A NEW GAS ENGINE
We give an engraviny of a small gas engine, made by the Economic Moor Company, of this city, which may be used wherever gas is obtainable, and we are informed that the engine is being adapted to run with naphtha gas or the vapor of gasoline.
These engines are made in four sizes, the largest being one horse power, and the smallest of sufficient size to ruu one or two sewing machines, or pump enough water for domestic use. They are well calculated to fill the great deficiency' in motors heretofore ex isting below one horse power. It requres about one-thirtieth of a borse power to ruu an urdmary sewing machine, and this is protably the small est use for which a motor is required. The ele vation of water for domestic use in our cities re quires, ordinarily, from one-eights to one-sixth of a horse power. Font lathes, printing presses, and the entire class of machinery operated by treadle or band power requiresan engine of from one-balf to one horse power; machinery operated intermittently by band, and requiring the entire power of a strong man, would require an engine of one horse power.
The one horse power engine shown in the en graving has a cylinder $41 / 2$ inches in diameter, and a stroke of 10 inches. The bearing surfaces of this engine are extraordinarily large, and de signed to wear for years. Steel and bronze are used wherever practicable, and there has been no lack of care to render the engine perfect in every detail. There are no intricacies in ite construc tion; it is as plain and simple as a steam engine which it very much resembles, both in appear ance and in operation. It is always ready for work; the striking of a match and once turning of the wheel being all that is required to start it. It develops its full power at once, and ruo stendily, quietly, and uniformly.
These engines are the result of long and careful experimentation, the object having been to produce a practicable, small motor, which would be perfectly manageable, and which would need no delicate adjustments and no special care other than that required by machinery generally.
It is stated that any part of this engine may be thrown out of adjustment ten times the amount due to its natural wear for the life time of the engine without rendering it inoperative. With respect to economy, as no engineer is required, and as all outlay ceases when the power stops, two sources of the expense of steam power are avoided; it costs nothing to convey the fuel to the place of consumption, and the products of combustion are disposed of without cust. Of course the consumption of gas is the only item of expense, and this is not large. For example, it costs about one-third of a cent a barrel to raise water fifty feet. The sewing machine motor is driven by gas taken from an ordinary gas burner.
Recent improvements in this engine make it impossible to blow out the igniting flame, and a new gas cut-off, which has been applied, prevents the escape of gas, when the engine stops, no matter when or liow. Tluese new features render a gas explosion in connection with the engine impossible.
The Econnmic Motor Company bas established in Brooklyn an extensive factory, which is devoted exclusively to the manufacture of these engines. The office of the company is at 12 Corthandt Street, New York city.

Chinese Paper

Eighteen hundred years ago, says the Papermaker's Journal (London), the Chinese, acting upon the wa.p's suggestion, made paper from fibrous matter reduced to pulp. Now each province makes its own peculiar variety from the innermost bark of different trees. The young bamboo, which grows sis or eight inches in a single night, is whitened, reduced to pulp in a mortar, and sized with alum. From this pulp sheets of paper are made in a mould by hand. The celebrated Chinese rice paper, that so resembles woulen and silk
fabrics, and 0 n which are painted quaint birds and finwers, is manufactured from compressed pith, whicb is first cut up spirally, by a keen knife, into thin slices, six inches wide and twice as long. Immense quantities of paper are used by the Chinese for a great variety of purposes. Funeral papers, or paper imitations of earthly things wbich they desire
to bestow on departed friends, are burned over their graves They use paper window frames, paper sliding doors, and paper visiting cards a yard long.

Musk

Although musk has long been well known in the West, yet, says Dr. Macgowan in his report on the health of Wenchow (" Imperial Maritime Customs"), it seems worth while

