Twenty-four hours' absence, without notice, will be sufficient cause for assigning otbers to positions thus made vacant.
The advantages of this system of time keeping are manifold. Before, the time was kept by the foreman, and there was no way of checking in case of dispute; now eacb man keeps bis own time, subject to the approval of the foreman. Formerly the office bad to keep an open account witb eacb man; now the balances are made up each day. Heretofore there was no satisfactory method of getting at the actual cost of eacb piece of work: now it can be obtained withou trouble. There was some objection by the men to the sys. tem at first, but after the adjustment of a few details, such as allowing them to take the company's time for filling out the blanks, all readily acquiesced in the new order of things, and matters are now running smootbly all around.

decisions relating to patents.

United States Circuit Court.-Eastern Distric

 of Pennsylvania.sewing machine company vs. frame. -patent cuttin and trimming attachment for sewing machines. Butler, J. :
A cbange made in an old device which, though simple, is effective, and produces a new and useful result, held to in volve the exercise of invention.
The correction of a patent by means of a reissue wher invalid or inoperative for want of a full and clear descrip tion of the invention is proper.
Wbere there is a doubt as to whether the description in a patent will be misunderstood, the judgment of the Patent Office as to the necessity of a reissue is entitled to great weight.

A structural difference in form and size does not avoid infringement if the same work is done by substantially the same means.
The manner of using it does not cbaracterize a machine Tbis is effected by its structure and capabilities.

Carbonated Beverages

The Board of Health of Brooklyn, N. Y., having found that water from some of the many badly contaminated wells of that city was being used in tbe making of carbonated water for tbe supply of soda fountains, siphons, etc., an inquiry bas been set on foot relative to tbe possible danger to health from tbis source in New York city. As tbe firm of Jobn Mattbews supplies over tbree tbousand such fountains in New York regularly, they anticipated sucb inquiry by inviting Dr. Edson, of tbe New York Health Board, to make a tborough inspection of their large establishment, not only to examine the water used, but also the processes and mate rials employed in making sirups, and the construction of
their fountains and sirup holders, to prove that there was their fountains and sirup holders, to prove that there was no
possibility of metallic poisoning in the use of their apparapossibility of metallic poisoning in the use of their appara-
tus. All the water they use is the city Croton, but this is thoroughly filtered in a large double apparatus by passing it through sand, cbarcoal, and gravel. Tbe firm expended some $\$ 8,000$ in putting down a well some 800 feet, but the water obtained tberefrom was so impregnated with iron and sulphur as to be unavailable, and the well was filled up without ever being used. The sirup holkers in their soda fountains are of glass, and the fountains themselves are of steel, but have a complete water andyas tight lining of pure block tin, put in by a process originated by the house. The firm
use none of the old style copper fountains, whicb, in con use none of the old style copper fountains, whicb, in con
nection with the soda water as well as the faucets for the sirups, bave undoubtedly caused a great deal of mineral poisoning. They annually receive and cut up many tonsof such material for use as old copper, substituting therefor their own improved apparatus. The brass and copper fixtures they are thus receiving daily and consigning to the waste bean almost invariably lave large deposits of verdigris, especially about the discharge openings of the multiple cocks for sirup bolders. Could some of the old soda water drinkers see tbe condition of the inside of these fountains and their fixtures, the fine finish and the silver plating on their outsides would not much diminish their alarm. A representative of the Scientific American, who saw the
proof of what is here stated, also drew balf a glass of what looked like pure soda water from a copper fountain received only a few bours previous, when the application of a simple reagent for copper instantly turned it to a dark red. The last glass drawn before this had presumably been drunk by some customer. The amount of metallic poisoning it is possible in this way to inflict upon the public is not a pleasant subject to contemplate.
Pure carbonated waters are certainly cheap enough, and thrre should be no excuse for dealers who neglect to furnish themselves with apparatus by which sucb beverages can be furnished with a certainty that they will be non-poisonous.

Petroleum Springs in India.

The Government of India have received reports of the preliminary examination of the oil b baring strata which ex ist in the neighborbood of Sibi. The professional reports
are of a character so decidedly encouraging that tbe Government have determined to procure from England the necessary macbinery for boring operations. These will begin next winter, and will be conducted on an extensive scale. If the results justify the sanguine hopes entertained the discovery will be one of no trifling importance.

