grientific gmmitan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.
teheis for the scientific american. One cory. one year postage included.....
One copy, six months postage included

8320
160 grame proportionate rate. Postake prepaid.
Remit wy postal order.
Remit by postal order. Address
MUNN \& CO , 361 Broadway, corner of Franklin street, New York
The Scientifle American Supplement
Is a distinct paper from the SCiEvTific Amlicican. 'THE SUPPLEMEN'T Is issued weekly. Every number contains 16 uctavo pages, uniform in size
with ScillNTILIC AMERICAN. Terms of subscription for SCPHEMENT, with Scilntipic American. "Terms of subscription for Supplement,
85.00 a year, pustage naid, to subscribers Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined llates. - The Scientific American and SUppliemens
will be sent fur one year postage free. on receipt of seven dolats. Both will be sent fur one year postage free. on receipt of seven doluars. B papers to one address or different addresses as desired.
The sifest way to rewit is by draft, postal order, ur rea Address MUNN \&CO., 361 Broadway, corner of Franklin street, New \mathbf{Y}

Scientife American Export Edition.
The Schermific a milican Export Edition is a larke and splendid periodical, issued once a month. Eich number ccntains about cine hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the ScucNTIFIC Ampican, with its splendid engravings and valuable information: (2.)
Commercial, trade, and manufacturing announcements of leading houses. T'erms for Export Edition, *5.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large. and bandsomely displayed an to secure foreign trade may have large. and bandsomely disp
nouncements published in this edition at a very moderate cost.
nouncements published in this edition at a very moderate cost.
The Scievtific Ambucan Export Edition has a large guaranted circuation In all commercial places throughout the world. Address MUNN \& CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, JULY 19, 1884.

REMOVAT.

The Scientific Anerican Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CON'TEN'TS OF

the scientific american supplement

 No. 446,For the Week ending July 19, 1884. Price 10 cents For sale by all nemsdealers.
 M. cause foralarm..

HII. Processes in which ther aroed Pneumatic Fititering Premses, and th
 V. ELECTRITITT, HEAT, ETC.-Gerard', Alterating Current

Ix.

sCRAPING SURFACES TO FIT

There is no plaver that planes planes. is make a series of minute corrugations nearly parallel and a direct line with the chisel. nearly level. When a job of iron work comes from a planer, its planed surface is a series of longitudinal ridges traversed by cross chatter marks. Except in degree this description applies to all work dove on the plaver, whether the tool used was a roughing tool with rank feed or a finish tool with fine feed. Two planed pieces of cast irwn laid face to face would present surfaces of contact very mucb like the plowed fields of clay soil, except in a less degree.
The first preparatory work to the scraping of surfaces to fit is testing witb the straightedge, botb longitudinally and across, to determine if the surface is outof wind. Inequalities are coarsely reduced by a float or mill file and afterward with a finisb file, the straigbtedge being the guide. The finisb tile must be used with great care, forit is not its office to remove all the marks of the coarser file, or even to oblite rate those of the plaver tool; for both may present surfaces looser in texture than untouched portions, and thus be ton quickly and unevenly cut away. All this preparatory work is to be done under the guidance of the straightedge-1he surface plate bas no part in it; the straigbtedge determines the lines of level, the truth of the surface, while the surface plate shows the quality of the surface.
A wash of spirits of turpentine put on with a rag is better than red lead to show surface. Soon as this is put on, place the surface plate on the surface of the filed work, and rub it back and forth. This will show the condition of the surface, which will be in blotches and dots. All these bright blotches and dots sbould be scraped down, the finer dots and lines less proportionaliy than the broader blotches, and anotber trial witb turpentive and surface plate made, to be followed again by judicious scraping. It is not expected that working surfaces are to be as perfect as those of the test straigbtedges and the surface plates; the surface of the work should be even, without elevations or depressions, and sbould test to a straight line in all directions.
Scraping to fit is a slow, palience-demanding job; but it does not require the absolute exactuess of the testing tools. Some of the tests for these are remarkable. When two surface plates, thorougbly clean, are laid togetber, one may be moved over tbe otber at a mere touch, as thougb there was a film of ice hetween; the reason is that there is really a film of air between the surfaces, and it requires some force and movement to displace this air layer, when the plates will adbere so that oue may be lifted by raising the other. Let one straigbtedge be laid on another, face to to face, and then move one end of the upper one transversely back and forth as though it was mounted on a pivot. After a few attempts a pivot will be found at a point ahout two-tbirds or tbree-fourtbs of the entire length of the straightedge from the moving band. But if tbese surfaces are left in contact for a while, they require force to separate them. A test was made of bulancing a straightedge three feet long and weighing thirteen pounds on a buman bair. It was placed on another straightedge, and tbe bair introduced between the two faces near the center. The upper one was moved on the bair as a roller until the proper point light could be plainly seeu the entire length of the straight edge bet ween the two surfaces, except where the bair separated them at the middle of their lengtb.

