Practical Instruction in Steam Engineering, and situr
ations furnished. Send for pamphlets. National in ations furnished. Send for pamph
stitute, 70 and 72 West 23 St,
N. \mathbf{Y}.
Pays well on small investment.- Stereopticons, Magic
Lanterns, and Views illustrating everysubjectfor public exhibitions. Lanterns for colleges. sunday-schools, and home amusement. 136 page illustrated catalugue free.
McAllister, Manufacturing Optician, 99 Nassau St. N. Y. Enurling Tool, self-centering, for lathe use. Pratt \downarrow Whitney Co., Hartford, Conn.
Shipman Steam Engines.-Small power practical en-
cines burning kerosene. Shipman Engine Co., Boston. gines barning
See
and
Blake's Patent Belt Studs, the strongest and best fartening for Leather and Rubber belts. Greene, Twee

HINTS TO CORRESPONDENTS.
Name and Address must accompany all letters,
or no aitention will be paid thereto. This is for our References, to former aricles or answers should
give dane of paper and paye or number or quaetion
Inquirten not turwered in reaeonable time should Inquirien not surwered in reaeonable time questould
be reveated; correppondents will bear in mind tha
Bome answers require not a little research. and
though we endeavor to reply to all, tien her by lette

(1) E. B. H. asks the actual as well as nominal horse power of engine, cylinder 10 inches
diameter, 36 inches stroke, 65 revolutions, and 85 pound diameter, 36 inches stroke, 65 revolutions, and 85 pounds
preseure on steamgauge. A. Nominal, 38 horsepower Actualat one-half cut-off, 38 horse power. The work ing power de
do not give.
(3) G. K. G. asks (1) a recipe for violet water. A. 6 pounds violet pomade, 1 gallon rectifled spirit; macerate and digest in closed vessel for a month
and decant. Then add 3 ounces tinc. orris roos and 3 and decant. Then add 3 ounces tinc. orris roos and 3
ounces cassia spirit to each pinin. 2. Also one or polishing nickel stove trimmings. A. Polish nickel plating with rouge upon soft leather or buckskin slightly
moistened; finish dry. (3) C. F. M. asks if oil poured on the top
of aigcavity batters will prevent the water from freezing. Also from evaroration. If not, what will keep ing. Also from evatoration. If not, what will keep
the water from freezing? A. Oil poured upon the top of a gravity battery will. in a measure, prevent evapora-
tion and the creeping of the zinc sulphate over the tion and the creeping of the zinc aulphate over the
top of the jar, but it will not keep the solution from top of the jar, but it will not keep the solution from
freezing. The only safe way of preventing the freezing of a battery is to place it in a cellar, or inclose it in gravity battery does not work well in a very low tem-
(4) Q. P. asks: What power could be got from an electric motor, a ten horse power engine bsing
ueed to drive the dynamo? A. About 50 per cent of the motive power can be realized in the electric motor,
provided the dynamo and the motor are of approved construction.
(5) W. J. asks the difference between the common brass wire and the brass wire that door
springs are made of. A. The difference is mainly in springs are made of. A. The difference is mainly in drawing the wire. Spring wire is drawn bard and not
annealed. You can purchase spring wire from all the prominent hrass companies.
(6) C. L.-A thermostatic har is generally made by riveting or brazing together strips of brass
and steel. Wben the bar is heated, the brass expanding and steel. When the bar is heatea, the brass expanding the brass side convex and the steel side of the bar con-
cave. We do not know that the thermostatic bars are kept for sale, but they are easily made.
(7) F. S. asks a recipe for making the ma terial used to block or stick the heads of stationary to-
gether. A. A quarter of an ounce crude gutta percha; dissolve in bisulphate of carbon to the consistence of mucilage. Apply to the edges of the paper where re
quired.
(8) V. S. W. writes: Being desirous building a smail electric machine, I would like to know
how many times I would h. ve to increase the drawing in Soientific American Supplement, No. 161, vol vii., to the best advantage for a $2 x 4$ steam engine. We think that the dynamodescribed in SUPPLEMENT
No. 161, would furnieh suffcient work for your 2 x steam engine, unless your steam pressure is very great cribed in the Sopplement. we advise you to one of the more
ton's, or Edison's.
(9) S. S. asks: Is there power enough in a ichromate battery of 6 or 8 large cells torun a emal
incandescent lamp. say of 16 candle power, a Brush Swan lamp for example? A. We think you would find the resistance of your lamp too great for your bartery. There is no ec
of a pattery.
(10) A Reader asks for a receipt for making white ink, suitable for pen drawing. A. Kilner give the following: Mis pure freshly precipitated barium
sulphate or flake white with water containing enough gum araoic to prevent the immediate settling of the substance. Starch or magnesium carbonate may be
usedi n a similar way. This must be reduced to im usedi n a similar
palpable powders.
(11) H. W. H. writes: Can you inform me
emit light in the dark? What chemical reaction, if any, does the paint undergor A. The luminous property is bly a slow combustion or oxidation. See the article on Phosphorescent Sub
