slate. The only other materials with which the water comes in contact are
zincs, and tin. How can I purify the filtering media so as to avoid giving the water any taste
at all? A. The essential function of most filters is to t all? A. The essential function of most filters is to separate mechanical impurities; these readily contami-
nate the absorbents. They should therefore be frequently replaced, and probably therein lies your diff
(23) R. R. McQ. asks: Have you any other (23) R. R. McQ. asks: Have you any other
method of preserving eggs than the Havana process or the preservation of eggs are given in Scientific American Supplement, No. 317
(24) P. O. W. asks: 1. What is used to cement the top part of lamps on to the glass? A. Uke causticsoda and three parts of colophony with five parts of water, and knead up the resin soapt thus formed
with half its weight of gypsum. 2. Can you tell me with half its weight of gypsum. 2. Can you tell me
how to make an ink to trace on paper with, so that when it is placed face downward on cloth qnd a warm A. Such inks consist of the ordinary solution of colo ing matier mixed with sufficient resin to make it quite thick; after drying on the original, the cloth is placed over, and by heating the resin is dissolved and will im-
part its coloring matter to the cloth. White lead is sed for producing a white color, Prussian blue
(25) H. D. V. V. desires to be informed how to test lard oil, so as to show whetber it is pure
or not. A. Chemical analysis is the only means of positively determining its purity. 'The following fac Its gravity should be about 0.915 , its flashing poin bout 525° Fah., and fire test about 600° Fah.
(26) A. M. T. asks the title and publisber of a good work on preserving and canning fish, vegeta ject. Each packer has little secrets of his own, but the process is practically identical throughout, and has not changed since its inception. See Hints on Preserving and Canning, Scientific American Supplement, No
(27) W. E. writes: The fumes or smell o sulphur coming from vineyards where flowers of sulthoroughly pervades the atmosphere in that vicinity specially arter nightfull, as to be a source of muc so treated are located to the wind ward. It is desirable avoid the very unpleasant odor if possible. The
onstant subjection to it for five or six months of th summer and fall season calls for a relief. Can you inralized on the inside of residences, so as to be less disagreeable? A There must be some mistake here, a oamount of sulphur scattered on vines or on the ground would produce any unpleasant odor. Even in and thus blown about the house in dust, it is almos
impossible to detect any smell of sulphur. If the sul-
phur is burned, then of course its odor would phur is burned, then of course its odor would
be very perceptible, but to deodorize the smoke fumes would of course take the sulphurous acids al out of the vapors, and so entirely do away with any beneficial effects designed to destroy insect or fungus
life. The burning of pastilles or some strong perfume might answer for closed rooms, but at best it could no tirely destroy the odor
(28) J. A. D. asks: 1. Will concrete stand frost? Will it disintegrate by dampness or moisture?
A. Concrete will stand frost if kept dry, but will disinA. Concrete will stand frost if kept dry, but will disintegrate from the surface if frozen wet. It does not dis integrate by moisture alone. Muck cepends apon the hard-strong-and resists disintegrating influence bard-strong-and resists disintegrating infuences gas? If so, with what per cent? A. Water absorbs its
own buik of carbonic acid gas at ordinary temperature and pressure. At high pressures it absorbs many time
(29) C. C. writes: Would you not be kind nough to let me know, namelv: 1. What coffee dust
is used for? A. It is sold either as an inferior grade of coffee, or else mixed with chiccory and sold. It could be employed to manufacture the extract of coffee. chinery, made with blacklead, besides Dixon's?
(30) W. A. W. asks: How can I make rub ber hold quicksilver and yet retain its pliancy? A. if not ove its pliancy. 2. What expansion does a board undergo lengthwise? A. Substantially none.
(31) A. F. B. asks the shape and size of the flasks and clamps that rubber stamp makers use. A very small, will answer your purpose. You can vul canize small jobs in a dentist's vuicanizer. 2. Wha pressure of steam would 320° on Hayes mercury bath
thermometer indicate? A. 320° indicates 100 pounds thermometer indicate? A.
(32) A. R. K. asks: Can a storage battery be made to light a four candle power incandescent lamp? A. Four cells of plunging bichromate battery will oper-
ate a four candle power incandescent lamp. If you require a
(33) W. F. S. asks: 1. Please inform me which are the best works for studying electrical engineering. I have a fair knowledge of the rudiments of study Gordon's Magne with Ganot's Physics; then Electric Illumination; Electricity, its sources and
Applications, by John T. Sprague; Gordon on ElecApplications, by John T. Sprague; Gordon on Elec
tric Lighting; and procure a copy of Henry and Jamieson's Pocket-book of Electrical Rules and Tables. . Please say if electrical engineering offers better in We sbould say neither better nor worse; all depends on industry and natural ability. 3. Also, do you think hat wood engraving (as a trade) is less remunerative
han heretofore? A. The pay of flrst class wood en(34) J. S. P. ask has ber
(34) J. S. P. asks if there is a simple work on electricity suitable for a boy 14 yeare old, who
wishes to study it up during his holidays. A. Ganot's Physics and Electricity, its Sources and Applications
(35) F. B. D. says: I made a small inducion coil, according to instructions given in Scientific American, about two years ago. It is very strong, and is satisfactory in every way as far as power goes,
but the current is very uneven, and if you are holding but the current is very uneven, and if you are holding the handles you will get severe shocks. I would like to nuction coil is probably due to imperfection in the con-
(36) J. F. D. asks: Why cannot an arc lamp be inclosed in a vacuum? And if it could, would there not be a great saving effected? A. It is might efftct a saving, were it not for the wasting away
of the electrodes and the difficulty of maintaining a vacuum.
(37) R. T. W. asks how to prepare tallow so as to use it as a lubricant. A. Tallow may be made
soft with any oil, such as lard or kerosene. Kerosene and tallow make a very cheap lubricant.
(38) C. E. A. says: Our house was blown ver the other day, and some claim that it was because
window was open on the side toward the wind. I hink that it doesn't make much difference whethe he window was open or not. How is it? A. The open
(39) W. G. S. asks a recipe for a varnish, paint, or other coating that could be applied to iron scale beams, that are used in damp cellars in which large quantities of salt are used in curing hides. A.
A coat of boiled linseed oil rubbed over the scales and allowed to dry is a good preservative. As the oil gets rubbed off by use of scales, rub the parts again with the oil upon a cloth. You ca
and clean and prevent rust.
(40) C. P. F. asks: 1. If it will be wise to run securing water in case of fire on the roof. A. It would most certainly be wise to carry the water pipes above are an electrical contact between the joints? A. Screwing the pipes together strongly with plumbago and
oil will give a sufficient metallic contact for all electrial purposes.
(41) C. O. N. asks the process by whicb bnckram is made. Such as is used by carriage and π is linen, stiffened by glue starch. You may buy the coarse linen cloth, and stiffen it with glue size. should be stretched when sized.
(42) J. M.-We fear that you will not be able to fill your barometer perfectly. It is quite a
delicate operation. The tube should be inverted, the leather cushion take off and the cise inverted, the mercury. The tube is then heated to near the boiling point of mercury to drive out the air, or a vacuum pro from the tube cistern, which will draw the air ou with the mercury will then become perfectly filled the barometer turned to its proper position. There are instrument makers in your city that can do this kind work.-Your hoisting engine and boiler is about 10
horse power. Use 6 to 8 cubic feet of water, and from 40 to 60 pound of (43) J. E. B. - You will find articles upon lens grinding in Scientific A merican Supplement,
Nos. 318,139 ;on Achromatiem, No. 409; on Eyepieces Nos. 318, 139; on Achromatiem, No. 409; on Eyepieces
No. 399; on Telescopes, No. 252 and No. 1. We think that you could not obtain any information in regard to telescope making from the American Academy o (44)
(44) A. O. L. asks: Is there an apparatus in be anywhere, by which oil is utilized for fuel under boilers? A. Yes. See Stpplemen
leum furnace for locomotive boiler.
(45) T. D. S. asks: Would it be advisable for me to put in asplalt for flooring, in a roller skating rink? Would there be friction enough to keep wheels
from slipping? A. Asphalt and sand well rammed and smoothed makes a fair roller skate floor, but is liable to become soft enough to crease in hot weather. The sand is necessary to harden the asphalt, but it is also