HaNDLES FOR COLD CHISELS.

The cold chisel is the crudest tool used by workers in tbe metals, albeit one of the most effective; it is a bar of cast steel witb a wedge edge, varying from a parallel blade to a gradual thickening from edge to stock. Its work is always by percussion, and the material of the bammered bead and the driven edge is the same, only that the latter is bardened and tempered. And yet, for some purposes, the cold chisel sbtuld bave a landle of material differing from that of the bit or cutting portion. When tbe chisel is eutirely of steel the blow is transmitted, with all its direct energy, to the edge. In many instances this blow " stunts" the edge, and leaves the thinner portion in the cut. Every "chipper" knows that much of his success depends on bis skill in preventing this mislap. Yet for most of the ordinary work of the chipper the solid steel chisel is the best ; on cast irn especially, and for starting and driving a key way in wrougbt iron. But for the final chip, the finish, especially in yielding metals, as brass, wrought iron, and soft steel, is bette
done with a chisel that softens the blow before it reaches done with a chisel that softens the blow before it reaches
the cutting edge. This can be accomplished by means of a wrougbt irno cbisel with cast steel bit, the two being welded togetber. Witb such a tool, light, thin, smootb shavings can be taken, leaving the work almost free from the chatter marks tbat necessarily accompany the use of the solid steel cold chisel. These cbisels were tested many years ago, and were proved to be excellent for the finish work on a job. the trouble and cost of making and relaying the chisels.
For very delicate work, even wooden bandles are-or bave been-successfully used. The cbanneling of some
small steel dies for working suft sbeet brass could not be small steel dies for working s,ft sbeet brass could not be done by the solid cblsel, but the work went well when the clisels were inserted in solid wooden bandles. The bandles which were fitted with screw jaws for bolding the shanks of awls, small wood chisels, screw drivers, and similar tools, proved to be excellent for these ligbt purposes. These wooden bandles were fully as effective in chiseling by

The Only Foreign Policy Wanted.

We know of a vigorous foreign policy to which there is no possible objection. It is a policy of peace which misses no opening for an increase of trade between the United States and ot ber countries. It affords scope for the largest states manship and for the freest employment of all the artssave that of war. This is a policy loved by the people more than by ambitious rulers. It is devoid of noise, fuss, and pretension. We bave seen it manifested within a year in the building of a railroad between the United States and the beart of Mexico. This one American enterprise, popular in its inception and completion, has done more to promote good will and quicken trade between tbe two countries tban all the legislation oi Congress since the Hexican war. Among its incidental interesting results is the movement for a meeting at St. Louis of tbe Mexicau and American survivors of the war of 1846--47. This is the first assemblage of the kind ever convoked. It would not be possible but for the truly friendly relations which bave sprung up between the veterans of Palo Alto, Monterey, Cbepultepec, Contreras, and Cerro Gordo on both sides oftbe boundary, in direct consequence of the new railroad communication.
Private citizens can do much in this line of reciprocal Private citizens can do mucb in this line of reciprocal
kindnesses, but tbey cannot do everything. The tariff barriers which divide us from Mexico cannot be leveled except with the consent of our Government. He:e now is an auspi cious occasion for bringing into play a vigorous foreign policy tbat can burt nobody, tbat will cost this country nothing, and will bind Mexico to our interests as tightly as if she were annexed as the result of an expensive war with ber There is no "jingoism" about this. There is no necessity for waiting of a new President, Republican or Democratic, to put this practical and feasible idea into execution. It can all be realized by the passage of the bill reported from the Ways and Means Committee to carry the Mexican treaty into effect. There is political capital in it for botb parties; and Republican and Democratic members of Congress should gladly unite in the good work.
When this is accomplished, it will only remain to apply a similar policy of reciprocal trade to all the States in Central and South America. And lol the dream of our destiny will have been practically realized without the loss of a single drop of blood.-N. Y. Jour. ''ommerce.