SUPPLEMENT, No. 318.
(12) G. R. F. asks: 1. What is the best liquid to use in a hydraulic lift in frosty weather,
when I cannot use water? Would kerosene injure it nany was? A. If you use kerosene or petroleum in your lift, you will require the full quantity necessary for operating it; the only objection will arise from its
leakage. Water with zo per cent crude glycerine will leakage. Water with 20 per cent crude glycerine will
not freeze at zero, and in colder weather will not freeze to give trouble. Whisky has been much used in hy-
draulic cylinders exposed to low temperatures. Crude draulic cylinders exposed to low temperatures. Crude
petroleum is the cheapest. 2 I am building an ice house; is it neceseary or advisable to have ventilation in
theroof? If so, why? Will not ventilation promote circulation of air around the ice,and consequently make It waste faster than it, would if close or air tight?
In ice houses the top of the ice is generally well co In ice houses the top of the ice is generally well cov-
ered with hay or saw dust to keep it from contact with ered with hay or saw dust to keep it from contact and very hot from the heat of the sun; the air beneath it
becomes much hotter when confined than with thorough ventilation. The roof requires ventilation, not the ice.
(13) W. E. asks: What is used for coating steel mould boards of plows to keep them from rusting after they have been polished? A. Lard oil, tallow, is much used on machinery. If you wish the plows to show the polish, it will be well to varnish the polished paris with a cheap copal varnish thinned with tupen-
tine. Polished hardware is varnished with thin shellac tine. Polished hardware is varnished with thin shellac
varnish, a litile cobalt blue, or other color; the art cles o be heated previous to varnishing to about 212°.
(14) J. W. H. writes: It is a common be lief that to shingle the hair of children makes it thicker. How is it? A. Professor Wilsou in an article on the Hygiene of the Hair, in Solentifio American Sopplement, No. 103, says: "Cattingdoes not encour-
age growth as much as is commonly believed, but it is age growth as much as is commonly believed, but it is
advantageous in the case of the short, slender hairs, mmonly called young hairs,"
(15) J. M. L. B.-The flattening of boiler heads is a matter of different practice with boiler
makers. Some can turn the flanges without raising makers. Some can turn the flanges without raising hey are generally straightened cold to avoid the warpip counter bores used the plate should not burge in boring. A bulged head requires tubes of unequal lengtt, which is not good practice. If they become
bulged by bad treatment, they should be restored by a bulged by bad treatment, they should be restored by a
better treatment of heating the whole to a black heat or about $701 i^{\circ}$, and pressing flat npon the flattening
(16) A. A. F. asks: Is there any way to plate or cover a steel knife with tin, or any solution for
its If so, please let me know how to do it? A. Boil 1 ounce cream tartar, $11 / 2$ ounces grain tin. or tin shavings, in 1 quart water for an hour. Clean the knife
horoughly, and dip in the boiling solution. (17) J. 10 .
(17) J. F. asks for a recipe for melting rubber. A. Rubbercan be melted by heating it over a
water bath. In order to get it into a liquid state, howwater bath. In order to get it into a liquid state, howhin strips of rubber in ether, petroleum, naphtha, car A very full account of the rubber induatries will be found in Scientific American Sopplement, Nob. 249, 251, and 252.
(18) J. E. H. writes: 1. How many borse hement, No. 161, with two incandescent lamps, to ight a room 50 x1009 A. The dynamo described in SUPPLEMENT, No. 161, is tno small for your purbose, 2. Which is the best lamp to use with such a machine-
the incandescence or the Swan lamps About how the incandescence or the Swan lamps About how
much will one lamp cost me? A. Themachine will run two, 3 candle power, incandescent lamps. For the price of lamps address the Edison Company, East Newark, N.J. 3. Can an electro motor be made to run
such a dynamo? A. Yes, but the electric current re. lamps as the dynamo driven by the motor. For information on electric lamps consult SUPPLEMENT, Nos. 162 and 370.
(19) P. E. C. writes: I bave two good poruse them to improve my magic lantern. Which ore should I use, and at what distance from the condensers willi have to nail the board holding the lens?
A. The distance between your camera tube and your A. The distance between your camera tube and your
lantern slide should be about the same as that betweeu lantern slide should be about the same as that betweeu
the tube and the ground glass in the photographic camera. The quarter tube will answer forordinary lantern views, and the half tube will do forlarger views,
provided your condensers are large enough to illumin-
(20) R. L. D. writes: I bave made a tel phonecall similar to the one in SUPPLEmENT, No. 162, only used three ounces of No. 30 cotton covered wire on
each spool. The current ismore than a man can coneach spool. The current ismore than a man can con-