WIREWORMS AND SKIPJACKS.

In turning up the soil round garden plants we sometimes find a stiffish, elongate, shiny, yellowish-brown, worm-like thing, about the thickness of a stout pin, and about threequarters of an inch in length. Uuder tbe impression that any living creature found in garden soil is an intruder tbat sbould be summarily disposed of, we may proceed to endeavor to put these ideas into practice, only, however, to find that this is not quite so ensy a matter as it seemed; the thing is so stiff and tough, that even a good hard squeeze
seems to make but little impression on it. Tbis tougb, worm-like thing is a wireworm (Fig. 1), and so dire a foe is

Fig. 1.-WIREWORM, MAGNIFIED.

it to vegetation that we are perfectly justified in making all efforts todispatcb it. On examining it more closely, we find that it is not truly cylindrical, like a piece of wire, but somewbat flattened beneatb, and that it is made up of a series of thirteen segments, placed in line, one behind the other. Tbe first of these is the head, and the next three carry six short legs, one on each side of each segment, with wbich the creature crawls along, trailing the remainder of its body after it. The head is black, and is furnished witb a pair of stout Wirsely moving jaws, and a pair of short antenne.
Wireworms are the larvæ of various kiuds of beetles, called "skipjacks" or "click-beetles," from a peculiar habit
of springing up into the air, and, at the same time, producing a sbarp clicking sound. Skipjacks are narrow, elongate insects, with short legs and hard integuments (Fig. 2). The

Fig. 2.-CLICK BEETLE (Agriotes obscurus),

Lead is small and often mucb sunk into the thorax, and carries a pair of long, distinctly jointed antennæ; the thorax is of large size, and, roughly speaking, more or less quadrangular in outline, and convex above aud beneath The elytra or wing cases cover tbe body, and conceal a pair of ample membranous wings. Each is somewbat triangular in shape, and they form wben closed a strongly arcbed, sbield-shaped surface; they are usually marked longitudinally with parallel grooves or furrows, and covered more or less densely with sbort hairs. The under surface also is strongly convex, and the legs are sbort, and capable, like thus compactly folded up the insect may easily bemistak for a piece of stick or eartb. When surprised or alarmed, it will thus feign death, relaxing its hold of wbat it may have been clinging to, and falling to the ground, as often as not, on its back
Now usually, wben a beetle gets into such a position, it frantically waves its legs about till one of them by cbance strikes the ground; then, seizing any irregularities of surface with the sharp claws at the end of its feet, and assisting itself with the end of its shanks it levers itself over sideways. But, owing to the convexity of its back and the shortness of its legs, a skipjack is unable to use tbis method, unless there happen to be close to it some objects of sufficient height to be reached by its waving legs; failing this, bowever, it would be, were it not for a remarkable contrivance as helpless as a turtle in a similar position, and would stand a good chance of being doomed to continue its unavailing struggles, at the mercy of any passing foe, till exbaustion ended its woes by death.
The contrivance is as follows: The binder edge of the thorax is produced in the middle underneath into a long, curved, blunt spine, whicb is received into a little pit at the base of the body. The tborax is loosely articulated to the abdomen, aud can be freely moved up and down, like tbe lid of a box on its hinge. When on its back, therefore, the skipjack arcbes its body by bending its thorax backward, and so balances itself on the two extremities of its body; this movemenl releases from its hollow the spine above referred to. Having stretched itself to the utmost in this attitude, the insect suddenly and forcibly resumes its former supine position -a movement which bas the effect of causing it to rebound several ground and shoot upward into the air to the height of its sheatb with a sharp clicking sound. On returning to the ground, the insect generally manages to land itself right side up; if not successful the first time, however, it renews the
attempt, and continues skipping till the desired result is obtained.
About sixty species of skipjacks belong to the British fauna, and tbree or four of them, brownisb insect.s belonging to the genera Athous and Agriotes, areexceedingly common; In their genus furnishes the most destructive wireworms. living for several years a little below the surface, and spend-
ing their time in devouring the roots and underground stems of plants, and thus, of course, doing mucb more harm tba can be measured by the amount of matter actually de voured. In the winter they ret:re to a greater depth, de scending fartber and farther as the frost increases, and paus ing in tueir depredations only in the coldest weather. They devour all kinds of agricultural produce, destroying both root, grain, and fodder crops. Carrying on tbe ravages as they do in the complete obscurity of subtcrranean life, they are rarely detected when at work, and the first evidence tbat the fatal work bas been done is seen in the apparently causeless withering of the plants.
It is fortunate that creatures so destructive bave natural enemies Among the most important of these is the mole which devours the larva with avidity. It is aided in ils praiseworthy efforts by several kinds of birds, such as rooks and lapwings. A variety of artificial remedies bave been proposed for checking the spread of the mischief, such as the application of liquid manure, which has the twofold effect of strengtbening the plants that have not been irrepar fect of strengtbening the plants that have not been irrepar-
ably injured, and driving away or killing the wireworms; paring off a tbin coating of the soil, which will contain most paring off a tbin coating of the soil, which will contain most
of the insects, and then burning it; embedding in the soil at hort distances apart slices of carrot and turnip to serve as traps, and then examining them and destroying the wireworms every otber day. The latter method bas been found serviceable in hop grounds, as many as 150 wireworms hav ing been trapped close to a single hop bill. It sbould be re membered in this connection tbat the abundance of many agricultural pests is due in great measure to man bimself. We greatly increase the supply of suitable food for these creatures, and in other ways make the surroundings more and more favorable to their existence, and we need not wonder, therefore, that the inevitable result follows, and that the additional task devolves upon us of devising means to counteract the excessive development we have ourselve unintentionally occasioned.-Knowoledge.