Explosion of a Cannon Mould.

At the South Boston Iron Works on the 9th of July a re markable explosion took place during the casting of a giganic cannon. Fortunately no lives were iost.
For three weeks these works bave heen manufacturing guns for the United States Government. The order was for five cannons of the largest bore, and three of them had been made.
Early in the afternoon the process of casting was begun on the largest gun. Three furnaces, each containing forty tons of melted ore, furnisbed the metal. The spectators had just left the room, and the firemen were filling up the cavities caused by the cooling of the metal. The men were standing a short distance from the pit when the explosion occurred, sending a column of molten iron to the roof, a beigbt of sixty feet, and scattering it in all directions. The men fled, and fortunately escaped. The building was set on fire, but only the roof was destroyed. The cause of the explosion is a mystery. The company will not lose over $\$ 6,000$. The building, pit, and macbinery were put in by the Government in 1881, and the pit was forty-one feet below the surface. The gun if perfected would have been a twelve-inch rifle bore breecb loader, and of tbe Rodman pattern. It would bave been 38 feet 6 inches long, and would have weigbed 120 tons. It was 3 feet 7 inches across the muzzle, and 4 feet 9 inches across the breech.

Grinding by Machinery.

For some time past a macbine bas been at work in Sbeffield which bas effectually solved the problem whether grivding can be dove by machivery. It is the invention of James Mitchell. Not only can tbe machine do the work of five or six men, but the quality of the grinding is said to be superior to tbat produced hy band labor. It is almost automatic in its action, and it does its work so easily and satisfactorily that a boy is sufficient to attend to it. Tbe machine is altogether unlike what bad been expected. There is no large revolving stone like those I be seen in grinding mills; but its place is taken by segments or blocks of stove, fixed by wedges and screws into the ribs of a bollow disk. These stone blocks are set with tbeir faces toward the ob ject or objects to be ground; and they are so inxed that they can readily be moved outward as the face begins to wear. When the macbine is set in motion, tbe disk rapidly revolves at right angles to a bed or bedplate. To this bedplate the objects to be ground are secured. It bas a backward and forward movement, and as it moves the articles secured to it are brougbt into contact with the stones on the face of the disk. The rapidity with which the machine does its work in comparison with the results of band labor is very striking. But not only is it capable of grinding flat surfaces, and truing up edges; it grinds concave or couvex, and bevels and angles equally well. It will thus be seen that the machiue can be used upon a variety of objects.

