Trees for Shelter and Ornamentation
Besides the value and importance of forest trees in many other ways, there is the shelter, beauty, and richness manifested in endless variety; and no landscape would please the taste of the man of culture and refinement without baving in its composition trees of some kind. It is quite possible, and not at all uncommon, to bave too many trees in the landscape, and where their distribution is in the form of lines, rows, and single trees, it is quite easy to see bow the whole district may be made to assume the general appearance of a vast, irregular wood or plantation. General mix ing, like general distribution of trees, is a subject which re quires more attention than is generally given to it. What abould be aimed at is definiteness ard well defined features in all its aspects, without formality or stiffness. The trees sbould not be so distributed as to present an irregular, undefined, and incomprebensible mixture, either of species mixed together or in the distribution and arrangement of the trees upon the ground
One thing that often leads to disfiguration of the land scape is the manner and form in which the planting is originally done. The great mistake bere consists in not calcu lating to what beight and proportion the trees would attain when mature and full grown. In planting shrubs or trees which bear cropping and keeping in subjection, there is little bazard or likelibood of going wrong, because in sucb cases the means of cure are kept in band. If the shrub rises too bigh it can be beaded back, and if too broad it can be reduced to the desired circumference. With medium sized trees, as the Lawthorn, laburnum, mounlain asb, and small leaved maple, a similar mode of treatment may be applied without prejudice
Where the fields are small, and the whole domain of cir cumscribed and limited extent, the whole arrangement of distrihution of the trees should be in proportion. Wbere the villa garden and pleasure ground are all comprised within a small area, it is often, under sucb circumstances, found necessary to plant medium instead of primary forest trees. By doing this the same effect is produced as by large trees in an extensive domain. Attention sbould also be paid to the distance the trees are planted from the garden walls, to the dwelling, or to any other object with which they might interfere when grown up.
The nortb and east sides of a bouse and premises should always be well planted, so as to afford the greatest amount of shelter, and the west and south sides left open to the sun. This in all planting, all authorities agree, sbould be adbered to, and the cases are extremely rare and exceptional where the rule should be departed from. The kinds or species of trees to plant bave entirely to be regulated by circumstances; for the soil, situation, altitude, and climate so vary in different places that what would be suitable in one place would not at all do in anotber. As a general rule, in planting a new place or reorganizing an old one, it will be economy to employ a competent landscape gardener to landscape gardener to lay out the grounds, establish the grade, and select and plant the trees and sbrubbery. Mucb of the disappointment in country bomes results from the mistakes made by the inexperienced owners in directing their improvements, and in this connection we think we may confer a favor to some of our readers needing the counsel or active services of an experienced landscape gardener by giving the address of Mr. O. C. Bullard, who resides at 122 Macon Street, Brooklyn, N. Y.

Mr. Bullard had charge of the tree planting in Prospect Park during the entire period of its construction, and bis knowledge of the varieties of forest and ornamental trees is probably not surpassed by any one in this vicin-

Fig. 1,-SHANKS' COMPOUND ENGINE
wo re m^{\prime}, of the distribuling valve are situated in a line with one anotber and are connected with a small vertical frame. Upon this guide there moves a slide, a, whose oblique changes in direction bring about a motion of the slide valves. To effect this, the slide is connected with a flat bar, c, which is capable of moving to and fro upon the reversing lever, e. In this latter there are slots which serve to guide the motions of the piece, c, by means of nutsplaced on each side of the axis of rotation. The latter is simply screwed into a plate, g, carrying a crank pin, M. Finally, a second flat bar, b, embracing at one of its extremities the slide, a, is jninted at the other with the rod of an eccentric, d. The axis of this assemblage is prolonged hebind in such a way as to enter a fixed guide contained in the frame, f. The figure represents the reversing lever beld at the stop notch in the toothed sector.
It is now easy to understand that the eccentric, d, cause the bar, b, to move to and fro along the lever, e, and according to a certain angle with the direction, $m m^{\prime}$. Consequently the slide va!ves move at each stroke a distance equal to the borizontal projection comprised between the extreme points occupied by the slide, a, in its movement.
Messrs. Shanks \& Son are likewise building after the same plan a series of reversible engines of all dimensions, of from six up to a thirty nominal borse power. The bigh pressure cylinders of the largest and smallest models bave a diameter of 26 and 15 centimeters respectively, while the dimensions of the bore of the expansion cylinder vary betweeu 56 and 33 centimeters.- Revue Industrielle.