liable to cut the rollers away fast. There is nothing so bed over the surface.
(46) D. S. M. Co. desire us to inform them of a preparation that will remove stains from black We know of nothing better to recommend than alcohol; oxalic acid and water are sometimes used to remove stains from mahogany furniture
(47) A. H. asks: Can you inform me how Ican mix alcohol with common, arpentine? I wish to commended in Scientific American, but find upon trial that turpentine and alcobol will not unite. A. By heating to a low temperature the solution prosuited for your purpose. Rectified spirits of wine, half gallon; add six ounces gum sandarac, three ounces gum mastic, and half piut turpentine varnish; put the foregoing in a tin can by the stove, frequently shaking till well dissolved; strain, and keep for use. If it
(48) C. R. asks: Is there any use for worn out porcelain bricks? Can they be reworked? A. We out porcelain bricks? Can they be reworked? A. We
know of no use to which the bricks can be applied to. They cannot be reworked.
(49) J. H. S. writes: I wish to make a small furuace for melting gold, using a blast of hydrogen gas. Can I make and store the gas, with safety, in an apparatus like that used by dentists for making laughing gas, that is to generate the gas in a glass jar
and conduct itinto a reservoir, made of an inverted zinc barrel within another larger barrel half filled with water? And is there any advantage or additional
safety in purifying the gas through water, before stor ing it? A Foryour purpose the employment of ordi ing it? A. For your purpose the employment of or
nary illuminating gas will give results equally as satis faclory as any use of hydrogen will. Your methods are perfectly feasible if you desire to follow them.
(50) J. F. B. asks: Will you please tell me the name of the article that is heing used by the manuWe know of nothing that is used by manufacturers of rubher goods to substitute rubber. Chicle aud also balata has been suggested for this purpose. They are
gums or exudations from tropical trees, but we are vot disposed to believe that they are in practical employment. Their use has simply been suggested on ac-
count of their properties identical and similar to the court of their properties identical and similar to the
pure rubber. Se articles on "The India Rubber and Gutta Percha Industries,' Scientific American Sup(51) J C
(51) J. C. Says: I want information how to construct an electric machine or galvanic battery to be mounter on a stand with handles, for persons to take
hold, and a lever that will put on an increased force, with a dial attached which will show what each person can bear? A. The electric machine you refer to is simply a large induction coil provided with a movable core or a metal cover connected by a cord with the ptrength of the current. When the core is pushed into he coil, it increases the strength of the secondary current, and permits the index to be moved by a spring real connection between the index and dial, and the ee Scientific American Supplement 160. (52) E. E. K. asks: 1. For a rule for finding the horse power of an engine when it is runniug? A.
You cando this by means of a dynamometer and indicator; for fuil instructions consult works on this subject; also see Scientifio American Supplement. 2.
Is there any use for old carbon points, such as used for Is there any use for old carbon points, such as used for
electric lights? A. We think not. 3. How are lithographic pictures produced? A. Lithographic pictures re drawn upon a species of limestone, with lithoing is wet, ink is then applied by means of a roller. The wet parts of ihe stone will repel the ink, whi e the ink crayon pen. A paper applied to the stone under pres sure will receive an impression of the drawing made n the stone. 4. How large a boiler would it take to and 18 inches high, with $203 / 4$ inch flues. 5. Where could I get sucin such a one? What would it cost? A. Any coppersmith could ma
probably cost $\$ 15$ to $\$ 20$.
(53) J. S. C. asks: 1. What is the cause of he buzzing and snapping noises heard at times in the
telephone? A. The buzzing is due to earth currents if
the line is isolated from other lines, but if it is in close the line is isolated from other lines, but if it is in close proximity to telegraph, telephone, or electric light wires,
the buzzing is due to induction. 2 . Would the fact that branches of trees rest against the wires have anything to do with il? A. If your line is charged by a battery, the grounding of the line against wet trees might create a buzzing. 3. What is the best book to give one a knowledge of the practical working of tele-phones, and what is its cost? A. Prescott's '"Tele-
pone phone, Electric Light, and other Novelties" and Du
Moucel on the "Telephone" are probably the best Moucel on the "Telephone" are probal
works; they cost from $\$ 2.50$ to $\$ 3$ each.
(54) H. R.-Spelter in trade is zinc. The ame has been used as a local term for a mixture of inc and copper (granulated) nsed for brazing. Tube are brazed by first turning and wiring the clean edge together. Then place pulverized borax and low melt
ing brass granulated or in strips upon the iuside, an turn the seam side down over a charcoal fire, commenc ing to melt at one end of the tube, and draw it slowly through the fire. Observe upon the inside of the tube the progress and condition of the brazing. The braz ng material should always have more zinc in it than tube that is to be brazed,
(55) J. J. H. asks: 1. How to keep win dows from freezing? A. The most satisfactory method
is by lowering the window from the top, thereby allowing ventilation and circulation of the air. The ap plication of glycerine will prevent freezing. 2. A recipe for making cement for billiard cue tips. A. Tr in a sufficiency of water; to this mixture add a thic paste made with 100 parts of starch. It is applied cold. 3. And a cure for warts. A. A popular and useful remedy for warts consists of ivy leaves dried and ground to fine powder. The part having been moisten ed with strong vinegar, a pinch of the powder is sprin kled on it and then bound on with a strip of rag. A mixture of equal parts of savine and ver.
(56) J. E. R. desires a formula for silverng solution. A. Prepare a solution of 1 part potas
ium cyanide in 6 parts water; add it to a concentrate aqueous solution of nitrate of silver (free from acid) aquons specipitate is redissolved. Mix this solution
with fine chalk and apply after previons cleaning of the with fine chalk and apply after previons cleaning of the
(57) S. P. B. asks: 1. If the current in the field coils of a dynamo machine is an induced cur ent? A. The current in the field magnet of a dynam magnet coils, or the magnet is placed in a cuit. 2. Are both field coils in the same circuit? A Yes. 3. As the armature revolves, is there any reversal of the current? A. There are two classes of diamo and magneto electric machines. One class a direct current, the other allernating currents.
(58) H. H. E. asks: How the Edgerton sys em of making gas (as used in New Orleans) differs rom the usual plan? A. The Edgerton system is the means of retorts. It is not new, except in some of the minor details, from other petroleum gas works.
(59) H. S. writes: I am experimenting with new gas which I produce without fire. I employ copper vessels for the production of this gas. I have reason to think that a portion of the copper is taken up and in other words, remove the copper from it. 1. Can you tell me how I can detect the presence of copper in the the green color with which the gas burns. By passing he green color witw whiched has and a passing tate will be obtained, or by running it through ammonia water a blue coloration will ensue, when copper is present. 2. And if present, how can I collect and remove it? I have thought that. I could by pressure pass the gas through a chemical compound which has a strong affinity for copper, and so remove it. A. We
should think that by passing the gas through sulphureted hydrogen and subsequent washing with wate ll copper would be removed.
(60) F. J. K. writes: You would oblige me pute. Is the following size a 90 horse boiler or not: 7 tubes, 3 in.; $151 / 2 \mathrm{ft}$. long, 60 in . diameter, with a water ront supposed to be 2 horse, and a globe dome 24×2 of cast iron? There are many opinions on the capacity nd all agree except the maker of the boiler, who main very valuable to me in this. A. We calcularothion power as follows: The are of one tube will be $1753 \cdot 00$ hat is, $3 \cdot 1416 \times 3=9 \cdot 4248$; this multiplied by 12 give us the $113 \cdot 0976$, which is the area of one foot. They are $151 / 2 \mathrm{ft}$. in length, hence $113 \cdot 0976 \times 151 / 2=1753 \cdot 01$, for 0 tubes $=122,710$. This in sq. ft. is equivalent to $852 \cdot 14$. Hence for the tubes we have $852 \cdot 14 \mathrm{sq}$. ft. The
boiler shell is 5 ft in diameter; $3 \cdot 1416 \times 5=15 \cdot 7080 \times$ boiler shell is 5 ft . in diameter; $3 \cdot 1416 \times 5=15 \cdot 7080 \times$ $151 / 2=243 \cdot 25$, divided by $1 / 2=721 \cdot 63 \mathrm{ft}$., as the area
the shell. For the end we have as its diameter 5 ft . $=25 \times 0.7854(2 / 4$ of 3.1416$)=19.635$ as the area of end ft. The sum of these is

