We are sole manufacturers of the Fibrous Asbestos
 19 Eaststh Street, New York.
Steam Hammers,Improved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon. 24 Columbia St., New York. Emerson's 1884 Book of Saws. New matter. 75,000. Hoisting Engines, Friction Clutch Pulleys, Cut-off Solid and Shell Reamers, durable and efficient ratt \& Whitney Co., Hartford, Conn.
For best low price Planer and Matcner, and latest

improved Sash, Door, and Blini Machlnery, Send for The Porter-Allen High Speed Steam Engine. South| Electrical Alarms, Bells, Batteries. See Workshop |
| :--- | Receipts, v. $3,88.00$. E. © F. N. Spon, 35 Murray St., N.Y.

Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works. Drinker St., Philadelohia. Pa.

## NEW BOOKS AND PUBLICATIONS.

Modern Hreh Explosives. By Manuel
Eissler, Mining Engineer. John Wiley Eissler, Mining En
\& Sons, New York.
This book is one for the engineer, the contractor, and the manufacturer of explosives-full details of the methods of production being given as a part of the explanation of the nature and power of the various ex-
plosives. The production of glycerine is followed, plosives. The production of glycerine is followed,
from its frst manufacture in a commercial way in 1850 down to the most recent and greatly improved processes; the dangers, and the best protection against them, in kinds of dynamite-from those made with infusorial earth and a large percentage of nitroglycerine down
through those with lower explosives and chemically through those with lower explosives and chemically combining with the nitroglycerine-are described as to
their manufacture, storage and transportation, and their manufacture, storage and transportation, and
effectiveness for various uses. Gun cotton and the effectiveness for various uses. Gun cotton and the
fulminating compounds are likewiee fully treated, also electricity as applied to blasting operations, many examples being given from well known engineering works and the author's practical experience in mining. The applications of these explosives for military purposes are only mentioned briefly, the design of the work being principally to promote industrial ends, and, by and use of these powerful destructive agents more seffe.
The Materials of Engineering. By R.
H. Thurston. John Wiley \& Sons, New Hork.
This is he third volume of Professor Thurston on thisgeneralsu bject, the present hook being devoted to the non-ferrous metals and their alloys-copper, tin,
zinc, brass, bronze, etc. It treats generally of the prozinc, brass, bronze, etc. It treats generally of the profacture and working, but will he more especially useful for what it saysrelative to their strength-elastic lim its, resistance to compression and transverse stress, etc.-
under varying conditions. The volume tabulates and under varying conditions. The volume tabulates and
analyzes a great number of tests of brasses, bronzes, analyzes a great number of tests of
and like alloys, made by the United States Government. and by the author personally at tbe Mechanic
Modern Forest Economy. By J. Croumbie
Brown, LL.D. Oliver \& Dowd, Edin burgh.
This is the eleventh volume of the author on subjects
directly connected with that indicated in the title of directly connected with that indicated in the title of
the present book. He believeres in forest culture aud preservation, and has especially studied the subject as in Enyland and Scotland, and in the various countries of Europe, as also in South Africa, where he was for
some time Professor of Botany ac the Cape of Good some time Professor of Botany ac the Cape of Good
Hope. The present volume treats of the true elements of forest economy and forest administration, classing the latter as a science of no mean order, and advocat-
ing the organization of schools of forestry. It is well worth the reading of those who are now so earnestly urging that something be done to prevent the total destruct
on.

Wrought Iron and Steel in Construc
tion. John Wiley \& Sons, New York A hand book of rules and tables for the strength of wrought iron shapes used as beams, struts,
manufactured by the Pencoyd Iron Works.
Metrological System of the Great Pyra-
mid. By F. A. P. Barnard, LL.D. Johin
mid. By F. A.P. Barnard, LL.D. John
Wiley \& Sons, New York.

## This is a reprint of a paper read before the American

 Metrological Society, in which President Barnard summarizes the tenets of the pyramid faith, and investigates advancing a new theory of his own.The Method of Least Squares. By Mans-
field Merriman. Jobn Wiley \& Sobs, New
field Merriman. Jobn Wiley \& Sons, New
York. The elimination of error in numerical observations, and the best method of reaching as nearly as poss ble
absolute accuracy in measurements and computations more or lessindirect, is here made the subject of a more or less indirect, is here made the subject of Engineering at the Lehigh Dniversity. It has been the endeavor of the author to present this by no means
simple subject in a manner so plain and direct, that civil engiveers who have not had extended mathemati cal tranning may be assisted thereby, and the numerous practical examples given afford a comparatively
easy road to the acquirement of such knowledge of the highermathematics as is essential to the enginee while the book is one in which the industrious student
will make rapid progress.