Repairing the Mail Sacks

According to Mr. H. G. Pearson, Postmaster of this city, the Government spends about $\$ 50,000$ a year for the repair of mail pouches; there are about 100,000 mail bags in use, and about 10,000 new ones are bought yearly. The weakes point in the mail sack is where it closes and opens. In closing the bag the staples are pusbed tbrough the slots. and project an incb or more. When the bag is thrown about, the staples soon bend and often break. It looks strange that this little item should cost the Government so much money, and it seems as if our inventors ouglt to invent a new mail bag and obviate the objection referred to in the old one.

A Suggestion to Chemists.

The low price crude coal oil sells for at present-about 63 cents a barrel, something like 20 cents a barrel, it is said below the cost of producing it-suggests to the Independent Record, a newspaper devoted to oil, paint, drugs, cbemicals, elc., that coal oil may be manufactured into a great variety of useful articles which our chemists bave not discovered its use for yet.
Tbis favored article in the crude state, is worth say 60 or 70 cents per barrel. Refined, it brings five or six times that amount. Under proper and skillful treatment it yields products of greatly increased value. The Record counsels the dis couraged men of oil to devote more time and money to the various by-products of petro leum, and less to the producing of crude and the making of refined. Bring to your assist ance the chemist and the laboratory, and create from cheap oi that wbich it contains A pound of raw iron is worth a penny or two. A pound of watcb spriags is another thing, and the mill of the maker of raw or cheap iron may be closed and bis men bungry, while the dealer in fine steel and specialties in iron is unconcerned, and bis wares in constant de mand. Cheap oil offer a better return to the ity. The laying out of the grounds of Rev. Henry Ward \mid one anotber, are connected by strong iron castings, which maker of any of the scores of petroleum's products than Beecher's homestead, at Peekskill-on-the-Hudson, and the planting on bis place of probably the greatest variety of ornamental trees to be found in any private grounds in the country, was the work of Mr. Bullard.

Over $\$ 750,000$ was paid last year as duty on patent medi cines in England.
also carry the bearings of the driving sbaft. After the steam has once operated at a bigb pressure, it enters the large cylinder without passing tbrougb an intermediate reservoir.
The reversing gear is particularly interesting, and for this ason we devote to it two detailed figures, one of which, in section, shows how the different parts are mounted. The
does crude oil at one dollar a barrel. There are specialties in the way of lubricants, petroleum jellies, paraffine wax, dyes, etc., whicb must enjoy a constant demand irrespective of the condition of the market for crude or refined. In the making of these will be found an employment for capital which must lift the manufacturer far above the realm occupied by the mere producer or refiner.

The Cocoon of a Spider.