$852 \cdot 14$ $121 \cdot 63$ $19 \cdot 63$
 $993 \cdot 40$

This divided by 12 or 14 , according as you accept eith umber or square feet as being equivalent to the heat 0.9 as the horse power of the boile
(61) W. H. W. says: I am greatly troubled whit hornets, who have located in my top loft. The frightfully this last season. Can you anl me the and most effectual way of destroying these pests? They iustantly charge any female who dares to enter said lofts. The intruders feel happy if they make good their retreat without being stung? A. Tbere should be no
trouble in getting rid of the hornets if attended to arly in the seasou, when they commence to build thei nests. Some pyrethrum powder and a good force pum
(e. q.. Whitman's fountain pump), will do the work ef-
the rate of $1 / 4$ pound to about 8 gallons of water), and
the liquid to be sprayed on the nest. This should be the liquid to be sprayed on the nest. This should be
done late in the evening or very early in the morning, when the hornets are all in the nest. Diluted kerosen Later in the season, when the hornets are more nume ous their destruction is of course more difficult,
(62) R. C.-The boiler you describe is in been used in steam launches and yachts, but for burnng straw or wood as fuel it does not give sufflcient furnace or firebox capacily, hence for this kind of fue the locomotive boiler is better, as any desired capacity of furnace can be obtaiued. Either kind of boiler should if the not less than 200 square feet heating surface, an if the return tubular is used zan feet,would be better. We inches diameter and 12 inches stroke. The engine will be more firm and steady if attached to the side of the boiler. There is no work published especially on portable engines, but Rigg on the Steam Engine (price
about $\$ 15.00$) will give you nseful information. The utomatic $\$$ wilf wive you not ne worth while on such ngine. For an 8 inch cylivder by 12 inch stroke th 6 by $11 / 2$ inches.
(63) M. L. S. desires us to explain:1. Upon what law of science, in rufs automatic fountains, ream of water is made to rise from six to twelv of the automatic fountain is due to the elasticity of th air. 'The water flowing into the lower globe or reseroir expels the air, which is forced into the upper apartment; the air thus compressed acts upon the wate and makes it jet out. By reference to any text book n physics, the full description will be found unde reliable cure for catarrh? A. For the catarrh avoid he use of pat macines, And physician.
(64) J. W. H. asks a receipt for preparing ater color white. A. It consists of zinc oxide mixed with water and a little glue or sizing of some sort. A in oil or water consists of powdered Roman alum 2 lb honey 1 lb .; mix dry, powder, calcine in a shallow ish to whiteness, cool, wash, and dry. Then mis (65) S. T. H. asks
(65) S. T. H. asks the best method of dis olving odds and ends of sheet India rubber so as to ture of methylated ether and petroleum spirit-the common benzolene used in sponge lamps. The general method, however, of using old India rubber is by heating it with steam, whereupon the sulphur dis charges, the rubber melts, runs into hot water, an collects at the bottom of the pit, while the vapor pre
vents its burning.
(66) . V. Co. ask: Can superheated steam e used in pipes or coils, to boill linseed oil in large iro used in this way? Is any peculiar style of boiler re quired? A. Superheated steam can be used for boilin inseed oil, but is not considered economical, as the oil boils at 640°, which is a very high temperature fo the economical use of steam. A kettle bricked up in with a safety chimney, is much used.
(67) J. N. H.-1. Steam ports $7 / 8 \times 71 / 2$ $23 /$ ins exhat be bleached.
(68) W. H. P. says: I am tempering saws is so porous and burns away so quick that it makes expensive. Can you tell me anything better than cas ron for that purpose? It would have to be large enoug to hold about three tons of lead, which is brought to bright red heat. A. If you have your lead pots cas hem, they will not be porous. Also make the bottom nued forker than the sides. Wrought iron is Think that you will overcome much of your trouble by side up.
(69) J. H. C. says: 1. I bave two steel boilrs 14 feet by 55 inches connected together on top o ber of 3 inch flues. No connections at bottom; $41 / 2$ inc pipe to engine 30 feet off. Engine cylinder 16×42 inches, 50 revolutions per minute, eighty pounds stam. The water in the outside boiler continually ebbs cause and what would remedy the trouble? A. The outside boiler evidently foams. It is doing more than its share of the work. There may be in the arrange upon the formey connections a stronger draug team connectious boiler than upon the other one. The favor the delivery of steam from the foaming boiler Unequal firing will also produce the same effect. How much water will flow through a pipe per minute,
1,400 feet long with a fall of 75 feet, first 100 feet of pipe 6 inches in diameter. next 400 feet 4 inches in di You will obtain a flow of 18 to 20 cubic feet per minute p tight? A. A pressure due to its height, or $321 / 2$ It. per square inch when closed. 4. Where can books and Brush and other electric lights? A. There are about 20 umbers of the Scientific American Supplemen 5. Which is considered the best electric light now in the market for factories, mills, and cities? A. There panies.
(70) W. B. W. writes: In a recent number ire Scientific american Supplement (No. 160, coil which by using two pounds of No. 36 wre woul ive a half inch spark. Should like to know how muc No. 31 silk covered wire I shonld have to use to obtain

MENF yields a $11 / 2$ inch spark. The amount of fine
wire given for the coil referred to is somewhat in wire given for the coil referred to is somewhat in excess of the requirements, and it is probable that if you longer (say $11 /$) you will secure the same results no not state whether the same English wire gauge. This would make some difference, as the English wire of this number is about the same

$$
0 .
$$

(71) W. K. K. asks for a good receipt for aking blacking with bone black as a basis?

A. Bone black.	47:00	$49.7442 \cdot 40$		$36 \cdot 00$
Molasses.	$23 \cdot 50$	$37: 29$	$21 \cdot 20$	3040
Sulphuric acid	7\%5	as So_{3}		. 53
Vinegar.	700	$9 \cdot 32$		
Hydrochloric acid.		$5 \cdot 32$	$2 \cdot 0$
Gum arabic.	$0 \cdot 05$	0.75		100
Olive oil..	$5 \cdot 0$			$5 \cdot 0$
Sperm oil.		$0 \cdot 5$		
Whale oil.			$3 \cdot 00$	
Water	. $8 \cdot 50$		17.00	24.00
opper	070			

The first is the analysis of English, the second and (72) S. L. H. says: I afn in quest of some stance that will remove clinkers from fire brick be anti-clinker? A. Soap stone is the proper materia or preventing clinker in furnaces. The mines are in ew Hampshire.
(73) S. S. B.-The encyclopedia referred to does say that "Pitch of a roof is the ratio between the height and the space covered," and no more. Other This harmonizes for hoth double and single roofs.
(74) J. N. R. asks us a series of questions bout the advisibinty of adopting one or auother system of water works for Lawrence, Kansas. We receive many such queries, which should properly be sent to ic interest, almost always involve many questions no stated atthe outset, and require an oun attention and examination which we can hardly be asked to give gratuitously. To J. N. R. we would say that in orderto decide what plan of water works are best suited foryourcity, we shall have to put ourselves in the place of a hydraulic engineer, and ask a great many questions, such as every particular in relation to the nature of the water in the Kansas River, and the
eccentricities of the river. How much of the year it is clear? When not clear, is it loaded with sand or mud? In its muddy or high water stage is the water fit for
household purposes? Is there any facility for low level reservoir of large capacity for supply during freshets? hat is the average height of building-what, highest buildings? All of these points go to make up an opin on as to the best plan. The Holly system is the must have a supply uniform in quality which we fear in your case requires a settling reservoir. t will be unsafe to depend upon hydrants alone for fre purposes, 1,000 feet of hose is not admissible for ire purposes under this system. If with the combined system of Holly and high reservoir you are liable, ithout a low settling reservoir, to fill the whole sys. tem of pipe work with muddy water during flood sea-
son, this would have to be flushed out from the in, this would have to be flushed out from the Upon the whole, we think that the safest plan for growing city as yours seems to be is tomake plans in iew of future wants, and start a plant for a uniform spply in quality of water from a low level reservoir large enough to supply clear water at all times, relyiug upon the Holly pressure system for all purposes, and make a combined system perfect. You mention filtra ion. This is good to a limited extent but has proved failure for sudden demands. The system was buit for the city of Newark, N. J. The supply being far hort of the anticipation, the system was abandoned. (75) W. L. S. asks: 1. How can I make simple galvanometer? How can I find the focus o different forms of lenses? A. In Scientific America
Uupplem ent No. 371 you will find a simple galvanom er described and illustrated. Find the focas of con vex lenses by focalizing the image of the sun or any distant light upon a card or screen, and measure the istance from the lens to the image. For a concave pon a card or screen, and project the image of the ora distant light upon the screen at a distance that the shadow of the edge of the lens will correspond with the circle; this distance will be its focal length. 2. How can I make a very black drawing ink, to use in the blue process of copying tracings? Have tried India nk rubbed in a solution of fhellac and borax, butit better than Iudia ink rubbed up with water only thick as it will flow.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
S. S. Co.-The specimen is ferruginous clay or clay colored red by being mixed with iron
qualities of it are used for red pigments.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

July 15, 1884,
AND EACH BEARING THAT DATE.
See note at end of list about copies of these patents.]
brading points for dental and other uses, man-
ufacture of, J. A. Swasey.................. 301,30
erated and mineral waters, apparatus
manufacture of, J. S. Pearson..........

