Srientifir emmricau.

FSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 361 BROADWAY, NEW YORE.

O. D. MUNN.

A. E. BEACH.

TEHMS FOR THE SCIENTIFIC AMERICAN. One corsy. one year postape included.
One cong, six months postake included
Copl, 1 woinhs postane nuaded 160 Clubs.-One extra copy of THE Scientific American will be supplied
gratis for every cuub of five subseribers at 8 3.2. same proportionate rate. Postase prepaid.
Remit by postal order. Address

The Scientific American Supplemen

is a distioct paper from the SCIEswific AmRRicAN. 'THE SUPHLEMENA
is issued weekly. Every number contains 16 octavo pazes, uniform in size
 With Scientipic Ambrican. Terms of subseription for Sopplement,
8500 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by 8.00 a year, postage paid, to subscribers.
all news dealers throukhout the country.

Combined llates.
will be sent for one year postage free. on american and Sbpplimgent of seven dolars. Roth papers to one address or different addresses as desired.
The sitest way to remitit is by draft, postal order. or rexistered letter.
Address $M U N N \& C O ., 361$ Broad was, corner of Frankin street, New

Sclentife American Export Edition.

Thie Sol wintificmerican Export Edition is a larke and splendid periodical. issued once a month. Each number ecntains about one hundred
lurge quarto pages, profusely illustrated. embracing:
(1.) Most of of the lates and pages of the four preceding weekly issues of the scissiticic AMRLICAN, with its splendid engravings and valuable Anformation: (2.) Terms for Export Edition, 85.00 a yéar, sent prepaid to any nart of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost
T'be ScIENTIFIC AM EHCAN Export Edition has a large guara
Tbe Scientific ammican Export Edition has a larke guaranteed circuCO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, DECEMBER 27, 1884.

Contents.

(Illnstrated articles are marked with an asterisk.)

TABLE OF CONTENTY OF
THE SCIENTIFIC AMERICAN SUPPLEMENT
NO. 4B9,
For the Week ending December 2\%, 1884.
Price $\mathbf{1 0}$ cents For sale by all newsdealers.

1. CHEMISTRT AND METALLURGf.-E amination of Bread and lour.-Foreign substances found..
Experiments in Gaseous Combust
Influence of Light on the Development of Yeast
The Fusion of Irnn..
The Vapors of Metals,-The spectroscopic examination of the vapors evolved on heating iron, etc., at atmospheric pressure.-By J.
II. ENGINEERING AND MECEA ANICS.-Steam Yachts Center-board Catamaran.- 2 illustrations The Working
gine. -8 flgures.
Vertical Cold Air Machine..
III. TECHNOLOGY.-Fustian, Beaverteen, Moleskin.-Manufacture of same..... Vilizing the By-products from Coke Ovens.-By Dr. C. Orro.-
fith 4 figures representing Hoffmann's regenerator coke ovens... Preparation of Maltose
IV. ARCHITECTURE. ETC.-The New Observatory at Nice -With engraving.. 7479
Castle Hummelshain, near Kahla, Thuringia.-With engraving.. 7990
V. ASTRONOM Y.-On the Constitution of Gaseous Heavenly Bodies. 7479
VI. GEOLOGY.-The Geological Structure of the Sahara.............. 7491
vil. NATURAL UISTORT.-The Fresh Water Flora and Fauna of Central Park.
Woodwa kD.
VIII. HYGIENE, MEDICINE. ETC.-The Removal of Tatoo Marks. Pasteur on the Preventlon of Hydrophobia.
How to Dishose of House Sewage.-By M. T.
IX. MISCELLANEOUS.-The Antiquity of Man.-By ED. CloDD..... Nitro-glycerine in the Oil Regions.-Advantages gained by its dents caused by the
. BIOGRAPHY.-The Late Right Hon. Henry Fawcett.-Postmas

How is business?

