amine. The stoppage is effected by the band of the observer. The same electric current also causes datum points to be marked upon the paper that permit of mathematically ascertaining the instant at which an observation should be made; for example, when the paseage of a wheel is occu ring at a precise point.
The curves that are obtained upon the paper are much finer than would be expected, in view of theslight variations in length observed. We give berewith two specimens of the tracings, reduced to a small scale, and showing a registering that bas occurred during the passage of trains and locomotives.
Fig. 4 relates to an observation made upon a Zove's iron sleeper placed under a rail over which passed, first in one direction and t ben in the other, a four wheeled locomotive and its tender. It will be seen that one of the wheels, which was more loaded than the other, bas produced greater stresses.
In the original, as one millimeter of ordinate represented a stress of 0.12 k . (4.54 ounces) per square millimeter, we conclude therefrom that the iron bas undergone during the passage a maximum stress of $0.12 \times 75=9$ kilogrammes (19.85 pounds), due to the first wheel of the engine, a little less for the second, and then a stress of 4.92 k . (10.85 pounds) per millimeter,* due to the tender. After the passage, the stress bas disappeared with the elongation of the metal.
Fig. 5 gives a tracing produced by the instrument fixed to one of the terminal lattice bars of a bridge girder during the passage of a freight train pushed by an engine. The

Figs. 4 and 5.--8PECIMENS OF THE CURVES OBTAINED.
train baving come on slowly and then stopped, the penctit bas traced a but slightly varied curve. It seems that during this time an equilibrium was established quite slowly. There will be observed two sudden projections of the curve, due to the machine being momentarily out of regulation; but when the train began to move again it will be seen that there occurred variations due to the successive passage of the wheels at the point corresponding to the diagonal. We can perceive quite clearly (and better yet in the original tracing) every car that is passing. Then finally comes the locomotive, which produces a maximum stress; and after this the bridge, being entirely unloaded, gives no furtber tracing of the weight that bas just left it.

The apparatus is not limited in application to fixed pieces, but, in spite of its apparent delicacy, may be attached to the connecting rods of locomotives, in order to register the alternate tensions and compressions to which they are sub-mitted.-La Nature.

The Proposed Saharan Sea.

With reference to the daring French project for flooding the desert of Sahara with what would be virtually a new sea, it may be well, says Engineering, to recall the opinion expressed by M. Elisee Reclus, that at one period in the world's history the desert was covered by a sea very similar to the Mediterranean, and tbat this seaexercised a very great influence upon the temperature of France, as comparatively cold -orat any rate cool-winds blew over it, while now the winds which prevail in the great expanse are of a much higher temperature, and are, in fact, sometimes suffocatingly bot. The appearance of the desert seems to support the theory of M. Elisee Reclus, that it was at one time the bed of a sea of considerable extent, of which the great inland African lakes recently discovered are possibly the remains.

The present vast extent and configuration of the African continent would also appear to support the conclusion that at one time it comprised a less area of land than it does at present. The serious question which arises, assuming that the theory of M. Elisee Reclus is substantially correct, is, What will be the effect of the creation of a second African sea in the room of that which bas disappeared? Would the temperature of France, and possibly even of England, be again reduced? It is a geological theory that in the glacial period of the world's bistory Great Britain was covered with ice and snow very much as Greenland is at present. Some great influences must clearly have been brought to bear upon France and Great Britain, which rolled the ice over so many busdred miles northward. What was this influence? Was it the large African sea which French enterprise is endeavoring to recreate? If it were, we should say that whatever the French may gan in Africa by the realization of a Saba ran Sea would be much more than counterbalanced by what they would lose in France itself.