Air and other gas, apparatus for cooling and im-
pregnating, J. A. Saladin................... forcing and exhausting machine A. D. Shelnutt 302,262,206
Air compressor, H. Krutzsch........

Alarm. See Burglar alarm.
Arbor, expansion. A. . Lytle.. 307
Axle box, J. Dakers ,

Axle, car, J. L. Fleming...120 3020038
Axle, cap for carriage, J. M. Schorb, Jr........ 302,
Axle, cap for carriage, J. M. Schorb
Bag. See Hand bag. Mail kag
301,916
302,162

Bale tie, Lenox \& Hentz
Baling presses, alarm attachment for, J. L. Hall

Barn, portible, Keys \& Slaughtern....................... 302.01
Barometer, J. Y. McCleary................ 301
Barrels of
Barrels of fractional parts of barrels, repairing or
forming fibrous pulp, M. L. Deering......... 302,193
forming fibrous pulp, M. L. Deering............ 302,183
Bells, hanging, G. Campbell566
Belt. driving, Jones \& Hughes................. 302.204
Belt holder, machine, w. R. Santley......
Belt holder, machine, W. R. Santley.... 302.037
Belt tightener, R. C. Wall... 301,940
Bicycle saddle clip, H. M. Stilwell 301,934
Billiard table attachment, E. Brunswick... 301,957
Bleaching keir. Jackson \& Westley................ 302,138
Block. See Hitching block.
Blower, hand G Cumming
301,967
Boiler. See Steam boiler.
Book cover, detachable, J. Gordon................. 301,
Boot or shoe soles, air cushion
Boot or shoe soles, air cushion for, G. F. Butter-
teld.. 802,190
Boring machine, wood, H. D. Helser..............
Botas
Bottle stopper, J. J. . . cotten
Bottle stopper, J. B. Craw ford....................... 302,191
Bottle stopper, J. B. Crawford....................
Box. See Axje box. Feed box. Letter box.
Bracket, B. S. Porter...........
302.054
$30 ; 157$

Brake. See Car brake. Wago brake.
Bran duster, J. W. Wilson......................... 302.077
Brick tile etc burning J. K. MacIver.
Brick, tile, etc.., burning. J. K. MacIver............... 302,149
Brush, G. . Gladding....................... 302,01
3rush,

Burglar alarm, J. B. Chase.... 3 30,
Burial casket fastener, S. Reynolds 30
Buttonhole cutting attachment for buttonhole
stitching machines, A. Felber.................

Car brake
Car coupling, C.J. Gano
Car coupling, C. M. Hoag......
Car coupling, F. A. Meredith
Car, railiway,', C . Bueno, Jro.
Car, railway, M. Hutchison.
Car. railway, M. Hutchison
Car, railway, J. H. Reynold
Car safety guarr, L. Peterso
Car wheel. W. Hover
Cars from one track to another, turntable fo
transferring street, G. W. Baumhoff....
transferring street, $\mathbf{G} . \mathrm{W}$. Baumhoff.
Card grinding mechanism, \mathbf{w}. H . Rankin
Carriage, child's, F. X . Hitinterleitiner...............
Carriage curtains, device for fastening, W.

Carriage tops, manufacture of., T. Hawle
Carriages, platform spring for. K. Blunt.
Carriages, platform spring for, K. Blunt............ 301,852
Pearce.. 301
Carrier. See Cash and parcel carrier. Sheaf car-
rier.
Cart, road, A. E. Carter................ 301,
Cartridge implement, H. T. Haxard................... 301,1887
Cartridge loading apparatus, w. A. Lockett..... 302,207
Cartridge loading machine, B. W. Annin.......... 30,
Caster, B. Roux.....
Celluloid and dividing it into sheets, holding,
Centrifugal reel, w. H. Dickey 30
art of extracting germs from ground, J.F.
s.......................... 302,

Chair. H. Miller.. 301.913
Cher
Chimney, C. B. Loveless.. 301,904
Churn, H. J. Bailey.......
Cigar mould, Vornberg \& Kosmalski............................ 302,177 302106
Clamp, A. M. Colt
Cleaner. See Gun clea
Clip. See Bicycle saddle clip.
Clock escapement, C. Fasoldt ..30,87012
Clutch, w. Mathews
Coke oven, H. Stier... 300,171
Collar protector, horse, C. B. Johnson............ 301896
Coloring matter, manufacture of brown, J.
Coloring matter, manufacture of brown, J. H.
Stebbins, J. J...........
Colter, plow. W. Richards 302,170
302,201
302005
Commode, N. H. Lamdin
J. L. Smith

Confectionery dropper. E. L. 30rcutt......... . 3020,017
Cornmeal, making germless, J. F. Gent.............. 3020,034
Corset protector, E. A. Bailey 301, 3019
erton.. 301,848
Counter stifeners, machine for forming, G. T
Shepley ...
Coupling. See Car coupling. Hose coupling.
Crane, S. T. Wellman
Cultivator, hand, S. D. Stout
Curtivainor, wheel, E. R. Conklin.............
Curtain fixture, Iv. H. Linch........................ 301,060 302147

Cut-offand reversing gear, G. W. Anderson........ 301,9
Cutter. See Feed cutter. Pipe cutter. Vegeta-
ble cutter.
Cutting tooth, insertible. J. Hilton........
Demijohn regulator, T. Coobel holder, swinging, L.
Derrick, C. G. Ross.
Digger. See Potato digger.
Dress hanger. A. A Young.
Dropper. See Confectionary dropper.
Dust pan, .. T. Wickersham........................ 302.075
Educational device, H. V. Dunn.............. 302.194