At a recent meeting of the Academy of Natural Sciences, of Philadelphia, Dr. H. C. McCook stated that, while walking in the suburbs of Pbiladelphia lately, be bad found under a stone a female Lycosa, probably L. riparia Hentz, which he placed in a jar partly filled with dry earth. For two days the spider remained on the surface of the soii, nearly inactive. The earth was then moistened, whereupnn sheimmediately began to dig, continuing until sbe had made a cavity about one inch in depth. The top was then carefully covered over with a tolerably closely woven sheet of white spinning work, so that the spider was entirely shut in. This cavity was fortunately made against the glass side of the jar, and the movements of the inmate were thus exposed to view. Sbortly after the cave was covered the spider was seen working upon a circular cushion of beautiful white silk about three-fourths of an inch in diameter, which was spun upward in a nearly perpendicular position against the earthen wall of the cave. The cusbion lonked so mucb like the cocoon of the common tube weaver, Agalena naevia, and the whole operations of the lycosid were so like those of that species when cocooning, that it was momentarily supposed that a mistake in determination bad been made.
After the lapse of baif an bour, it was found that the spider bad oviposited against the central part of the cusbion, and was tben engaged in inclosing the hemispherical eggmass with a silken envelope. The mode of spinning was as follows: the feet clasped the circumference of the cushion, and the body of the animal was slowly revolved; the abdomen, now greatly reduced in size by the extrusion of the eggs, was lifted up, thus drawing short loops of silk from the expanded spinnerets, which, when the abdomen was dropped again, contracted, and left a flossy curl of silk at the point of attachment. The abdomen was also swayed backward and forward, the filaments from the spinnerets following the motion as the spider turned, and thus an even thickness of silk was laid upon the eggs. The same bebavior marked the spinning of the cushion, in the middle of which the eggs bad been deposited. The ideas of the observer as to the cocooning babits of Lycosa were very much confused by an observation so opposed to the universal experience. Upon resuming the study after the lapse of an hour and a half, be was once more assured of being right by the sight of a round silken ball dangling from the apex of the spider's abdomen, beld fast by a sbort thread to the spiunerets. The cusbion, bowever, had disappeared. The mystery, as it bad seemed, was solved; the lycosid, after baving placed ber eggs in the center of the silken custion aud covered them over, had gathered up the edges, and so united and rolled them as to make the normal globular cocoon of bergenus, which she at once tucked under her abdomen in the usual way.
This was a most interesting observation, which Dr. McCook believed bad not before been made. The manner of fabrication of the cocoon of Lycosa bad been beretofore unknown to bim, and, by reason of her subterranean habit, the opporlunity to observe it was of rare occurrence. He bad often wondered bow the round eggball was put togetber, and the mecbanical ingenuity and simplicity of the metbod were now apparent. The period consumed in the whole act of cocooning was less than four bours; the act of ovipositing took less than balf an hour. Sbortly after the egg-sac was finislied, the mother cut her way out of the silken cover. She had evidently thus secluded berself for the purpose of spinzing her cocoon.

Dr. McCook also alluded to another interesting fact in the life bistory of the Lycosa, which had been brought 10 bis attention by Mr. Alan Gentry. A slab of ice baving been cut from the frozes surface of a pond about eight or ten feet from the bank, several spiders were observed runuing about in the water. They were passing underneath the surface, between certain water plants. It is remarkable to find these creatures thus living in full bealth and activity in mid-winter, within the waters of a frozen pond, and so far from the bank in which the burrows of their congeners are commonly found. It bas beeu believed beretofore, and doubtless it is generally true, that the lycosids winter in deep burrows in the ground, sealed up tightly to maintain a higher temperature.

Golden Streets.

The well known French electrician, M. Louis Maiche, has found that there is gold to be obtained from the quartz with which the roadsround Parisare paved. M. Maiche bas extracted small quantities of the precious metal by crusbing the stone and treating it with mercury. We bave not yet beard of the formation of a company for working the streets of Paris to obtain this gold, nor do we suppose that there will be much of a rusb for the new "diggings."

Even delirium tremens is now traced to a micrococcus the worm of the still."

ELECTRICITY WITHOUT APPARATUS.

(1) To produce an electric spark, it is only necessary to warm a sheet of ordinary paper in front of a good fire of stove or over a lamp. Upon going into a dark place and applying the knuckle to the paper a very decided spark wil start from the latter, accompanied by a slight crackling sound.
(2) Take two sheets of paper and interpose a sheet of gold leaf hetween them. After electrifying them as above de scribed, it will be only necessary to pass a pencil point in a

an electric spark from a sheet of paper. zigzag manner over their surface to cause the appen ra thereon of a luminous flash of considerable intensity. These experiments, which are very ensy to perform, may serve to demonstrate the fundamental rules of static elec tricity to children.

Fireproor Paper.

A fireproof paper is made by a combination of asbestos ad infusorial earth.
About forty parts, in bulk, of fine or disintegrated asbesos fiber and about sixty parts of what is known as "infusorial eartb" are taken and placed in a dry state in an ordinary beating engine, and then sufficient water is added while the machine is in operation to beat the mass into pulpjust thin enough to form upon an ordinary cylinder. The web is taken from the cylinder and finished in the usual manner. The asbestos fiber is long enough to give strength and elasticity to the paper, and the infusorial earth, which is a good non-conductor of heat, and fireproof, forms a filler or padding, the two adbering togetber strongly and a filler or padding, the two adbering togetber strongly and
forming a flexible paper, which may be used wherever or-

THE TARANTULA OF SOUTHERN CALIFORNIA.

