Twenty-four hours' absence, without notice, will be sufficient cause for assigning otbers to positions thus made vacant.
The advantages of this system of time keeping are manifold. Before, the time was kept by the foreman, and there was no way of cbecking in case of dispute; now eacb man keeps bis own time, subject to the approval of the foreman. Formerly the office bad to keep an open account witb eacb man; now the balances are made up each day. Heretofore there was no satisfactory method of getting at the actua cost of eacb piece of work: now it can be obtained without trouble. There was some objection by the men to the sys. tem at first, but after the adjustment of a few details, such as allowing them to take the company's time for filling out the blanks, all readily acquiesced in the new order of things, and matters are now running smootbly all around.

decisions relating to patents.

United States Circuit Court.-Eastern District

 of Pennsylvania.sewing machine company vs. frame. -patent cutting and trimming attachment for sewing machines. Butler, J.
A cbange made in an old device which, though simple, is effective, and produces a new and useful result, held to in volve the exercise of invention.
The correction of a patent by means of a reissue where invalid or inoperative for want of a full and clear descrip tion of the invention is proper.
Wbere there is a doubt as to whether the description in a patent will be misunderstood, the judgment of the Patent Office as to the necessity of a reissue is entitled to great weight.
A structural difference in form and size does not avoid infringement if the same work is done by substantially the same means.
The manner of using it does not cbaracterize a machine Tbis is effected by its structure and capabilities.

Carbonated Beverages

The Board of Health of Brooklyn, N. Y., having found that water from some of the many badly contaminated wells of that city was being used in tbe making of carbonated water for the supply of soda fountains, siphons, etc., an in quiry bas been set on foot relative to tbe possible danger to health from tbis source in New York city. As the firm of Jobn Mattbews supplies over tbree tbousand such fountains in New York regularly, they anticipated sucb inquiry by inviting Dr. Edson, of the New York Health Board, to make a tborough inspection of their large establishment, not only to examine the water used, but also the processes and materials employed in making sirups, and the construction of
their fountains and sirup holders, to prove that there was no their fountains and sirup holders, to prove that there was no
possibility of metallic poisoning in the use of their apparapossibility of metallic poisoning in the use of their appara-
tus. All the water they use is the city Croton, but this is thoroughly filtered in a large double apparatus by passing it through sand, cbarcoal, and gravel. Tbe firm expended some $\$ 8,000$ in putting down a well some 800 feet, but the water obtained tberefrom was so impregnated with iron and sulphur as to be unavailable, and the well was filled up with out ever being used. The sirup holkers in their soda fountains are of glass, and tbe fountains themselves are of steel, but have a complete water andyas tight lining of pure block tin, put in by a process originated by the house. The firm use none of the old style copper fountains, whicb, in con
nection with the soda water as well as tbe faucets for the sirups, bave undoubtedly caused a great deal of mineral poisoning. They annually receive and cut up many tonsof such material for use as old copper, substituting therefor their own improved apparatus. The brass and copper fixtures they are thus receiving daily and consigning to the waste bean almost invariably have large deposits of verdi-
gris, especially about the discharge openings of the multiple cocks for sirup bolders. Could some of the old soda water drinkers see tbe condition of the inside of tbese fountains and their fixtures, the fine finish and the silver plating on their outsides would not much diminish their alarm. A representative of the Scientific American, who saw the
proof of what is here stated, also drew balf a glass of what looked like pure soda water from a copper fountain received only a few bours previous, wben the application of a simple reagent for copper instantly turned it to a dark red. The last glass drawn before this had presumably been drunk by some customer. The amount of metallic poisoning it is possible in this way to inflict upon the public is not a pleasant subject to contemplate.
Pure carbonated waters are certainly cheap enough, and thrre should be no excuse for dealers who neglect to furnish themselves with apparatus by which sucb beverages can be furnished with a certainty that they will be non-poisonous.

Petroleum Springs in India.

The Government of India have received reports of the preliminary examination of the oil baring strata which ex ist in the neighborbood of Sibi. The professional reports are of a character so decidedly encouraging that the Government have determined to procure from England the necessary macbinery for boring operations. These will begin next winter, and will be conducted on an extensive the discovery will be one of no trifling importance.