Electric lights, manufacture of carbons for, A. Smith.	i Medical compound, S. M. Tracy Mechanical movement, I. M. Avery	Tie. See Bale tie. Tobaceo curing furnace, w. F. Coulter........... $301,864^{\text {T }}$	気durxtixpments.
Electric machines, armature for dynamo, E. A.	Metal high in phosphorus and carbon and low in	Tobacoo, plug, J. \& C. A. Norburn........... 301,914	
an Choate		Toy savings bank, shepard ¢ Adams,	
ator. See Hydraulic eleator. Ice elevator.	Mining macbine. F. 'T. Chew	Traction engine, B. F. Mohr	
		Traction wheel , 1. Payne....................... Trap. See Ball trap. Moie trap. Overtiow trap.	per line, by measurement. as the letter press. Advertisements must be received at publication office as early
cines, crosshead and piston r	Martise machine, hinge, J. l. Thurston........... 3020.058	Trunk, Dup	
	Motion		
Fastener, metallic, G. W. Prentice 302.	r, G .	Tuun table, c. . B. Finley........................	
Fastener, metalici, , G. W. Prentice30.0.26	Nut lock, M. F. Dillon............................... 301.870		
Faucet, basin, J. M. Peck.... -1.... 30.02022	Nut lock, J. Fry....i.................	Tw	
Feed boxes for horses, A. L. Kane. 301,898			
. D. Davis............................. 30,112	Oiling device, wire, J. Stubbe......................... 302,051 Overflow trap for washbasins, bathtubs, etc., W.		
making machine, B. L. Fletcher, 301,876, 301.878, 301,879	Overflow trap for washbasins, bathtubs, etc., W. I'. Jebb... 302.140	Type writing machine, F. X. Wagner........ 802,178 Umbrella, F. B. Brock......... 302,187	
machine for making. B . L. Frletcher..... 301.877	Packing, rod, L. Hatzenstein................ ... 30.1998		
Fertilizers, miachine for distributing. A. Johnson 302143	(Pad. See Heati		
Pemberton.... 3020,023		Valve for regulating the supply of liquids, Cat-	INSURANCE 6 HARTFORD Conn.
ering apparatus, C. F. Holdship............... 301.89			-
	-30,189		
	Photographic appapatus, portable, IV. Harris..... 3012,933		The
30,885			
Furnace. See Gas generiting and consuming	Pipe cutter, L. Knight....... 30.145		
furnace. Tobacco curing furnace.	Pipe protector, waste, ill S. . Danziger............. 30,110 Pipes. foint for connecting lead and other soft		
naces, wind v cart	Planing machine. box, w. D. Lee 30,006		
301,875		v	
	${ }_{\text {Plow attachment. R. Jones }}^{\text {Plo................... } 30,1144}$		
me			
Gas engine. J. Spiel 302,45	Plowshare, J. C. Pughe. ...7. 3020027	Wagon spring seat, J. Hodgess................... 301.988	
erat		Wall papers, manufacture of colored, A. Boulay... 30,9898	
		Washing machine, R. E. Harper.................... 302,119 Watch case, Skidmore \& Harman............. 301,928	MASSACHUSETTS CHARITABLE ME-
Gear cuttiog machine, uigkins \& Eastman 301,891	Preserving vessel, J. E. Jeffords.................30,1,14		
Glove, K. F. Bartel.................................... 302,085 Glove fastener, P. C. Lathrop.... 301,902			venue, Boston, September 10, 1884, and close This Association exhibits but once in three
Gluten or glutinous matter from the spent liquor of starch works, apparatus for reclaiming, W.	Protector. See Collar		years; it continues to award medals of gold, silver, and years, it furnishes space and power free. Address, to
			$0 \mathrm{x}$
eter, J. w. Hill...................... 302.136	Pulverizing sand, ores, etc., apparatus		office, 31 Milk Sireet, Bosten.
		Weath Wheel	
Guard. See car sifety guard. Saw guard.	Pump, M. Walker........... 302,065		
Gun cleaner, C. S. Leet	Pum		and w
Hatter, R. Meling................................... 3022223	Radator connection, w. s. P. Payne 302,021		
Hammer, automatic tack and staple, J. S. Bokenkotter.	Railway crossings, automatic gate and alarm J. Kuster, Jr.	Wrench, J. H. \& T. C. Sexton......................... 302,166	
mmer, trip. T. Tripp. Jr................. -.... 301.937			
		DESIGNS.	
Handle. See Saw handle. handle.		Badge, A. P. Spencer..... -........................ 15.151	
ner. Se	Reclining chair, Krier \& Madon 301,901		
Harrow and cultivator. Whell,	$\xrightarrow{\text { Reel. See Cen }}$ Rerulator. Se	, 50	
Hat bodie	${ }_{\text {Regua }}^{\text {regu }}$	Cultivator teeth, standard for, N. P. \& J. W. Lehr. 15.148 Dish, vegetable, J. Heap..............................155	
J.s. Ta	Ring.	Fireplace, w. H. Wilkinson 15.153	
bri	${ }^{\text {Rockr }}$ dri	Herness mounting, S. \& © 0	
Hatchway opening mechanism, elevator, M. W. Hoben... 301,893		Jewelry pin. T. W. Foster 15.143 Music stand. T. Hertwig............... 51.177	PIETSCH SELF-VENTILATING SEWER TRAP. Highest award of the American Institute. In operation
Hatch way, self-closing, R. D D. Thackston......... 302.172	Rope conneections, thimble for, G. B. Betts....... 31.1951 Ruling machine. E. Knapp 30.2002		