Ugly, vicious, energetic, and to a certain degree poisonous, are the spiders that infest the southern part of Cali fornia, and yet when closely studied they present many peculiar characteristics, both in regard to theirstructure and habits. Among the most valued trophies tourists carry away with them from the coast are neat cards adorned with these animals, and a case containing the nest 80 arranged as to show it wonderful trap door and the delicate lining of the interior. The adobe rauches are full of thesc strange little babitations, and some of the sunny valleys among the foot hills are literally strewn with the small tunnels, capped with the almost invisible door. Our engraving shows the tarantula (Mygale hentzii) as be is about to enter bis abode, both being full size.
The general appearance of the tarantula is very clearly shown in the engraving. The legs are larger, and are not furnished with so long and dense a growth of bair as are the specimens found in other sections of the Southwestern States. The back is covered very thickly with extremely fine short bair ; the back and the outer joints of the legs are of a light brown color, the remainder being of a deeper shade. The forward part of the bead is divided, and each division terminates in a sharp, downwardly curved, and jet black horn or book.
The tarantula pounces upon his prey, and thrusting in the hooks most securely bolds bis victim. It is seldom met in the daytime, preferring to seek its food during the night, returning to its nest in the early morning. Although pug. nacious when cornered, he will not seek a fight, and is more anxious to escape than the stranger whom be chances to meet.
This tarantula is justly celebrated for the architectual skil he displays and for the luxurious comfort of bis dwelling. Having selected a suitable site, he digs a hole varying from four to eighteen inches in depth, and just large enough around to admit him easily, although it is puzzling to conceive how be ever gets his long, ungainly, and many jointed legs comfortably disposed in so small a space
The walls are carefully smoothed, and are completely cor ered with an exceedingly fine fabric of bis own manufacture. The top of this tunnel is slightly flared, and in this widened part is fitted the door, which is binged at one side so that it part is fitted the door, which is binged at one side so that it
may be easily lifted. Theinside of the door is finely nivished, and covered wilb a web similar to that on the sides. The tarantula knows that this door is not heavy enough to Insure a tight fit when it is dropped, so he makes a small handle near the center of the under side by which be pulls the door closely down, thereby insuring a joint that most effectually excludes all dampness from his abode. The bandle is a strong web, the two ends of which are attached to the door at points about one-sixteenth of an inch apart. The outside of the door is placed about at the level of the ground, and is so nearly the same color as the surrounding soil that it can be discovered only after the most careful search. The joint of the door is so well made and the colors are so nearly alike that it is almost impossible to ascertain upon which side the binge is placed, except by ralsing the door. The framing of the door seemsto be a coarse, strong web, which is extended al oue side to form the binge, and which is bonded with earth to give it the requisite stiffness. The binge is about three-eighths of an inch wide, nud acts as a spring to shut the door immediately after the owner's exit. For the tarantula and nest from which our engraving was made, we are indebted to the courtesy of Mr . H. J. Finger, of Santa Barbara, Cal.

Preparation of Aluminum.

According to an account which the Scientific American finds in Chemiker Zeituny, ferro-silicium is mixed with fuoride of aluminum in equal proportions, and the mixture is exposed to a fusing heat. The materials decompose each other, and volatile fluosilicium with iron and aluminum are produced, the latter two bodies being alloyed together. In order to extract the valuable aluminum, a copper alloy is formed by melting the iron alloy with metallic copper; by reason of the greater affinity of the copper for aluminum this is secured, leaving with the iron only a slight residue of aluminum. When the fused mass is cold, copper bronze and iron bave so settled that both bodies can be easily separated. In place of the pure fluoride of aluminum, cbloride can be used, when cblorsilicium and iron aluminum alloy are formed. If in practice the chemical reactions above outlined are found to hold true, this patented process promises to be of considerable value.

Large fortunes are rare in Switzerland, and
 dinary paper board is employed, it
ordinary board in being freproof.
The infusorial earth should be calcined before use to free it from impurities not fireproof.
If desired, and in some instances, a small quantity of lime, starch, or other cementitious substance is added. The proportion of asbestos and infusorial earth may be varied.

THE TARANTULA OF SOUTHERN CALIFORNIA. the salaries of public functionaries very modest. The President of the Confederation receives $\$ 3,000$ a year, few judges more than $\$ 1,250$, and there is probably no bank manager in the country who gets more than twice that amount. A man witb an income of $\$ 2,500$ is considered very well off indeed, and to have $\$ 5,000$ is to be rich.