The following

The following is an abstract from a lecture by Mr.
Thomas Fletcher, recently delivered at Cheltenham, Eng. Thoma
external air. By increasing the air-supply to the correct proportion, as you see, the flame is reduced in size, becomes solid to the center, and explodes the gunpowder. Carrying
on my experiment still further, I now use a different burner of a much smaller size, and use air under pressure from small foot-blower-as the burner I have been usiug would, with an air-blast, require about 1,000 cubic feet of gas per hour to work 1 t-and I wish to show you, as near as possible, the same quantity of gas being burned under different conditions. This buruer you now see is only 23 inches
across the surface, yet, with the assistance of a small across the surface, yet, with the assistance of a small
blower, it may be made to burn perfectly up to 200 cubic feet or more per bour-sufficient to make steam for a two o three horse-power engine. You can judge of the heat of the flame by the iron wire I put in it, which you see burns almust like paper. Changing the burner once again, I use a large blowpipe, which gives a most intense flame ; in fact, the advantage of a blowpipe consists in its burning as much gas as possible in an exceedingly small flame of great intensity. Now, if you will watch me carefully, I will direct the flame on this hall of fine scraps of wrought iron, a meta which is practically infusible in an ordinary furnace, and without turning off the gas I will pinch the gas-supply pipe so as to extinguish the flame. The gas is still there, burning as before, but hurning entirely without flame, and, it you see, the iron melts and runs like water instantly. Tbat
there is no flame I will prove to you by putting a slip of paper hefore the blowpipe, which, as you see, is not burned nor discolored; that the gas is burning and has not been interfered with I will prove by stopping the blower, and allowing the gas to burn with a flame as at first. I have now taken you from a cold flame, into the center of which I put my tingers, to an intense heat without any flame, and, as you see, the heat increases as the flame reduces, until at its
maximum the flame disappears altogether. The combustion maximum the flame disappears altogether. The combustion of gases appears to be a succession of explosions, either so quick as to be silent to human ears, or so slow as to make if continued, a musical sound. To enable you all to hear
this I shall, as you will no doubt admit, pass the bounds of this I sball, as you will no doubt ad mit, pass the bounds of these two burners speak in their own natural tones. If they are not clarming as musical instruments they bave the one great advantage that a little of it goes a very long way, and you will not desire that my musical performance sball be a
long one. The quantity is amply compensated for by the long one. The quantity is amply compensated for by the quality, which is certainly not excelled by anything from
donkey to a fog-torn. Bear in mind that the application o gas to music is in its infancy, and there is certainly room fo improvement in the future."

American Granulated Sugar.

Our English friends are again disturbed over the introduc tion of another American product into their dominions. It is not our machinery, hardware, butter, or cheese this time, but it is the introduction into the large English ports of American refined sugars that the British press calls the attention of their refiners to. We extract from an editorial in the Grocer (London) of June 14:
"At a time when the British refiners are sorely beset, i not overpowered, with foreign competition from beet sugar manufacturers on the Conlinent, they are exposed to another menace to their industrial well being by the energy with which their American rivals are now sending granulated sugar over to this country. For some years past there has been what is called a quiet, steady trade doing in the article at
intervals, but without arresting much attention or assuming dimensions that were calculated to arouse any jealousy or fear as to its ultimate effects upon the refining industry here. Not only this; the prices at which sales bave oeen made have often been as secret as the contents of a sealed letter of instructions between one military or naval station and another, though when quotations by the merest chance have oozed out, they have generally been found to agree pretty closely with the relative value known to have been
current for similar descriptions of English, French, Dutch, current for similar
" The American sugar refiners, as a rule, do not aim at turning out many specialties of production for the foreign markets, but confin e their operations to the preparation of such kinds as are likely to command the greatest favor at certain periods. The Yankee refiners evidently do not believe in indiscriminate and haphazard competition in the same sense that French and other refined sugar producers do when the latter set their minds upon overrunning the British markets with a glut of inferior goods at random prices, regardless of prime cost-probably because the American conditions of manufacture and export are not exactly the same as those on the Continent, where the system of bounties flourishes in its full blown ugliness; and this modification and changeableness of their policy in supplying our markets accounts for the fits and starts with which sugar is shipped across the Atlantic from the United States.
'Sometimes the sugar the Americans send us takes the form of cubes; at others, that of powdered or granulated sorts; but they never supply us with baked or stoved kinds, nor anything in the shape of pieces or moist goods, more especially as the last mentioned sugars would woefully deteriorate on the voyage bither. They rather make wise selections of what qualities will find the readiest buyers and fetch the best prices. Their plans vary accordingly, and when an articleceases to pay they discontinue working it, or take up with another instead; and of neither of these
we mistake not, the last time American sugar was sold in
any quantity here was in 1879 and 1880, and what are styled any quantity here was in 1879 and 1880
cubes' were the favorite sugars then.