Heating or coonng pad. Smith \& Collins........... 301.2911	Sash lift, C. E. Steller................................... ${ }^{\text {and,933 }}$	Scart, made-up. T. . . Fhag	
Hoisting bucket, Miller $\&$ Go	Saw, buck, M. Case............. 5021100	spoon or fork handle, C.T.	
er. See Bag holder. Belt	Saw guard, J. sill............ 3020011	Stocking. R. M. Appleton...................... 15.1136	DRILLS
tain rod holder. Key holder. Pillow			
ler	Saw tooth grinding machine, A.		
ok. See Lifting hook. sna			
		DE	
Horseshoe, J. F. Atwod... 302,185	Scow, dumpling, F. P. Eastman..................... 301,992		
Hose couping, Braue \& Roche 3020.093	\mid Screwdriver, C. H. Olison..................... ${ }^{\text {and.915 }}$	Bluing, G.T. Rogers.........................	ND-
	Screwdiver. A. D. Wallen....................... 3020.067 Screw machine, wood, C.F. Wardell........ 30.008	Cigarettes, cigars. cheroots, and smoking and chewing tobacco. Kinney Tobacco Company. . 11,832	
Hydrauic jack, T. H. Watson.... 302,000	Seat. se	Cigars, w. L. Freming 11,988	
I'e cream frezere, J. . . Webb..................... 301.941.	Sewing machine, E. Buscay-...a................ Sewing machine buttonhole attachment, J. i.	Cisars, C. A. Y Yale \& Co....................... 11.32 Cuttery, Koeller $\&$ Schmitz Cutlery Company 11,283	
Ice elevator. D. S. S. Thhmas...................... 3			
Induced currents, producing and utilizing, P. H. Vander Weyde	Sewing machine embroidering attachment, F. H. Chilton ... 301.961	Dyes and chemicals used in dyeing, certain, Gun- ion,Picard \& Jay 11,831	
Iron, purifying, J. . Beasley................ Jack. See Hydraulic iack. zifting jack.	Sewing mach	Fruit butters, preserves, jellies, and mince meat,	
		Fuel kinders, Acme Kindler Company 11,s16	
	for, C. E. Church........................ $\ldots 3301982$	Hair crimping composition, J. S. Rathbone 11,322	
Journal brass, S. A. Bemis........................... 301,831 Jug top. H. Wright....... 301.946	Sheat carrier, A. Je well 302.142	Hand grenades or flre extinguishers, S. F. Hayward. \qquad	
Key holder. Duerr \& Ruhn........................ 301,970 Knife and fork, combines, A. H. Forsyth 301.966		Ink, lithographing, American Lithographing Company 11,31	
Knitting widened tubular fabrics, w. Esty........ 302.119 \|		Meat, smoked, stevens \& Benedict................. 111,40	
		Medicinal preparations for nervous affections, D. Dick.	
Ladder and trestle, step, E. A. Shumway.......... $302,0,000$	Shoe clasp, Hammond, Jr., \& King. 301.184		
		(eation, P. A. Fletcher. 11.329	的
Ladder, step and extension, R. Walker........... 3020.066	Shuter worker. .1. \& A. A. Kuummat301.999	Mineral maters, A. K. Camp.... 11,328 Ointment and various other propritary medi-	
	W. Duryea	cines, pile, w. R. Post............. 11.386	
mp regulator, eleetric arc, A. \& ¢ T. Gray. 30	Slanal light, Rickman \& Pintsch 302.037		
man \& Wooding			
Lamps, incandescent fllament for electric, Hickman \& McCoy. 302,134		Stoves provided with radial burners. gas, C. Burnham \& Co....	
Lamps, manufacture of carbon flaments for incandescent, G. W. Hickman.		Threads. ropes, cords, twines, and lines, Silver Lake Company	
	Square, caliper, A. C. winn........................... 38,2,09	Tobaceo, cigars, and cigarettes, smoking and chew-	
	Stamp, ticket numbering, J. Keller ${ }^{301,999}$	ing, E. T. Pilkinton............. 11,335 Tobacco, plug, D. H. McAlpin \& Co............. 11.334	
Lifting hook. w. H. Crow................................ 301,866	Steam boilier for	Tobaceo, pr	
Litting jack, A. T.Goodloe................. ... 301.881	Steam boiler, sectional, G. A. Colby.... 301,9	pany	
	\| Steam engine, compound, H. Howalat....... 301,91	Tobaco, plup, chewing, R. F. Robertson........... 11,337 Tobaco, smoking and chewing, G. w. Gall $4 x . .11,38$	
Light. see signal light.			
Liquids, apparatus for cooling. J. Helbling.... ... 302,131 Lock. See Nut lock. Safe lock.			
		any patent in the foregoing list, also of any patent issued since 1866. will be furnished from this oflice for 25	
	Table. See Turru table.	cents. In ordering please state the number and dat of the patent desired, and remit to Munn \& Co.. 3	
om, E. Herrig. .e.............................. 301,189	Tanning and dressing old leather and articles of same. E. W. Hewitt athen	Broadway, New York. We also furnish copies of pa	
bricat	ng extracts, makiog, E.L. P. \& G. C. Coez . 302.105	granted prior to 1866 ; but at increased cost. as ${ }^{\text {a }}$	
Faul................................... 301.977	-1...... ${ }^{30,122}$	hand.	
		Condian Patents man now be obtained by the	
J. A. French.........................301,977	'trrasher and separator, grain. A.	${ }^{\text {goin }}$	