veniently take if I uee wet sponges, but the poles of my magnets are so close together that it is impossible to put the call on the same machine. SoI made magnets with five-sixteenths cores 1 inch long, and wonnd three-quart-r ounce No. 36 silk covered wire. The call is
so weak that it I make a spring light enough so as to so weak that if I make a spring light enough so as to
work, the slightest jar of the floor will cause the bell toring. 1. Is my current arrong enough? A. Yes. 2.
Will the machine I have described generate a suitabie Will the machine I have deacribed generate a suitable
current to work a call over a quarter of a mile of wire? current to work a call over a quarter of a mile of wire?
(The line is an acoustic cable of three No 22 copper wires twisted.) The telephones work well with this wire at this distance. A. Yes, provided you use a
polarized bell. 3. Is there any better style of call than that? A. No. 4. How much No. 36 wire does it require for the magnets in call illustrated in Suppls-
MENT, No. 16:39 A About 200 feet. 5. How is the call
A. The armature is polarized, so that it is alter
itracted and repelled as thecurreut is reversed.
(21) M. M. asks if there is any way of phe venting mica from scratching, also if the edge can be made so as
bevel. A. We know of no way to treat mica so that t will answer your purpose.
(22) B. P. writes: I have never seen in your paper any reference to a kind of electric lightdescribed
in my Natural Yhilosophy as followsi " The brightest in my Natural Phlosophy as follows: of charcoal within an inch or two of each other, and
connectig them with the opposite poles of a galvanic connecting them with the opposite poles of a galvanic
batt ry. The space between the points will be occupied by an arch of flame equaling in dazzliug brightness the rays of the sun, etc. The charcoal points never wear away, the battery alone having to be replenished." I would like to ask you what has been
found the matter with such lights, or have so much found the matter with buch lights, or have so much
betterones been formd: A. You refer to the old experiment of producing the electric arc in a vacumm; it is interesting only as an experiment, and has no commercial value. The ordinary arc lights operate on substantially the same principle, the carbons being a
(23) I. B. writes: I am running a 150 horse power engine; the mainbelt leads np over bead,
and sometimes is so highly charged with electricity that. when I stoop down to pass under it. I experience severe electric shock on the bottoms of my feet, if by
chance I step on any nail heads in the floor. Sometimes it causes my hair to rise up on end; at othe times it has a reverseaction of pressing it flat down.
Now can you give me the cause of a belt becoming so charged and discharged? In other words, what is the best and most generally accepted philosophy of this strange phenomenon? A. The electricity of belts is of trical machines, and is supposed to be generated by the friction of the belt upon the pulley, or by the friction of the particles composing the belt as it leaves the pul-
ley. The most acceptable theory is, that the belt acts ley. The most acceptable theory is, that the belt act upon the principle of the electrophorus, and generates I have a double bell whistle 8 inches diameter, cast of the belly peund beam, hoular orifices? A. The whistle bell cannot beset exactly without a trial. Steam whistles generally have a screw on the spindle, with
jam nuts for adjustment. Set yuur bell month an inch jam nuts for adjustment. Set your bell month an inch and a quarter f r
suit your taste.
(24) W. R. H. asks for the best method for polishing furniture made of open grained wood. mended is prepared as follows: Melt three or four pieces of andarac, each of the size of a walnut; add oue pint of boiled oil, and boil together for an hour.
While cooling add one drachm of Venice turpentine, Whd if too thick, a one drachm of Venice turpentine,
and this all over the furniture, and after some hours rub varnish, except about once in two months. Water
does not injure this polish, and any stain or scratch may again be covered, which cannot be done with
(25) E. F. F. writes: Is there anything that will stop the disagreeable noise to which the pipes o steam hearers sometimes treat us? The noise is often moloud as to make all conversation impossible, and makes the impression as though the pipes were struck
witha hammer. Whatcanses it? A. The water hammer in steam heating pipes is mostly owing to defects
in planning the steam and return plpes, either in their position or relative size. Sometimes heating engineer
are bampered by architectural conditions. Occasionally engineers are negligent in failing to blow the air out
of the pipes. Much of the trouble arises from partially opening or coloring the trouble arises from partiall accumulate in them, when npon fully opening such a radiator the water rushes into the return pipe to dis turba whole building by its vibration. Much more of large buildings a large number of radiators are close or partially so; the connecting pipes leading to such ra diators become partially filled with water, the vibratio