Somewhat extended presentations of this question to manufacturers over a considerable district of New England elicit a hopeful if not a satisfied reply. The gloom of a despondent winter is partially relieved by the hope of a better future-hy the signs, even now, of improved conditions Establishments which had shortened hours last October have resumed the usual time; others, that had shut down entirely before Novernber 1, have started up, perbaps on diminished time; others, which had discharged men in the latter part of the fall, are encouraging their men to remain with them to meet new orders just received. This is not the picture of the entire territory, but it is that of the larger portion of it; and it comprehends the manufactures of cotton, wool, iron, brass, and wood-in fact, it covers an example of almost every prominent New England manufacture. The general feeling is one of hopefulness; this begets confidence, encourages capital, and inspires purchasers.
During the first ten days of December, 1884, one of the largest dealers in iron and coke made larger sales than dur ing the same term the year before, the facilities for supplying demands being ample in both instances. He reported that in Boston, Mass., and Providence, R. I., at that time, the condition of business had improved, and that the prospect in the territory dominated by these trade centers was encouraging.
Of course, different men give different reasons or suggestions to account for the alarming depression in businessoverproduction, lack of adequate markets, the system in some sections of the country of giving long credits, and the disturbance of business by the excitements and unreasonable alarms attending a political national campaign. Whatever the causes, they seem to be gradually in process of removal hy the settlement of the political caldron.

IMPROVED WOREMANSHIP.

Said an old and long experienced machinist theother day, one of a firm of well known manufacturers: " I should b ashamed now to father some of the nice jobs I prided myself upon thirty years ago. I was a first class machinist, and got first class pay; but I have men in my shop, not yet out of their four years' apprenticeship, who can do a better job than I could then. Andit is not all owing to improved ma chine tools; it is because better work is exacted, and better instruction is gi ven to apprentices.'
The reduplication of parts and of entire machines in modern practice is one reason for this improvement in individual skill. In addition to the necessary hand work in making templates, jigs, gauges, and other appliances for reduplication, there is much-unore exactuess in fittigy than formerly, requiring individual judgment, patience of work, and skill of hand. The modes of doing work have been greatly changed; patterns for the moulder are made to such modifications of the old fashioned rule of "oue-eighth of an inch to the foot for shrinkage" as would astonish a Rip Van Winkle of a machinist or pattern maker. Some patterns require very intricate calculations and very exact proportions before they finally leave the pattern shop for the foundry. Castings now come from the pickling room requiring only a superficial dressing to fit.
So, the forger must work to the line. Thirty years ago, if the forger's product resembled the object intended as closely as Hamlet's cloud did a whale or a camel, it was as near as could be expected; but now there are jobs coming from the forging shop that it seems a shame to submit to the tearing planer and the rasping milling machine. Thirty years ago a machine tool new from the shop was expected gradually to work itself into usable shape; the carriage and foot stock of a lathe were to gradually adapt themselves to the ways of the lathe, and the crosshead of the new planer had to be gibbed up again and again, and perhaps ground with flour of emery and oil, before it fitted the uprights; and it was a common practice to run the platen of the new planer back and forth, for a day or so, with the Vs loaded with emery and oil.
To-day the new tool works as perfectly when first started as when months old; a result to be attributed more to the patience and skill of the workman than to the improvements in the tools he uses; the scraping to fit of the modern machine shops demands as much judgment and hand skill as it does of patience.