BAIRD＇S BOOKS PRACHICAL MEN

FORSTER＇S ROCK BREAKER．
RAILROAD BAL工AST \＆IMACADAM

Han Duzen＾A Pat．Looae Pulley Onler
 use．Prices very reasonable．，end
for our CatalogeNumber 55 ，
VAN DCZEN \＆TIT，Cincinnati， 0

产
GAS ENGINES．
 POWER DETEIR MINED BY ACTVAL TEST． THE CONTINENTAL GAS ENGINE CO．

SCIENTIFIC AMERICAN SUPPLE－ MENT．Any desired back number of the SCIENTIFIC
AMERRCAN SOPPEMENT can be had at this oftce for
IO cents．Alscito be had of newsdealers in all parts of
the country．

OPIUM8 wisky hibirs

THE SCIENCE OF LIFE ONLY I\＄
 A Great Medical Work on Manhood

 without an instance or failure．Mention IHISELF
this paper．

PATENTS．

MESSRS．MUNN \＆CO．．in connection with the pub－
lication of the ScIentific Ambrican，continue to ex－ for Inventors．
In this line
vears＇experience business they have had thirty－ight the preparation of Patent Drawings，Specifications，and the prosecution of Applications for Patents
United States，Canada，and Foreign Countries． United States，Canada，and Foreign Countries．Messrs．
Mumn \＆co also attend to the preparation of Caveats， Copyrights for Books．Labels，Reissues，Assignments， intrusted to them is done with special care and prompt－ ness，on very reasonable terms．
A pampilet sent free of charge，on application，con－
taining full information about Patents and how to pro－ cure them；direciions concerning Labels，Copyrights，
Desigus，Patents，Apeals Reisues，Infrig Designs，Patents，Appeals．Reissues，Infringements，As－
signments，Rejected Cases，Hints on the Sale of Pa tents，etc．
We also send．free of charlye．a Synopsis of Foreign paterts in all the principal countries of the world． mUNN \＆CO．，Solicitors of Patents， BRaNCH OHHICD Broadwa，New York