## 

HINTS TO CORRESPONDENTS

(1) O. K. L. asks: Can water $80-90^{\circ}$ Fab. be forced by means of a hydraulic force pump under pressure $70-80$ pounds into the pores of wood which
has been cut across the graiu in blocks a quarter of an nch thickness and put in an air tight copper or iron essel? If so, how long a time would it cake for the
water to reach the center of the blocks of wood a water to reach the center of the blocks of wood a
quarter of an iuch thick? Would exhausting the air rom the vessel (and so in part from the wood the air before permitting the water to come in, facilitate the ponetration of water subsequently forced under hydrauic pressure, as before described? A. Water should penetrate the blocks of wood, under the circumstances mentioned, in a few minutes. The air in the wood would be compressed to about one-fifth its volume, and several hours. If the compression is on y for a few ould drive out part of the water by its expansion Exhausting the air at first would insure the immedite penetration of the water under pressure. Fill the ressel with steam, and allow it to condense; this will
(2) T. P. Y. asks: What kind and size of pipe is best to lay from a spring of ordinary soft water, rods distance and 2 feet fan, for family and bara straight line to save a sag, or not? A. The size of pipe and the upon the quantity of water you may require nd the capacity of the spring; 1 inch pipe will give onstant flow of 5 gallons per minute, 13 inch pipe vanizediron pipe is best. It will make no difference about the sag, except as every bend from the straight by laying the pipe in a circuitousline.
(3) F. W. F. says: I have a flat iron casting about three feet long and two wide, which reprefllm of metallic copper or treat it with any solution Hlm of metallic copper or treat it with any solution You will find a description of Process for Bronzing ron in No. 235, Scientific American Supplement. Also Imitation Bronzing in Scientifio American Sup(4) A. Bent No. 28
(4) A. B. wants to know how best and tumps to get rid of partially decayed pine and oak pulling them? ducing tbem to fragments eo they can be landled and burned? A. A woodenlever with three clevises. chains and hooks makes a simple and easily arranged device
for pulling stumps. For blasting them see SoIENTIFIC Amerioan, December, 1, 1883, page 341.
(5) R. M. H. says: 1. Providing the elide valve on a locomotive has a certain lead, can lead be
either increased or decreased by any other means than either increased or decreased by any other means than
by slipping eccentric? A. We understand that it canoot except by altering the construction of the valve. 2. Has the reversing lever any other control over the valve than its name implies, and to regulate the throw or travel of slide valve, independent of any influence on lead? A. The reversing lever regnlates the amount
of the throw of the valve or cuts off the steam when on center, having no control over the lead.
(6) P. T. asks the best mode for pumping out a lake containing about 250.000 cubic yards water, to accomplish certain results, cost of pumps, etc. A: A pump and boiler capable of pumping out your lake in 50 days of 20 hours each will cost about $\$ 1,00$ in New
York. Boiler 12 horse, steam cylinder $8 \times 12$ water cylYork. Boiler 12 horse, steam cylinder $8 \times 12$, water cyl-
inder 10x12. Much depends upon how high tbe water inder 10x12. Much depends upon how high tbe water has to be pumped and length of pipes required, which orce.
(7) J. E. T. says: I bave been trying to do a little tinning, such as dipping table cutlery in a pot of nelted block tin, and bave met with rather poor success. My melted tin seems to be too thicks. and will
not runoff smouth, but leaves the knife rough. How shall I make the melted tin thinner or run smooth on too long. The tin absorbs a little iron, or it may be too cold. A little powdered salammoriac sprinkled on the (8) J. F. L. -W