of which causes the noise.

(26) J. L. writes: I find several recipes for preserving eggs, in your paper; I have tried two of
them-liquid glaes and paraffine. I want to get a recipe for cleaning the shells that will be cheap and quickly done-solvents for the glase and paraffine. A. A little
dilute acid or vinegar could be used to cleanee the dilute acid or vinegar could be u ued to cleanse the
shell, if des.red. Liquid glassis soluble in water, e pecially hot water. Paraflne is sofuble in warm benSupplement, No 317, eeveral methods of preservin eggs are given. Paper can be paraffned, and the egga can then be wrapped in that material,but it is not as satisfactory asparaffine or soluble glass; varinus varnishes are also used, the objectin all cases being simply to
(27) D. B. writes: What is the process (if any) by which perfect deodorization of sponge from taste or smell can be obtained? We want them for fil-
tration. A. One of the best processes is said to be the Pollowing, which has for some time been in use at belle vue Hospital: Soak the sponges, previously deprived o sand and dirt, by washing in a one percent solution of potassinm permanganate; remove, wash thoroughly,
and press. In order to bleach them, coninue by placand press. In order to bleach them, continue by plac
ing them in a solution of one-half pound sodium hy posulphite in one gallon of water to which one onnc of oxalic actd has recently been added, and allow to re-
(28) J. B. R. asks whether or not the 6 nch pipe from a Sturtevant blower ahould be smalle much; pipe enters cupola on both sides; and how fa from bottom ehould pipes be for 86 inch cnpola 9 A It is notnecersury to have the blow pipe for cupola ta pering. The best practice now is to have a equare pipe
exterding around the shell, and attached to it with mica peep holes in doors opposite the nozzles, the
ozzles being only holes through the shell and brick ing, in the same manner as the draw spout. Th. dif-
tance from the bottom should be as emall as the quan it. y of metal that you wish to accumuiate before pruring will allow. Some bed the bottom with sand when they have a small heat, for economy in fuel. You do
 If 36 inches inside, y y 14 inches from bed, asksing the nozzle 8, 10,12 . or of 22 inches internal diatis an turns out from 2 to 3 tons of castings in 3 houre. Winh of bed from tuyere, inches.
(29) Y. C. writes: Proforgor Angell, on Saniary Examination of Dr:nikine, quar," published grains of salt there are $265 \cdot 5$ grains of chitorine. would like to know from whose formula/s NaCl he figures this result. Graham gives a table 知, equivaents, according to which Na has if for its nuficer and Cl 36. The.Dispensatory says $\mathrm{Cl}+\mathrm{Na}=35^{\circ} 5+-23 \cdot 3=588^{\circ}$.
Josiah P. Cooke, Jr., says $\mathrm{Cl}+\mathrm{Na}=35 \cdot 6998+23^{3} 12016=$ 588. Why is it that there are such differences among nd in the said to have different meanings when attached to names, but are nsed by others in the same names.
A. We know that 1 ounce avoirdupois contains 437.5 grains troy. The atomic weight of chlorine is $35 \cdot 5$
or all practical purposes, and that of sodum 23
A or all practical purposes, and that of sodum 23. According to Roscoe. $35 \cdot 37$ and $22 \cdot 29$) In regard to the atomic weighte, it must be borne in mind that they
are deduced from experimental work, and therefore until all rariable, and are given differently in works on chemisry, according to the latest data at command when the book was written. It is therefore hest for our corre pondent to consult the latest books on the auhject. Pro fessor Graham has been dead nearly twenty years, and his figures are no more authority on atomic weights han thecensus returns of 1860 are valid for Ohio to-day. The molecular weight of sodium chloride therefore in 1 oz of or oz. av. of zodium chloride we employ the following
proportion: Themolecular weight of sodium chloride is o the atomic weight of chlorine as the weight of the sodium chloride is to the weight of the chlorine:
equals the weight of chlorine, approximately $265 \cdot 5$. Oret is the old term for ide, and is not used in modern hemical text books. The bestadvice we can give to you is tbe recommendation to study the science, ei-
ther with some good text book or under some compeent teacher.
(30) J. C. P. says: In your Notes and Queries, November 15, query 32, E C., asks for glossy marking ink for show cards. Lampblack and turpenne will make a mark, and it sometimes staine the card where it should appear clean and white. Asphaltum
varnish is the article for marking show cards. The arnish is the aficle oin with India ink and the var ish putover them, but I use nothing but the varnish