WIREWORMS AND SEIPJACES.

In turning up the soil round garden plants we sometime find a stiffish, elongate, shiny, yellowish-brown, worm-like thing, about the thickness of a stout pin, and about threequarters of an inch in length. Uuder tbe impression that any living creature found in garden soil is an intruder that sbould be summarily disposed of, we may proceed to endeavor to put these ideas into practice, only, however, to find that this is not quite so ensy a matter as it seemed; the thing is so stiff and tough, that even a good hard squeeze
seems to make but little impression on it. Tbis tougb, worm-like thing is a wireworm (Fig. 1), and so dire a foe is

Fig. 1.-WIREWORM, MAGNIFIED.

it to vegetation that we are perfectly justified in making all efforts to dispatch it. On examining it more closely, we find that it is not truly cylindrical, like a piece of wire, but somewbat flattened beneatb, and that it is made up of a series of thirteen segments, placed in line, one behind the other. Tbe first of these is the head, and the next three carry six short legs, one on each side of each segment, with wbich the creature crawls along, trailing the remainder of its body after it. The head is black, and is furnished witb a pair of stout ransversely moving jaws, and a pair of short antennæ.
Wireworms are the larva of various kiuds of beetles called "skipjacks" or "click-beetles," from a peculiar habit of springing up into the air, and, at the same time, producing a sbarp clicking sound. Skipjacks are narrow, elongate insects, with short legs and hard integuments (Fig. 2). The

Fig. 2.-CLICK BEETLE (Agriotes obscurus)

Lead is small and often mucb sunk into the thorax, and caries a pair of long, distinctly jointed antenna; the thorax is of large size, and, roughly speaking, more or less quadrangular in outline, and convex above aud beneath The elytra or wing cases cover tbe body, and conceal a pair of ample membranous wings. Each is somewbat triangular in shape, and they form wben closed a strongly arcbed, sbield-shaped surface; they are usually marked longitudinally with parallel grooves or furrows, and covered more or less densely with sbort hairs. The under surface also is strongly convex, and the legs are sbort, and capable, like thus compactly folded up the insect may easily bemistake for a piece of stick or eartb. When surprised or alarmed, it will thus feign death, relaxing its hold of wbat it may have been clinging to, and falling to the ground, as often as not, on its back
Now usually, wben a beetle gets into such a position, it frantically waves its legs about till one of them by cbance strikes the ground; then, seizing any irregularities of surface with the sharp claws at the end of its feet, and assisting itself with the end of its shanks it levers itself over sideways. But, owing to the convexity of its back and the shortness of its legs, a skipjack is unable to use this method, unless there happen to be close to it some objects of sufficient height to be reached by its waving legs; failing this, bowever, it would be, were it not for a remarkable contrivance, as helpless as a turtle in a similar position, and would stand a good chance of being doomed to continue its unavailing
struggles, at the mercy of any passing foe, till exbaustion struggles, at the mercy of any passing foe, till exbaustion ended its woes by death.
The contrivance is as follows: The binder edge of the thorax is produced in the middle underneath into a long, curved, blunt spine, whicb is received into a little pit at the base of the body. The tborax is loosely articulated to the abdomen, and can be freely moved up and down, like tbe lid of a box on its hinge. When onits back, therefore, the skipjack arcbes its body by bending its thorax backward, and so balances itself on the two extremities of its body; this movemenl releases from its hollow the spine above referred to. Having stretched itself to tbe utmost in this attitude, the insect suddenly and forcibly resumes its former supine position -a movement which bas the effect of cqusing it to rebound several ground and shoot upward into the air to the height of its sheatb with a sharp clicking sound. On returning to the ground, the insect generally manages to land itself right side up; if not successful the first time, however, it renews the attempt, and continues skipping till the desired result is obtained.
About sixty species of skipjacks belong to the British fauna, and tbree or four of them, brownisb insects belonging to the genera Athous and Agriotes, are exceedingly common; the latter genus furnishes the most destructive wireworms. living for several years a little below the surface, and spend-
ing their time in devouring the roots and underground stems of plants, and thus, of course, doing mucb more harm tban can be measured by the amount of matter actually de voured. In the winter they ret:re to a greater depth, de scending fartber and farther as the frost increases, and paus ing in their depredations only in the coldest weather. They devour all kinds of agricultural produce, destroying both root, grain, and fodder crops. Carrying on tbe ravages as they do in the complete obscurity of subtcrranean life, they are rarely detected when at work, and the firstevidence tbat the fatal work bas been done is seen in the apparently causeless withering of the plants.
It is fortunate that creatures so destructive bave natural enemies Among tbe most important of tbese is the mole, which devours the larvæ with avidity. It is aided in ils praiseworthy efforts by several kinds of birds, such as rooks and lapwings. A variety of artificial remedies bave been proposed for checking the spread of the mischief, such as the application of liquid manure, which has the twofold effect of strengtbening the plants that bave not been irreparfect of strengtbening the plants that bave not been irrepar-
ably injured, and driving away or killing the wireworms; ably injured, and driving away or killing the wireworms;
paring off a tbin coating of the soil, which will contain most paring off a tbin coating of the soil, which will contain most
of the insects, and then burning it; embedding in tbe soil at hort distances apart slices of carrot and turnip to serve as traps, and then examining them and destroying tbe wireworms every otber day. The latter method bas been found serviceable in hop grounds, as many as 150 wireworms having been trapped close to a single hop bill. It sbould be re membered in tbis connection tbat the abundance of many agricultural pests is due in great measure to man bimself. We greatly increase the supply of suitable food for these creatures, and in other ways make the surroundings more and more favorable to their existence, and we need not wonder, therefore, that the inevitable result follows, and wonder, therefore, that the inevitable result follows, and
tbat the additional task devolves upon us of devising means to counteract the excessive development we have ourselves unintentionally occasioned.-Knowoledge.