Water meters are read in the p to 100 ; d dial 1000 dubic 6th, each dial indicating 10 times the amount of the whole of the preceding dial. Always read the flgure index hands alternate to the right and left in their motion to accommodate tbe plan offgearing.
(9) J. L. asks if water impregnated with determine whether sulphur is present inthe and howto Yes. The sulphur combines with the iron, making it
brittle. If you suspect sulphur in the water, you may
detect it by the mell of bad eggs. If there is toolittle detect it by the smell of bad eggs. If there is too little (quarter dollar) in some of the water; sulphur turns it black.
(10) M. M. W. asksif there is any preparation of metal in liquid form of unlimited supply that cheaper than quicksilver? A. There is none.
(11) J. P. says: I want to cast a number of small bells not exactly the usual shape, and cannot use copper because it requires too much heat to mett it.
What combination of metals of low fusing point I nse, and is there sny process of making the base metals sonorous? A. You cannot make any combina-
tion of metals properly sonorous at a low fusing point. (12) E. C. H. asks about mica and isinglass. Can they be bent or moulded into any shape? Do they tand a high degree of heat when applied in the form of water or steam? Is there any work published which or isinglass. It is a silicate of alumina, with a little It will stand any heat below red. In steamand boiling water it is disposed to become opaque by dissolving of description and analysis of all kinds of mica
(13) C. F. A. asks: What is nickel, and where does it come from? Please give a short account fit. A. Nickel 18 a metal first known more than a
hundred years ago. Its ores are mined the same hundred years ago. Its ores are mined the same as
ron, copper, etc. It mostly comes from Germany, France,and England. There are mines in the highland range in the State of New York, and other places. It
has also been found in small quautities in the meteasi also been found in small q,
orites that fall upon the earth.
(14) C. B. R. asks the name and cbaracter of insects sent; they were found attached to a rope
swing on a scrub oak tree. A. The specimens are the larve and pupx of the Twice-stab bed Ladybird (Chilocorus bivulnerus; family Coccinellidæ), a common and very usefn) little beetle, preying as larva and imago on plant lice and scale insects. The larva is easily recog-
nizable by its body being covered with very stout, loug, nizable by its body being covered with very stout, long,
black, prickly spines, the perfect beetle being black black, prickly spines, the perfect beetle being black
with a red spot on each wing case. The specimens evidently attached themselves to the rope to undergo ir transformation
(15) I. K. asks: 1 . What is tbe surest way or a family to find out if there is any sewer gas in
their house? A. Sewer gas has a peculiar pungent sickening odor; when once familiar with it a person will readily recognize it in a house. The surest way is to have a reliable plumber examine the premises. If
you cannot trust a plumber, obtain the services some of our sanitars engineers or experts. 2. Wha the best way to clean or renovate old steel engravings?
A. See Scientific Ambrican Soprlement, Nos. 44,115, A. See Scientific American Suprement, Nos. 44, 115,
124, for directions for cleaning old steel plate prints.
(16) W. S. asks where one can be educated for civil engineering, and what primary learning is re-
quired. A. There are special courses of civil engiquired. A. There are special courses of civil engi-
neering at.the School of Mines of Columbia College, nd also at the College of the City of New York. The reat school of civil engineering in the country is Rensselaer Polytechnic at Troy, N. Y. The require
R. ments vary with the institution, and can be ascertained by consulting the catalog
procured by application.
(17) S. E. C. asks a recipe for making sul oap (recent). Take half a pound white curd or castile fluid ounce rectified spirit (strongly colored with al the mass. Beat the whole together to strongly scent the mass. Beat the whole together, to a smooth paste,
in a marble or Wedgwood mortar. The spirit and coloring matter may be omitted at will, and as a toilet soap one-half th
(18) A. B. J. asks for a solution or dip that will give luster to tinned articles. A. Tin may be ubhing with a hard substance. Sometimes dippin into hydrochloric acid is benefficial, but the first operation is generally necessary. Answer to query 8 in the
Scientific American for May 10, 1884, gives some inScientific american for
(19) D. S. writes: The elm with us is in fested by some insect; a majority of the leaves are like the one I inclose berein. What are the cause and reme-