INDEX OF INVENTIONS
For which Letters Patent of the United State were Granted
December 2, 1884,

AND EAOH BEARING THAT DATE.

See note at end of list about copies of these patents.]

Axle setting machine, I. M. Woodcock............... 308,725 | Bag fastener and holder, J. W. Rickart............ 308,704 |
| :--- |
| Bag fastening attachment, c. C. D'Estaing...... 308,654 |

Bag lock, A.Goertz............ 308,664
Balloon, wedged-shaped air, G. Weliner 308,719
Barrel heads, machinery for moulding, G. W.
Laraway..616

Beer, etc., regulating the temperature of, Haley
\& Reswald 308.666
Bell straps. claspforsleigh, Barton \& Brainard... ${ }^{308.733}$
 Bett tie, R. I. Moore... 308.8885
Belting, G. M. Rose......... 30.8 Bicycle, lady', L. P. Valiquet...388,862 Billiard marker. check, T. C. Jenkins................ 308,675 Boilers cleaners. skimmer for, E. W. Vanduzen... 308,644
Boiler furnace, z. B. Church.................... 308,642
 Bolting reel. centrifuikal, S. Hughes................ 308.618
Book corner, protective, J. H. Wea ver.......... 308,718 Boots and shoos, manufacture of India-rubber,
Joots, shoes, and stockings, machine for making
felt, J. Bra ndy................................. 308.743
Brake. See Car brake.
Brush bride. paint. Barnes \& Sibley
Burnishing tool, W.Gordon............................ 30886684 Bushing for emery wheels, et.
Button, Richardson \& Allen.
Button or stud. G. . A. Adams.
Button to boots, shoes, etc machine for attach
Car brake, K. 日. H. Leineweb
ar brake and conpling.
ar coupling. G. P. Hix.
ar coupling, L. B. B. Owen
Car, railway, G. O. s. Conway.