Banknote Paper.

Tbe banknote paper on which Ainerican legal tender, national banknote currency, and government bonds are national banknote currency, and gover
printed is made entirely at Ualton, Mass.
If you should happen to stop at the paper mill, with proper introduction and credentials, you may perbaps be allowed to bandle a sheet of the crisp paper, wbere, as tbe wet, grayisb pulp is pressed between beavy iron cylinders, bits of blue and red silk are scattered over its face and silken ribs laid on its surface. You may go beyond into the connting room, where eacb sheet as it comes from the drying room is carefully examined and counted and then returned to the paper cutter to be divided into smaller sheets. If you trace bis paper still further, you will find that from the cutter's hands it passes again into tbe counting room, and is separated into little packages containing 1,000 sheets each, the amount recorded in a register, and then packed in loundle and stored in fire and burglar proof vaults to await ship ment to the United States treasury.
From the pulp room to the vault the precious paper is watched and guarded as carefully as thougb each sbeet was an ounce of gold. Its manufacture is one of the greatest secrets connected with the government's money making. From the vaults of tbe paper mill at Dalton to the guarded store rooms of the treasury at Wasbington is a journey of several hundred miles. In tbe capacious vaults of the treasury building, among, gold, silver, copper, and nickel coins bullion, paper currency, and official records, you will find thousands of packages of the banknote paper made at $\mathrm{Dal}_{\mathrm{a}}$ ton. It comes in little iron safes, sucb as are used by tbe Adams Express Company, and each package and every sheet is carefully counted before the manufacturer and ex press company are relieved of furtier responsibility. The paper that arrives to-day may lie in the treasury store room or years, or it may be sent to the Bureau of Engraving and Printing to-morrow. to return in the course of a month' time a legal tender or bank note.-Geyer'e Stationer

A Scientist's Cheerful Workshop.