dies for it? mens to say precisely what the insect 18 , but we think ikely that it is the canker worm, which injures the elm well as the apple tree. The most approved remedies tree to tree, a band of canvas or paper is wrapped around the trunk and besmeared with tar or a misture of tar and molasses, which must be frequently applied; or a bund of rope or closely twisted hay is put around he trunk and over his a tin band acoul 4 inches wide, wo, in such a manner that there will be a cavity be low and a free edge above it. If these insects are prevented from ascending the tree, they will deposit their can be destroyed by a single application of kerosene oil. This should be done about March in this latitude. nd earlierfurtber south. If the worms have been per mitted to hatch, as soon as they are large enough to be
seen jar them from the trees and sweep awas with a pole, as they hang by their threads, and burn or otherwise destroy them. If the worms have matured and gone into the ground for winter quarters, plow the round late in the fall so as to expose the pupe to frost and to their natural enemies. See also Professor A. S. Packard's article on the canker worm, page 304 of Sor (20) U M F F
(20) U. M. F. Co. ank for a cement that A. Guttapercha dissolved in carbon disulphide to form mass of treacly consistence forms a very good cement thinned down, a small quantity of the cement is then
poured on eachend, spread so as to thoroughly fill all the pores of the leather; the parts are warmed over
a fire for a few minutes, applied quickly, and hammered well together.
(21) J. E. N. writes: I make a "burnisb ink" for shoes of extract logwood, potassa bichro-
mate, and copperas which does not strike in deep enough. Can you suggest, the addition of anything,
that is cheap, that will make it bite well, or can you furnish a good formula? A . The following are the proportions of an ink similar to your own, but perhaps it may give better results: Make a strong decoction of logwood, preferably in soft water, by boiling; then add
iron sulphate, at the rate of 2 ounces to the gallon, with halp an ounce each potassium bichromate and gum arabic. Powder the latt three ingredients and even the logwood if you like, as it will take the color out quicker; or you can use the prepared extract of logwood at the rate of 1 ounce to a gallon of water. A
solution of iron sulphate in 12 times its weight in water solution of iron sulphate in 12 times its weight in water
is used sometimes. See also Scientific Amenican used sometimes. See also Scientific American
(22) K. S. N. L. Co. write: We are experimeuting with paiats, Japans, etc., in our nut locks, to prevent rust, andhave been recommended to you for
the name of any paint or any combination of chemiche name of any paint or any combination of cheml-
cals, or receipt, which when applied to iron will precals, or receipt, which when applied to iron will pre-
vent or in a large measure do away with rust. A. The following by M. Zein is worthy of trial: Mix 80 parts pounded brick, passed through a silk sicve, with 20 parts litharge; the whole is then rubbed up by the
muller with linseed oil, so as to form a thick paint, muller with linseed oil, so as to form a thick paint,
which may be diluted with spirits of turpentine. Bewhich may be diluted with spirits of turpentine. Be-
fore it is applied the iron should be well cleaned. From fore it is applied the iron should be well cleaned. From
an experience of two years u pon locks exposed to the an experience of two years u pon locks exposed to the
air and watered daily with salt water, after being covered with two coats of this mastic, the good effects of it have been thoroughly proved. See also article on
"Varmishesfor Protecting Iron," ScIENTIFIo AmERIOAN SUPPLEMENT, No. 226
(23) J. N. says: An artesian well, one foot in diameter, throws 25 gallons per minute, and the
overflow will all run through an inch pipe. Now, if I rive an inch and a half pipe down to the same depth, close by, can I expect the same overflow, that is, will as much water run over the top of inch and a half pipe
as will run over the top of a foot pipe, the other conditions being alike! A. No. The friction in the $11 / 2$ inch pipe will slightly retard the flow; otherwise much de pends upnn the freedom of the opening at the botpem. A 2 inch pipe will be better, and will yielda fall
flow with a strainer and perforated section at the bottom.
(24) F. G. asks: What are the ingredients of what are called "aniline" colors or "French water colors," "Egyptian colors"-all of the same nature? A. These colors are simply solutions of aniline dyes, many of which can be directly dissolved in water, while
others are soluble in alcohol. A little gum water can added to give consistency if necessary.
(25) R. H. asks the receipt for making the composition called star metal, used for car bearings. is only known to those that make it. The following is as near as possible to the composition, and suitable for heavy bearinga:

## Copper Tin.... Antimo

This can be varied to suit almost cvery requirement by adding tin.
(26) S. \& T. say: Having a reservoir full of water and a certainsize of pipe out of bottom run-
ning down a hill, will more water be discharged 200 feet below than will be at 100 feet, say a 1 inch pipe throughout? The question is whether the additional fall will cause the water to enter the 1 inch any faster
in the one case than the other. Should not the inlet be larger? A. If lengths between each station are the same, no more water will be discharged at 200 feet than at
100 feet. Make the upper section larger for more flow at the bottom.
(27) F. C. C. desires us to inform bim the best and safest engine for light work, such as to run coffee mill, sewing machine, pump up small amount of
water, etc.; something cheap but good and particularly safe, and where to safe, and where to purchase it; somengirl. A. There
be safe in the hands of a lady or young girl. are several forms of gas engine, which, as well as the
(28) J. H. writes: I have a lot of cotton stockings which when worn color the feet, the dye
coming out; they have been washed and boiled to no coming out; they have been washed and boiled to no
effect. Will you please tell me how to fix the color? effect. Will you please tell me how to in the color?
A. We know of nothing to recommend you. The coming off of the coloring material is an evidence that an inferior quality of dye was used. Colored hosiery should be put into a strong solution of salt and water, Wash on the wrong side in lukewarm water with pure soap, perfectly free from acid, rinse well in clean cold , and thendry as previously stated
(29) T. F. B. asks for some practical work giving instruction in the art of wood engraving for a lad who has an inclination in that direction. A. There
are no books of any real value to a beginner in this direction; it requires a pretty long apprenticeship, and is very tedious work, and then success or failure depends largely upon the natural capacity of the indi. vidual for this peculiar work.
(30) J. F. K. asks the highest boiler presor the government inspector to decide, according to the build and strength of the boiler, and the use to (31) J. H. P. asks if there is any known method of softening raw ox hide, so that it can be mouldedinto any shape, andthen wilirecover or assume Its original strength, without becoming stiff and brittle
like glue. A. There is cot, except by tanning like glue. A. There is rot, except by tanning,
and that gives the substance a decidedly different nature; all ox hides, when dry, are naturally stifi and
brittle, like glue. 2. In the burning of large sulphuric likely to volatilize? A. The loss of Jead would b bout 25 per cent. By volatilization the amount drive off would be exceedingly small. 3. Will you mention any instances where acid chambers have been destroyed by fire? A. Works burned are the Marcellin, of Bridge port, Bowker, of Elizabethport, Crenshaw, of Rich
(32) A. L. B. says: Please tell me the chem ical composition of elderberry juice, before made into
wine, and if you think it practicable to buy the eldererries in large quantities cheaply without raising the on plantations? A. The chemical composition of the
elderberry juice has probably never been determined. It is a mixture of various ingredients which would be very difficult to isolate. 'The answer to the second question depends entirely apon the amount of capital required forthepurpose of raising the berries; if tha exceeds in amount thevalue of a given quantity of ber ries at the market price,then of course it is best to buy. comparative values and must be settled by obtaining the information relative to the possibilities of raising adalso of disposing of the elderberries
(33) S. S. S. asks: W bat pressure plates will sland withsafety from an eighth to a quarter inch of air, and what is the best metal for streng weight? A. Large tubes such as are used for hoilers are as light and strong as anything you can get. A 10 Inch tube will bear apressure of 500 pounds with safety They hold a little over half a cubic foot to a foot in
length. Heads should be three-eighths wrought iron, raised and flanged, backed in and strongly riveted and ked.
(34) J. A. T. asks the cause of glass crack ing in store fronts, say a 4 lighted half, glass AA double strength, about $36 x 60$, with wrought iron mul
lions and muntin. They were bedded in putty, and hons and muntin. They were bedded in putty, and crack witbin au hour after putting in, and othe twelve months. The buildings are veneered brick. instead of putty. A. Glass of the size you mention seldom cracks in this climate when carefully set. Im perfect annealing may subject such glass to grea mullions may have much to do in cauting fracture in very cold weather. The large plates in New Yor vindows are sometimes fractured in extreme wor from the strain caused by contraction. The crowding
to place by wooden stops may also cause a strain by to place by wooden stops may also cause a strain by bending that might start a crack at any time. We have not hing better to offcr than the suggeation of greater
care in setting the glass perfectly free from strain in any direction.
(35) D. F. says: Inclosed I beg to band you specimen of asbestos. Will you kindly infom $m$ where I canfind a market for this article, what it is
used for, and what is the price per pounds $A$. The $\$ 30$ per ton. The price in New York ranges from $\$ 1$ to $\$ 60$ per ton, according to the length and etrength the fiber and its purity. It is used in making liquid and fireproof paints, roofing, piston packing, valve packing, flat packing,covering steam pipes and boilers,
fireproof cements, sheet and roll millboard, flooring fireproof cements, sheet and roll millboard, flooring, is the largest dealer of it in this part of the country The specimen sent however appears to be chrysotile, variety of serpentine, found chiefly in Canada, and there employed, only to a limited extent, however, in the preparation of a variety of textile material. The
Canadian Geological Survey could probably give complete information.
(36) W. T. M. asks bow the liqueurs " Küm mel" and "Chartreuse " are made. A. The so-called "ly, each in a little 95 per cent alcohol, half adrachm oil o anise, and five drops each of the oils of calamus, bitrer oil of caraway in sufficient 95 per cent alcohol to mak clear solution. Incorporate the foregoing with 40 gallons French proof spirit, and add 10 pounds sugar
dissolved in 5 gallons water. The green Chartreuse consists of:

| Dried lemon balm. . | . 500 grams. |  |
| :---: | :---: | :---: |
| Hyssop in flower. | 250 |  |
| Peppermint (dried) | 250 | " |
| Genepi. | . 250 | " |
| Balsamite |  | " |
| Angelica seeds.. |  | " |
| Angelica roots |  | . |
| Thyme......... |  | " |
| Arnica flowers. | .. 15 | " |
| Buds of balsam pop | 15 | . |
| China cinnamon.. | . 15 | " |
| Mace.. |  | . |
| Alcohol at $85^{\circ}$. |  | ters |

Digest for twenty-four hours; distlll and rectify to dissolved by heat in 24 liters of water; mix the whol and make up with water to 100 liters; mellow and color
yellow with a mixture of blue coloring and infusion or caramel or saffron. Size ,allow to repose, and filter.
(37) W. E. J. asks: Can you inform me where I can communicate with some one who has an water is from 100 to 150 feet deep, or sut we in the munication with some one who has thm ing a wrecked vessel? A. We would refer you to the Edison Electric Light Company, 65 Fifth Avenue. Mr ite to Gen John Newton, Chief of Engineers, New York
(38) J. Q. A. says: I have a summer coa made of mohair,dark gray in color, almost black. Per-
spiration has given it a very bad odor, though without spiration has given it a very bad odor, though without
changing the culor. What will clean it without injury? A. Perspiration stains are removable by washing the garment in a strong solution of soda, with a subse
quentrinsing with water.
(39) W. P. C. says: I want to know if you
an tell me of a good cheap chemical bath that I can can tell me of a good cheap chemical bath that I can nuse over again as solder? I want to use hot water, enough to melt tin, and I want to know what chemical to use to superheat it and melt the tin plating so it can be saved to use over a aqian. A. The accomplishment
of your purpose is not practicable. Tin is frequently of your purpose is not practicable. Tin is frequently
removed from refuse scraps by treatment with hydrochloric acid and subsequent recovery of tin chloride or tin crystals. This process is
American Sopplement, No. 112 .
(40) F. B. says: I have a paper roller with metal (brass). On passing through a wet piece of cloth the metal roller beinghot, the figures on the pape roller get torn up, as the cloth sticks to it very badly What substance shall I take, to make the paper rolle ard, and smooth like glassand also watertight, so a resist the action of dampness or heat. A. Try thin hellac varnish 2 or 3 coats, drying each thoroughil
(41) A. M.-To whiten tarnished silver thimbles, rub with a brush and oxalic acid and wash lean with warm soap and water; polish with rouge on
bush.-Answer the questions from the Young Men rush.-Answer the questions from the Young Men
Christian Association conscientiously. If they thin ou worthy of membership, they will receive you.
(42) F. W. C. asks (1) how can I re-ebonize mation in regard to Dyeing $W$ ood Black will $A$. on page 3301 of Scientifio American Supplement No. 207. The general process of ebonizing wood consists in the application of a solution of iron acetate sometimes with logwood and sometimes simply alone. 2. What the preparation is which cartridge manufac rers grease their cartridges with? A. A mixture of
eeswax and tallow is used. 3. An coonomical method greasing small bullet breech caps of 022 inch caliber mersed $n$ the above.
(43) B. J. K. asks (1) the name of a wor nd oxidation. A. There is no single book on the sub ject desired. Roscoe and Schorlemmer's Treatise on Chemistry, vol. i., is very full,buta work on Dynamical Geology would probably be more satisfactory; Dana's Manual of Geology has a chapter in it devoted to this
noject. 2. Is iron scale the peroxide of iron? A. The black or magnetic oxide of iron is the combination of of what dearee of oxidation is iron the ferric oxide (peroxide). 4. About what per ent of iron or oxide of iron does ocher contain? A. The theoretical compositiou of limonite or ocher is 86.6 per cent ferric oxide, $14 \cdot 4$ per cent of water.
5. Are carbonate ores of iron as rich in metal hematite or magnetic oress A. Magnetite contains
theoretically $7 \% 4$ per cent of iron, hematite 70 , and eiderate, the carbonate ore, about 56 per cent.
(44) J. A. C. asks for a receipt for making sarsaparilla sirup, \&uch as is used in soda water. Also tles. A. Several formulasfor sarsaparilla sirupwill be The fluid extract to which we prepume you allude is The fuid extract to which we presume you allude is dered sarsaparilla with half a pint dilute alcohol; let it stand 30 minutes, then percolate until 3 pints have water bath to 1 pint, add 10 ounces sugar, evaporate to pint, and strain while hot