This is not the least surprising when it is considered that the American products are derived exclusively from the sugar cane, while those from the Continental refineries, without exception, are manufactured (and that, by the bye, not without a little doctoring and chemical dressing) entirely from beet or mangold-wurzel, which is naturally deficient in both saccharine richness and sweetening power. Any persons accustomed to beet flavored productions are bardly aware of the difference that exists between those and sugars expressed from the cane, and once give them a fair chance of comparing the taste of one with the other, they would never leave cane to return to beet. Thus it is that American made sugars whencver they appear in the English markets nearly always meet with a good reception; and although it is the granulated sort, and not cubes, that is now offering in such large quantities, the preference it gains over other competing qualities is none the less striking and significant. The low price at which it can be bought is likewise greatly in its favor, and ought to insure for it a continued ready sale. As noted, the quotation in April last was 25 s . 6d., landed; but througb the severe and prolonged depression that bas since prevailed, the selling value, in sympathy with that for sugar in general, has recently dropped to 19 s . 6d. and 19 s . per cwt., cost, freight, and iusurance, in barrels of three cwt. each, and the article is passing more freely into consumption ban before. The arrivals of American sugar into the United Kingdom this year have been about double those in 883, and the greater part of the supply goes into Liverpool and the Clyde ports, as being in most direct communi cation with New York, Boston, and the north of America, from whence it is shipped.

Trial of the Kunstadter Screw.

The experiments with the United States steamer Nina, to which the Kunstadter screw has been attached, were completed July 9, at Newport, R. I, by two trials that proved to Capt. F. McGrau, the President, and all the other mem bers of the Naval Board, the value of the invention. Tbe irst trial was from full speed ahead to full speed astern with helm hard a-starboard to change direction of ship' head eight points. When the signal was given to reverse, the time occupied in getting at full speed astern was 2 min utes $591 / 2$ seconds, against 6 minutes 5 seconds without the Kunstadter screw. The second trial was from full speed abead to full speed astern, with helm hard-a-port to change the direction of ship's head eight points. The time occupied with the screw was 4 minutes 43 seconds; without the screw, 5 minutes 48 seconds. The Board will report to the Secretary of the Navy that the vessel can be more easily steered aud maneuvered with the screw than with the ordi nary apparatus, and that the tendency will be to decrease the number of collisions.
The Kunstadter screw is an English invention, patented here in 1879. There is a main screw, shaft, and rudder of the usual construction. The rear extremity of the man shaft is elongated, and extends through and abaft the rudder, said elungation at the rudder hinge being swivel jointed to the main shaft. The extremity of the elongation back of the rudder is provided with a small propeller. When the main shaft revolves both propellers revolve, and any lateral movement given to the rudder also laterally moves the small propeller, which thus powerfully assists in turning the ship.

Heart Beats.

Dr. N. B. Richardson, of London, the noted physician, ays he was recently able to convey a considerable amount of conviction to an intelligent scholar by a simple experiment. The scholar was singing the praises of the "ruddy bumper," and saying be could not get through the day with out it, when Dr. Richardson said to him:
" Will you be good enough to feel my pulse as I stand
He did so. I said, "Count it carefully; what does it say?"

Your pulse says seventy-four."
I then sat down in a chair and asked him to count it again. He did so, and said, "Your pulse has gone down to venty."
I then lay down on the lounge, and said:
"Will you take it again?
He replied, "Why, it is only sixty-four; what an extra

rdinary thing!’

I then said, "When you lie down at night, that is the way nature gives your beart rest. Youknow nothing about it, but that beating organ is resting to that extent; and if you reckon it up it is a great deal of rest, because in lying down the heart is doing ten strokes less a minute. Multiply that by 60 , and it is 600 ; multiply it by 8 hours, and within fraction it is 5,000 strokes different; and as the heart is throwing 0 ounces of blood at every stroke, it makes a difference of 30,000 ounces of lifting during the night.
' When I lie down at night without any alcohol, that is the rest my heart gets. But when you take your wine or grog you do not allow that rest, for the influence of alcobol is to increase the number of strokes, and instead of getting this rest you put on something like 15,000 extra strokes, and the result is you rise up very seedy and unfit for the next day's work till you have taken a little more of the 'ruddy day's work till you have taken a little more of the "
humper,' which you say is the soul of man below."