A bingraphy of Louis Pasteur, just completed by his son-in-law, gives the following description of the surroundings of the great French investigator at his daily work: All tbe animals in the laboratory, from the little white mice hiding under a bundle of cotton wool to the dogs barking furiously from their irnn railed kennels, are doomed to deatb. These inhabitants of the place, wbich are marched out day afte day to be subjected to operations or other experiments, shar the space with still more ghastly objects. From all parts of France hampers arrive containing fowls which bave died of cholera or some otber disease. Here is an enormous basket hound with straw; it contains tbe body of a pig which has died of fever. A fragment of a lung, forwarded in a tin box, is from a cow which died of pneumunia. Other good are still more precious. Sibce Pasteur two years ago went to Pauillac to await the arrival of a boat whicb brought yellow fever patients, he receives now and then from far-off countries a bottle of black vomit. Tubes of blood are lying about; and plates containing drops of blood may be seen verywhere on the work tables. In special slores bottle ike bladders are ranged. The prick of a pin into oue of hese bladders would bring death to any man. Inclosed in glass prisons millions and millions of microbes live and multiply.

Trees for Shel ter and Ornamentation.
Besides the value and importance of forest trees in many other ways, there is the shelter, beauty, and richness manifested in endless variety; and no landscape would please the taste of the man of culture and refinement without having in its composition trees of some kind. It is quite possible, and not at all uncommon, to have too many trees in the landscape, and where their distribution is in the form of lines, rows, and single trees, it is quite easy to see how the whole district may be made to assume the general appearance of a vast, irregular wood or plantation. General mix ing, like geveral distribution of trees, is a subject which re quires more attention than is generally given to it. What ahould be aimed at is definiteness and well defined features in all its aspects, without formality or stiffness. The trees should not be so distributed as to present an irregular, undefined, and incomprehensible mixture, either of species mixed together or in the distribution and arrangement of the trees upon the ground.
One thing that often leads to disfiguration of the land scape is the manner and form in which the planting is originally done. The great mistake here consists in not calculating to what height and proportion the trees would attain when mature and full grown. In planting shrubs or trees which bear cropping and keeping in subjection, there is little bazard or likelibood of going wrong, because in sucb cases the means of cure are kept in band. If the shrub rises too high it can be headed back, and if too broad it can be reduced to the desired circumference. With medium sized trees, as the Lawthorn, laburnum, mounlain ash, and small leaved maple, a similar mode of treatment may be applied without prejudice.
Where the fields are small, and the whole domain of cir cumscribed and limited extent, the whole arrangement of distribution of the trees should be in proportion. Where the villa garden and pleasure ground are all comprised within a small area, it is often, under such circumstauces, found necessary to plant medium instead of primary forest trees. By doing this the same effect is produced as by large trees in an extensive domain. Attention should also be paid to the distance the trees are planted from the garden walls, to the dwelling, or to any other object with which they might interfere when grown up.
The north and east sides of a house and premises should always be well planted, so as to afford the greatest amount of shelter, and the west and south sides left open to the sun. This in all planting, all authorities agree, should be adhered to, and the cases are extremely rare and exceptional where the rule should be departed from. The kinds or species of trees to plant have entirely to be regulated by circumstances; for the soil, situation, altitude, and climate so vary in dif ferent places that what would be suitable in one place would not at all do in another. As a general rule, in planting a new place or reorganizing an old one, it will be economy to employ a competent landscape rardener to lay out the grounds, establish the grade, and select and plant the trees and shrubbery. Much of the disappointment in country homes results from the mistakes made by the inexperienced owners in directing their improvements, and in this connection we think we may confer a favor to some of our readers needing the counsel or active services of an experienced landscape gardener by giving the address of Mr. O. C. Bullard, who resides at 122 Macon Street, Brooklyn, N. Y.

Mr. Bullard had charge of the tree planting in Prospect Park during the entire period of its construction, and his knowledge of the varieties of forest and ornamental trees is probably not surpassed by any one in this vicin-
ity. The laying out of the grounds of Rev. Henry Ward Beecher's homestead, at Peekskill-on-the-Hudson, and the planting on his place of probably the greatest variety of ornamental trees to be found in any private grounds in the country, was the work of Mr. Bullard.

Over $\$ 750,000$ was paid last year as duty on patent med cines in England.