The Washington Aqueduct.
The project of supplying the capital with water by forming a tunnel through several miles of rock, from the distributing reservoir above Georgetown to a much larger one in the vicinity of Howard University, is now rapidly advancing at all points. The great subterranean cylinder, when finished, will be eleven feet wide, seven and a half feet high, and nearly 22,000 feet long, and will be able to furnish a liberal supply for many years in the future. Along the course of the new aqueduct, at convenient distances, five large shafts have heen sunk to the average depth of nearly one hundred feet. The shafts are sunk about ten feet deeper than the floor of the tunnel, forming wells to receive the springs that flow through the interstices of the rock. Compressed air is the motive power employed for all the pumping, drilling, hoisting, and ventilating. A substantial edifice has been built at a central point upon the Chesapeake \& Obio Canal, where fuel is delivered at least cost. This building contains six 100 horse power boilers, arranged in one battery, and these are worked incessantly, night and day, except and these are worked incessantly, night and day, except
Sundays, for the compression of air. Four 150 horse power
compressors receive the air, which, during the process of compression, is cooled by a spray of water injected into the air cylinder, and in this condition passes into the air receiver. A complicated and singular process then forces the compressed air through a 12 inch pipe into a body of water, which experience has shown to be the easiest way of extracting the moisture that would cause it to freeze in the machine using it. The concentration of the power at one point necessitates the use of five miles of 12 and 6 inch pipes to convey and distribute the compressed air. There are in operation in the several shafts twenty-eight rock drills, which work under a pressure of sixty pounds to the square inch, and enable the contractors to proceed with the tunnel about fifty feet per day. Twice in twenty-four hours there is a temporary cessation of the boring apparatus. After de taching and protecting the machinery, the blasts are set, and all the workmen ascend the shaft. The blasts are discharged simultaneously by a battery, the foul air and smoke are driven out by turning on the air, another gang of workmen descends, and boring agaiu begins. Nearly 300 men are employed at the different shafts, in addition to a Lidgerwood hoisting engine and a Knowles pump stationed at each shaft. Appliances are at hand for graduating the pressure, and a stop valve can instantly separate any one shaft from the rest of the works. The debris produced by blasting is removed on cars, propelled on rails to the shaft, where it is boisted, emptied, and the car. returned, there being a double track of rails in the tunuel. The broken rock is conveyed to the site of the new reservoir, where it is utilized by more than 350 men, who are at work on the construction of that immense tank. The whole enterprise was to be finished before the middle of uext year; but it is now conceded that at least another year must be added to the time.-Nero York Tribure.

Novel Lightning Protector.
The Washington (D. C.) Monument, which is to be about 500 feet high, is approaching completion. To protect it from lightning the following novel expedient is employed. The apex of the monument is to consist of a conical block of aluminum of considerable size; to its bottom part will be attached a heavy copper bolt or cord, which will at once be divided into four parts, one of these being carried to either of the four heavy columns supporting the elevator. These in turn will he connected with the well near the base of the monument, thus making a complete and ample connection between its summit and the earth. A similar connection between the temporary top of the columu and the earth has always been maintained, thus protecting the workmen as well as theatructrex itset from the effects of any elecfrical dis turbances.

Value of Labor

A school reading-book of the last generation had an article on the mechanic arts in which was a remarkable statement of the immense increase of value imparted to a pound of iron when manipulated and manufactured into watch prings. The illustration was misleading, because it left out all the expense of conversion from crude iron to spring steel, and took no account of the inevitable enormous waste of material; the idea conveyed was that the conversion of a single pound of iron inte a pound of watch springs was pos sible.
But the increased value of a product of manufacture by labor can beillustrated by an example that is open to no ob jection of overstatement. A piece of steel bar, square, threeeighths of an inch diameter and two inches long, worth perhaps half a cent, can be increased to more than forty times its initial value by labor. A single blow of a drop hammer on the heated steel punches the central portion against the sides, and forms the steel into a hollowed parallelogram; another blow forms the outside, so that the squared ends become rounded or shaped like the hows of a boat; a final blow com pletes the shape into that of a sewing machine shuttle. The forging is then placed in a die under a powerful press to compact its substance, is finished on a buff wheel, is drilled, fitted with a teusion spring, andis ready for sale, bringing at wholesale from twenty to thirty cents.

A Chance for Our Makers of Dredges.

By reference to another column, it will be seen that American manufacturers of dredging apparatus have an opportunity of filling still another foreign order, this time for the Spanish government, for use at the port of San Juan, Porto Rico. A dragboat is called for, with screw propeller of 100 horse porver, five iron barges, and two towboats Three months are allowed for seuding in proposals, and ight mouths thereafter for building the apparatus. On the Panama Canal, American dredges havebeen proved superio to the several patterns of dredges of European make also in use there, and our makers of such apparatus are not likely o neglect this opportunity of competing with foreign manufacturers in the same line.

Saw Tempering by Natural Gas Heat.

Messrs. Emerson, Smith \& Co., Limited, of Beaver Falls Pa., are, we believe, the first to use natural gas in heating furnaces for hardening and tempering saws. It is claimed that, natural gas being composed so largely of "hydrogen" and entirely free from sulphur or other base substances, and giving a steady, regular heat, steel is stronger and rendered less brittle and less liable co crumble than when heat ded by coal or ccal gas.