Banknote Paper.

Tbe banknote paper on which Ainerican legal tender, national banknote currency, and government bonds are national banknote currency, and gover
printed is made entirely at Ualton, Mass.
If you should happen to stop at the paper mill, with proper introduction and credentials, you may perhaps be allowed to bandle a sheet of the crisp paper, wbere, as tbe wet, grayisb pulp is pressed between beavy iron cylind ers, bits of blue and red silk are scattered over its face and silken ribs laid on its surface. You may go beyond into tbe connting room, where eacb sheet as it comes from the drying room is carefully examined and counted and then returned to the paper cutter to be divided into smaller sheets. If you trace bis paper still further, you will find that from the cutter's hands it passes again into the counting room, and is sepa ated into little packages containing 1,000 sheets eacb, the amount recorded in a register, and then packed in bundle and stored in fire and burglar proof vaults to await ship ment to the United States treasury.
From the pulp room to the vault the precious paper is watched and guarded as carefully as thougb each sbeet was an ounce of gold. Its manufacture is one of the greatest secrets connected with the government's money making. From the vaults of the paper mill at Dalton to the guarded store rooms of tbe treasury at Wasbington is a journey of several hundred miles. In tbe capacious vaults of the treaury building, among, gold, silver, copper, and nickel coins, buliion, paper currency, and official records, you will find thousands of packages of the banknote paper made at D_{a} ton. It comes in little iron safes, sucb as are used by the Adams Express Company, and each package and every sheet is carefully counted before the manufacturer and ex press company are relieved of further responsibility. The paper that arrives to-day may lie in the treasury store room for years, or it may be sent to the Bureau of Engraving and Printing to-morrow. to return in the course of a month' time a legal tender or bank note. -Geyer'e Stationer

A Scientist's Cheerful Workshop.

A bingraphy of Louis Pasteur, just completed by his son in-law, gives the following description of the surrounding of tbe great French investigator at his daily work: All tbe animals in the laboratory, from the little white mice hiding nder a bundle of cotton wool to the dogs barking furiously rom their irnn railed kennels, are donmed to deatb. These nhabitants of the place, wbich are marched out day after day to be subjected to operations or other experiments, share the space with still more ghastly objects. From all parts of France hampers arrive containing fowls which bave died of cholera or some otber disease. Here is an enormous basket hound with straw; it contains tbe body of a pig whicb has died of fever. A fragment of a lung, forwarded in a tin box, is from a cow which died of pneumunia. Other goods are still more precious. Since Pasteur two years ago went to Pauillac to await the arrival of a boat whicb brought yellow fever patients, be receives now and then from far-off countries a bottle of black vomit. Tubes of blood are lying about; and plates containing drops of blood may be seen verywhere on the work tables. In special slores bottle like bladders are ranged. The prick of a pin into oue of these bladders would bring death to any man. Inclosed in glass prisons millions and millions of microbes live and multiply.