Fig. 1,-SHANKS' COMPOUND ENGINE

SHANKS' COMPOUND ENGINE FOR SMALL VESSELS.
Iv the compound engine represented herewith in perspec tive, the use of connecting rods and guides is done away with, and a return bas been made to the old arrangemen of a circular eccentric sliding in a frame connected with

Fig. 2.-REversing gear.
the piston rods. This engine has been specially devised for small craft, and is provided with a surface condenser and a reversing mechanism. It may be seen from a simple inspection of the figure that such a type of motor is well adapted for use upon small vessels, since it is capable of developing a great power while occupying but little space. All its parts, in fact, are grouped in a very ingenious manver, and in such a way as not to interfere with ease of access to them. The cylinders, which are quite close to
two rods, $m m^{\prime}$, of the distributing valve are situated in a line with one anotber and are connected with a small verti cal frame. Upon this guide there moves a slide, a, whose oblique changes in direction bring about a motion of the slide valves. To effect this, the slide is connected with a flat bar, c, which is capable of moving to and fro upon the reversing lever, e. In this latter there are slots which serve to guide the motions of the piece, c, by means of nuts placed on each side of the axis of rotation. The latter is simply screwed into a plate, g, carrying a crank pin, M. Finally, a second flat bar, b, embracing at one of its extremities the slide, a, is jninted at the other with the rod of an eccentric, d. The axis of this assemblage is prolonged hehind in such a way as to enter a fixed guide contained in the frame, f. The figure represents the reversing lever beld at the stop notch in the toothed sector.
It is now easy to understand that the eccentric, d, cause the bar, b, to move to and fro along the lever, e, and according to a certain angle with the direction, $m \boldsymbol{m}^{\prime}$. Consequently the slide va!ves move at each stroke a distance equal to the horizontal projection comprised between the extreme points occupied by the slide, a, in its movement.
Messrs. Shanks \& Son are likewise building after the same plan a series of reversible engines of all dimensions, of from six up to a thirty nominal horse power. The high pressure cylinders of the largest and smallest models have a diameter of 26 and 15 centimeters respectively, while the dimensions of the bore of the expansion cylinder vary betweeu 56 and 33 centimeters.- Revue Industrielle.

Repairing the Mail Sacks.

According to Mr. H. G. Pearson, Postmaster of this city, the Government spends about $\$ 50,000$ a year for the repair of mail pouches; there are about 100,000 mail bags in use, and about 10,000 new ones are bought yearly. The weakest point in the mail sack is where it closes and opens. In closing the bag the staples are pushed through the slots. and project an inch or more. When the bag is thrown about, the staples soon bend and often break. It looks strange that this little item should cost the Government so much money, and it seems as if our inventors ought to invent a new mail bag and obviate the objection referred to in the old one.

Suggestion to Chemists.

The low price crude coal oil sells for at present-about 63 ents a barrel, something like 20 cents a barrel, it is said elow the cost of producing it-suggests to the Independent Record, a newspaper devoted to oil, paint, drugs, chemicals, etc., that coal oil may be manufactured into a great variety of use ful articles which our chemists have not dis covered its use for yet.
This favored article in the crude state, is worth say 60 or 70 cents per barrel. Refined, it brings five or six times that amount Under proper and skill ful treatment it yield products of greatly in creased value. The Record counsels the dis cournged men of oil to devote more time and money to the various by-products of petro leum, and less to the producing of crude and the making of refined. Bring to your assist ance the chemist and the laboratory, and create from cheap oil that which it contains. A pound of raw iron is worth a penny or two. A pound of watch springs is another thing, and the mill of the maker of raw or cheap iron may be closed and his men hungry, while the dealer in fine steel and specialties in iron is unconcerned, and his wares in constant de mand. Cheapoil offers a better return to the one another, are connected by strong iron castings, which |maker of any of the scores of petroleum's products than also carry the bearings of the driving shaft. After the steam has once operated at a bigh pressure, it enters the large cylinder without passing through an intermediate reservoir.
The reversing gear is particularly interesting, and for this ason we devote to it two detailed figures, one of which in section, shows how the different parts are mounted. The
does crude oil at one dollar a barrel. There are specialties in the way of lubricants, petroleum jellies, parafine wax, dyes, etc., which must enjoy a constant demand irrespective of the condition of the market for crude or refined. In the making of these will be found an employment for capital which must lift the manufacturer far above the realm occupied by the mere producer or refiner.