(45) H. W. asks a formula for Gunther's mead, or oue that is as good. A. The ordinary mead is prepared by fermenting holowing taken from our back files will probably be satisfactory: Take ten gallons o water, two gallons of strained honey with two or thre lemons cut in slices. Mix all together and boil for half an hour, carefully skimmingall the time. Five minutes after the boiling commences add two ounces of hops; when partially cold putit into acask to
off. In about three weeks it will be fit to bottle.
(46) M. J. B.-Your machine will run small arc light very well. One of Browning's small arc
lamps would probably be best su ted to it. You can purchase these lamps from any of our leading opti-
(47) F. D.-Your machine will undoubtedly work very well. We only suggested thal the later form of Siemens armature might prove more satisfactory (onsult SUPPLEMENT, Nos. 222, 224, and 225.
(48) J. B. L. says: I bave seven pounds of No. 16, and five pounds of No. 20 cotton covered cop-
per wire, and wish to know if it can be used for mak per wire, and wish to know if it can be used for mak
ing a dynamo electric machine, and what kind would be best to make to get the best results from the above
wire. A. You would probably be able to make a sucwire. A. You would probably be able to make a suc-
cessful machine by following the ins ructions given in SUPPLEMENT, No. 161.
(49) C. G. Y.-You can pursue a course o electric engineering in Cornell University, Ithaca, N.
$\mathbf{Y}$., but if you can secure a situation with some estab. lishment like Edison's or the United States Electric Light Company, it would probably be better for you unless you are able to take both.
(50) T. H. M. asks: 1 . Where can I buy a n electric supplies can furnish yous with the outfit yon need. Consult our advertising columis. 2. How can I tin steel and iron so as to cover it with a thicker coat
than is generally done with the ordinary process using than is generally done with the ordinary process using
muriatic acid? A. The articles may be well cleaned muriatic acid? A. The articles may be well cleaned
and dipped in melted tin covered with was or tallow. and dipped in melted tin covered with was or tallow.
3. Are there any books, or Supplem Ents of your paper and 436 give fullinformation on electro plating.
(51) M. E. W. says: 1 . In making the
else can I use for the vessels, besides flower pots, as
he acid soaks through and breaks them? A. You ca purchase porous cells. 2. Why do you have to use a porous cell? A. The porous cell renders the battery more constant. 3. What will prev nt the zine from
becoming so brittle wh: $\mathbf{n}$ amalgamated? A. Use pure inc and less mercury.
(52) W. S. asks: 1. How many feet of wire and what number should I nee to make an electro mag. 150 feet of No. 24 wire for cores seven-sixteenths or two inches long. 2. Will one gravity battery $6 \times 8$
 gravity battery. 3. Is it the number of the wire or the amount of feet that makes the power, the battery being the same in bothcases? A. It depends upon the kind of oattery, its resistance, etc. For a battery of considerable resistance a fine wire is used, and for battery of low resistance yielding a quantity current ing of ohms of resistances Is there any way of figuring t, in the way of force or pressure? A. An ohm is unit of electrical resistance. It is about equivalent 38 feet of No. 24 wire abovereferred to, or 330 feet of
No. 9 iron telegraph wire $(0.155$ of an inch in diame
(53) J. H. S. asks: How many cubic fee of compressed air, at 200 pounds pressure per squar nch, would it take to run a two horse power engine ours; how many compressed to 600 per inch; als 800 pounds per inch. How many cabic feet will it kind of iron would it require to stand the above pres re with safety? Can I compress air and keep it por cubic feet; for 600 pounds, 100 cubic feet; for 800 pounds pressure, 75 cubic feet. An ordinary boile hell 34 inch thick, 3 feet diameter, double riveted, is
ufficient for an air tank for 200 pounds pressure $W$ ill sufficient for an air tank for 200 pounds pressure. Well heads is grong enough for the higher pressure.
(54) J. E. B. says: I wish to cut down a
poplar tree 12 fret in diameter, in such a manner way to do it. A. Ascertain which way it will natually fall, make a soft bed for it to tall upon of brush hay, or anything of that nature several feet thick. Then guy the tree with ropes to direct its fall upon the bed Saw from the side that the tree is to fall, following u he saw with thin wedges to keep the tree from set tling upon the saw. When the saw is nearly through,