WATCHMAKERS．

SEBASTIAN，MAY \＆CO．＇S

 Beautiful \＆Lasting for ORNAMENTING
WINDOWS，DOORS，TRANSOMS，\＆e．

ROLLSTONE VARIETY LATHE．

50 隹

CIDER

NEWSPAPER FILE The Koch Patent File，for preserving newspapers．
magazines，and pamphles．has been recentiy improved
and price reduced．
Subscribers to the SciEvTIFIC AM．
 every one whe
Address
\qquad Clark＇s Noisless Rubber Wheels．
Absolutely
prevent Cheing of floors caused by use in in Wheels．In difterent stylys adapted for
every Gind of Mil and Warenouse work．
Cataone free．GEO．Wind
Windsor Locks，Conn．

CUTLER＇S POCKET INHALER

 Mamia thit

 Sold by Drugiser fosis．

To Electro－Platers．

ERICSSON＇S PUEW CALORIC
PUMPING ENEINE， Dwellums \subset Conntry Seats
 Delamater Iron Works， C．H．Delamater \＆\＆Co．， 16 Cortlandt Street，
New Yrk，S．S．A．，
And 40 Dearborn St．

 DEPPEN＇S NEW RECLINING CHAIR （ Can be set to a lying down

915 Price
 VTAMPER．
Cities，Towns，and Manufactories Patent tube and gang well sistem． Wm．D．Andrews \＆Bro．， 233 Broadway，N．Y．

IRON REVOLVERS，PERFECTLY BALANCEL， P．H．\＆F．M．ROOTS，Manufacturers，
 SEND FOR PRICEXRK．

Cornell University．

Electrical Engineering，
Mechanical Engineering， Civil Engineering and Architecture． Entrance Examinntions Bearin at 9 A．M．，Jane

 ood Working Machinery of ail kinds．

$\$ 5$ to $\$ 20$ Redayat homo samples．mornthy free FOREIGN PATENTS．

Their Cost Reduced．

The expenses attending the procuring of patents in most foreign countries having been consiclerably re－
duced，the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inven CANADA．
CA MADA．－The cost of a patent in Canada is even former includes the Provinces of Ontario，Quebec，New
frunswick，Nova Scotia，British Columbia， Brunswick，Nova Scotia，British Columbia，and Mani－
toba．
The the cheap and easy method now offered for obtaining patents in Canada is very large，and is steadily increas ing． torce on Jan．ist．enabies parties to secure patents in
 Channel Islands．Great Britain is the acknowledged
financial and commerciul center of the world，and her goods are sent to cvery quarter of the globe．A good
invention is likely to realize as much for the patentee in England as bis United States patent produces for
him at home，and the small cost now renders it possible for almost every patentee in this country to secure a pa－
tent in Great Britain．where his rights are as well pro－ tected as in the United states．
OTHER COUNTIRIES．－Patents are also obtained on very reasonable terms in France，Belgium，Germany
Austria，Russia，Italy，Spain（the latter includes Cuba and all the other Spanish Colonies）．Brazil，British Iudia Australia，and the other British Colonies．
An experience of THIRTY－iIGHT years has enabled competent and trust worthy agencies in all the principal
foreign countries，and it has always been their aim to have the business of their clients promptly and proper－ Iy done and their interests faithfully guarded．
A pamphlet containing a synopsis of the patent laws of all count ries，including the cost for eeach，and othe
information useful to persons contemplating the pro－ curing of patents abroad，may be had on application to
this office． rattric american，ocrdially invite all persons desiring any information relative to patents，or the registry of
trade－marks，in this country or abroad．to call at their offices，361 Broad tav．Examination of inventions，con－
sultation，and advice free．Inquiries by mail promptly sultation，
answered．

Address，
MUNN \＆CO．，
Publishersand Patent Solici
Branch Office，cor．Fand 7 th Streets，opposite Patent
Office，Washington，D．C

WITHERBY, RUGG \&\& RICHARDSON. Manufacturers of Patent iliood working wachinery of every descrip-
tion. Fracilies unsurp formerly ocupped
by R. Bail $\&$ Co., Worcester, Mass. Send for Catalogue.

B OGAlDUS' PITENT UNIVERSAL ECCEN-
 AUSTRA Ans, Ala crican mfrs. desifous of being rep

MREMORE

 ers, Trenton, N.Wheels and Rop
Send for circular.

H.W.JOHNS' asebshos zوQum Pants. ROOFING,
 eam Pipa and Boiler Coverings, Stram Pac iug, Mill Boad, Gaskets, Nh allings, Fire- proof Coatings, Cement, \&c.
 H. W. JOHNS M'F'G CO. 87 Maiden Lane, New York.

 JENKINS' PATMNT VALTES,

Gate, Globe, Angle, Check, and Safety.
MANUFACTURED OF BEST STEAM METAL Are the acknowled eded stand
ditipns, and never have faile

Emerson's New Wors is is A W S

 New Patent Agency. J. E. M. BOWEN, in all countries, and acts as general counsel in patent and trade-mark cases. Oflces: 605 Seventh S.., N. W
opposite U. S. Patent Office, Washington, D. C., and 137 opposite U. S. Patent Offlee,
Temple Court, New York City

GASKILL'S STEAM PUMPS,

SPEAKING TELEPHONES.

 cuit on final hearingin a contested case, and many in
juntcions and fina decreeshave beenobtained on them
this company also owns and controls all the other
telephonic inventions of bell, Edison, Rerliner, Gray

 KORTING UNIVERSAL Q double tube. INJECTOR
 NO ADJUSTMENT FOR VARYINGL STEAM CONOTIONS. PRESSURE.
WILD LIFT WATER 25 FEET. SENO FOR DESCRITIVE CIRCULAR. Philada.,12th\& Thompson Sts. \mid New York, 109 Libert

 RUBBER BACK SQUARE PACKING. A, the elastic batck,
Treates but litite rrictio
This Packing is

For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps.