JEFFERSON'S IMPROVED SILO PRESS

IMPROVED 8ILO PRE88

The engraving represents an inexpensive silo press, recently patented by Mr. C. W. Jefferson, of Rugby, Tenn., which has strong and durable parts so arranged as to provide fo ery great compression of the ensilage by the use of a common lever or pinch bar. To the inner faces of the oppnsite walls of the silo are fixed the metal plates, A. Placed loosely on top of the fodder filled into the silo are planks, across which rest timbers, one at each side. Across the timbers rest press beams set with their ends facing the onposite pairs of plates; when these beams are made of wood the ends are provided with metal caps secured by bolts and formed with lugs in which the pawls, D, are pivoted. The pawls are pressed into eng:gement with the teeth of parallel racks, B, furmed in the wall plates, by springs. The central portions of the plates are set back to form grooves into which enter tongues formed on the ends of the caps; at the backs of the grooves are formed racks. The flanges, C , of each plate project sufficiently to pre vent the end shoulders of the beams, or the caps, from striking the plate; by this construction very little friction occurs between the ends of the press beams and the silo walls or wall plates.
Tbe ensilage having been placed in the silo, and the covering boards and timbers alljusted, the press beams are carried down ward by means of the pinch bar, the end of which engages with the central rack. As the beams descend, the pawls engage lower teeth of the rack to keep them in position. It is obvious that by the use of this press enormous pressure may be brought to bear on the ensilage to pack it elosely for preventing fermentation and keeping it in good condition until consumed

Whims in Ruilding

Nothing adds so mucb to the cost of building as indulgence in whims. To set out deliberately
to translate what Chinese writers have to say about it. The musk deer is found throughout the mountains of Yunnan Szechwan, and Thibet; it is a timid little animal, and often dies of fright. It feeds on juniper leaves and reptiles snake bones are found in its stomarlh. In spring-its glandular pouch is much swollen and inflamed. The secretion is discharged with the urine. Musk deer always resort to the same place for micturition, and cover their urine with earth In such places deposits of a superior quality are found, amounting sonetimes to fifteen catties (a catty is a Chinese weight of about one and one-third pounds). The article which is most prized is that which falls from the musk deer on to the ground, and is gathered in grains that are as pre cious as pearls. These deposits are so pungent that, if car ried through a garden or woods, it prevents fructification The poisonous effect of fresh musk on vegetation is show also by the blighted appearance of places which the nusk deer selects forits convenience. For some distance around deer selects for its convenience. For some distance around on do a " queer" " ' fanciful" or, as it is sometimes called "original" thing in building is always to incur unnecessary expense. If we look through the books that contain pictures f the architecture of all ages and nations, we shall find hat, without an exception, in the times all men of taste are greed in calling the good times, the modes of building have been sen:sible, founded on the needs of the case, and that whatever may seen fanciful-the whole of what we call icturesque-when its charm has proved enduring, is the reult of whit we may call in every case ""accepting the sit uation." Nothing has been done in such instances for the ake of being picturesque. Good building, good ornament, ever poses.
In builing, as a rule, every departure from the rectangular form is an added expense. One of the things impressed on the mind of a voung man who goes int() an architect's ffice to study the profession is that if cost is to be considred, which it sometimes is, and sometimes is not all ex eren, whic avoided. A rectangular house is the cheapest. Bay windows, porches, octagonal or circular, external ends to ronms-all these things cost money; and it is by multiplying hese features tbat the expenses of building are of ten made so great as to deter people from undertak ing it, for the things seem so small in themselves, it is not suspected what drains they are on the purse. If a good reason cannot be given for any so-called rnamental feature in a house, if it cannot be hown that somelbing worth while is to be gained by making it. we may be easonabls sure that it is a fancy which will cost, as the country people say more than it. comes to. And, in the greaternumber f cases, nothing, even in ooks, is gained by indulg. ing , the fancy.-The Studio.

The history of the dis covery of the circulation, recapitulated, divides itself naturally into a series of epocb making periods: 1. The struclure and func-

THE ECONOMIC MOTOR CO.'S NEW GAS ENGINE

 he leaves exhibit a gellow tince. This valuahle substance tions of the valves of the heart, Erasistratus, B.C. 304. o sooner leaves then 2 . The arteris carry blood duriug life not nir Galen, ors adulterate the f A 165 . The pulmonary circulation Servetug 1553 dulterate it fer article for wbilesale dealers, who furtber 0 per cer the trade, by which time it contains about mintic, and genuine musk. Musk is said to be an anthel A.D 165. 3. The pulmonary circulation, Servetus, 1553. 4. The systemic circulation, Cæsalpinus, 1593. 5. The pulmonic and systemic circulations, Harvey, 1628. 6. The capillarles, Malpigbi, 1661.-Dr. Henty C. Chapman.