(55) J. S. W. asks: What would be the best measurements of beam and depth for acanoe of 10 o 12 feet keel? The canoe is to be used in rapide and possibly in surf. A. A canoe of 10 or 12 feet keel, fo 20 to 22 inch depth amidships, and 24 inch stern to beam,
(56) F. P. P. asks: What is the receipt for killing hair on a person's body, or in other word Boudel's depilatory, a frequently used preparation, is made bymixing 3 parts sodium sulphide (crystallized
with 10 parts finely powdered quicklime and 11 parts tarch. It should not be applied longer than 2 to minutes. It is said to be very effective and safe Hair is likewise removed by means of electrictty, and description of the process is given in Duhring's "Dis (57) the Skin," 3 d edition, page 425.
(57) E. M. C. asks: 1 . What is the best by ginger ale manufacturers? A. The extract of gin gin
by a ger is made by packing 4 ounces powdered ginger in a percolator, moistening it with a little alcohol; the through. Mix this with 8 ounces syrup. See Scren iffic american Supplement, No. 270, for a well re commended formula for ginger beer. 2. What is the gallons lemon juice, 1 ounce best oil of lemons dis solved in balf pintof alcohol; orthe rinds of 16 lemon abbed with sugar to extract the essential oil; dis. solve 80 pounds sugar in the
nutes. Skim, then strain.
(58) R. asks: 1. What preparation is there tbat by writing on paper will eat or cut the letters
way so a toform a stencil, or in other words. bow is he papyrograph made? A. A description of the papy rograph, including the ingredients of the ink, will be found in Scientific American Supplement, No. 225. . Give also a formula for making a composition fo fastening the edges of pads, rablets, etc.? A. The abstance used for this purpose consists of molasse and glue with coloring matter, such as fuchsine, simi-
lar to the combosition of printers' rollers, with someless molasses, however.
(59) A. C. F. asks about a driven wel where the soil is sandy. water being found abult 6 feet below the surface; it appears to be in the quick-
sand, beneath which appears to be clay. In getiing waler, the sand being fine and mixed with the wate passes through the pipe, and is continually drawn up with the water, thus making the water muddy and im
ure. How can a well be driven nnder such circumpure. How can a well be driven nnder such circum
stances so as to make it work well? A. There is no better way of keeping fine sand out of driven well pipe than to make the strainer longer than usual and cove with very fine briss wire quick and, the fine sand that will pass through may be pumped up by working pump strongly. The larger particles of sand will be ilter stratum around the pipe, which, will lieep back th quicksand. In this way we have pumped out a hal hat las thed fine quicksand, and obtained a cliear flow loth will add much to the durablity of the etrainer
(60) P. K. says: I made a whistle 12 inches the opening diameter; the bell is 24 inches long: is No. 16 iron. The steam pipe is 2 inches, sleam
pressure 100 pounds. I have moved the bell all the its tone after one-quarter the steam is turned on. Now, is the opening too large? Is the bell too thin iron, and is it too long or too short? Is the steam pipe large
enough? Ought the bell to he larger than the steam enough? Ought the bell to he larger than the steam pening? A. We have never seen a bell made of sheet iron. Should judge that the riveted seams might inter. fere with the ring. The bellingola
diameteras the steam opening. We fear that the bell is not held firm enough over the steam opening or mas not be exaclly round; so that the steam strikes the lip in the same relative position all around the rim, which is very necessary. There is always a best pressure to bring out the full tone of the whistle. There is little ase in trying to force it with a full pressure of 100 pounds. The best whistle belis are matte of hard brass
or gun metal. A steel casting might make a gond one, or gun metal. A steel casting might make a gond one, or a head; anything to make the bell a solid piece and set solid and central upon the steam opening, which hould also be a true annulus.
Minerals, etc.-Specimens bave been reeived from the following correspondents, and examined, with the results stated
W. W. W.-Probably tourmaline, but the specimen is so small and the crystals so indistinct that identifcation is not an easy matter.-C. R.-The specimen apr carbonate or lime.-H. H. W. -The specimen is crysallized ca!cite or carbonate of lime.

## INDEX OF INVENTIONS

For which Letters Patent of the United

July 8, 1884,

## AND EACH BEARING THAT DATE