This great enterprise, illustrated on our first page, bas steadily grown in proportions from the day of its inception to the date of opening. Originally proposed by the Cotton Planters' National Association in October, 1882, to signalize our first exports of cotton one bundred years agothis fall, the plan was successively enlarged to cover also a National and International Industrial Exposition, as the importance of cotton itself, in all its relations to the commerce, the industries, and the general well being of the world, seemed to grow upon the minds of the originators of the project.
With this also there bas undoubtedly been a great deal of patriotic emulation among the people of the Mississippi Valley and of the far West, as well as of the entire South, to make this exbibition as pronounced a success as possible, in order thus to promote trade relations with Mexico, the West Indies, and Central and South America, which at present seem to afford the most promising fields for enlarg. ing our foreign commerce.
The main exbibition building, which it was at first supposed would cover all requirements, is of the enormous size of 1,378 by 905 feet, or embracing an area of 33 acres, while the area of the main building at the Philadelphia Ex position of 1876 was only 20 acres. In this New Orleans building there are no partitions, and the interior is surrounded by wide galleries, 23 feet bigb, supported by the piliars which also support the roof, the latter being mostly of glass. The machinery department occupies a space 300 feet wide for the whole length of the main building, but this bas been found insufficient, and large extensions bave been made necessary by the great number of applications for space in this section. In the center of the main building is the Music Hall, with chairs enough to accommodate 11,000 peop
etc.
A special building for United States and State exhibits is 885 by 565 feet in size. Congress, besides loaning the management $\$ 1,000,000$ to forward the enterprise, bas made liberal appropriations for a most thorougb representation of the leading departments of the government. The department of State will show bere samples of cotton, wool, and other fibers, and their products, from all parts of the world. The Pust Office department will show all the modern im proved facilities in this branch of the public service, beside baving working offices on the grounds. The Treasury will exbibit the work of the coast survey, lightbouse, and cus toms service, engraving, printing, etc. The War Office will make an imposing display of arms, ordnance, engineering, medical, surgical, and bospital service; while the Navy, the Interior, and otberdepartments will all be more fully represented than they ever were before at one exbibition. Col lective State exbibits and a general educational display will lso be located in this building.
Horticultural Hall, 600×194 feet, has been substantially built as a durable structure to subsequently become the property of the city of New Orleaus. Il bas a tower 90 feet higb, roofed with glass, beneath which will be a grand fountain in constant play. Around this ball will be arranged a great variety of lare tropical and semi-tropical plants flowers, and sbrubbery. Cash premiums to the amount of 32.000 are offered in this department, and the contributions thereto will be largely from Mexico, Central America, and the West Indies.
The Art Gallery, 250 by 100 feet, is an iron building, calculated for permanent use for such purpose, in its arrangements for mounting pictures, giving them the desired light, ments
etc.

The Mexican National building, 300 by 190 feet in size, will probably afford the most prominent of all the foreign exbibits. The whole space of this building, which was spe cially erected by the Mexican Government for the display from that country, bas been found mucb too small for the exbibits offered. There is to be a famous Mexican band of fifty pieces in attendanee, with a regiment of cavalry and anoiber of infantry of the Mexican army. The Mexican Government appropriated $\$ 200,000$ to further their national display bere, and General Diaz, the Mexican President, aknounced bis intention of being present at the inauguration ceremonies.
Notwitbstanding that the opening of the exposition was postponed from Dec. 1 to Dec. 16, there was, as is almost always the case in sucb great enterprises, a good deal of dilatoriness among many of the exbibitors. This was most conspicuously the case with European participants, the principal portion of their exbibits being placed on the Great Eastern, which was not expected to leave London till Dec. 13.
This great vessel, during the time of her stay bere, will be not one of the least attractive features for visitors to the exbibition.
Besides the buildings above mentioned. there are several others, for individual exbibits, or as additions to those at first found too small for their original purposes, which are being and probably will continue to be erected for some weeks to come. The applications for space bave, from the outset, outrun all the anticipations of the management; but the officers made every exertion to bave the exposition in as complete shape as possible on the 16 th of December, the day finally appointed for the opening.
The different groupings of exbibits, under which all articles wrought by man or produced by nature are classified, is as follows: 1, Agriculture. 2, Horticulture. 3, Pisciculture. 4, Ores and Minerals. 5, Raw and Manufactured
rics, Clothing and Accessories. 8, The Industrial Arts. 9, Alimeutary Products. 10, Education and Instruction. 11, Works of Art.
The grounds on which the exposition is to be beld conist of 247 acres, known as the City Park, about four miles from the business center of the city, and with a frontage of about balf a mile on the Mississippi River, affording ready landing for steamers, besides excellent rail facilities. The temperatnre of New Orleans from the 1st of December to the last of May averages about $65^{\circ} \mathrm{F}$., the thermometer seldom falling below freezing point, while the fields and forests retain their foliage, and nature presents a most attractive appearance to one visiting the city from the barsber clime f a northern latitude.
For the photograpbs from which our views are made we are indebted to Mr. E. L. Wilson, who bas heen appointed Superinteudent of the Photography Section of the exposition, and Mr. F. C. Beach, who bas cbarge of the Amateur Pbotographers' portion of the display.

Steel or Sin Plates

A correspondent of the Ironmonger who bas paid a visit to dearly ever tin plate works in South Wales, the principal seat of this industry, says that the trade bas nearly passed tbrougb a very complete revolution, caused by the intro duction of steel bars. It bas been found thatsteel bars made by the Siemens-Martin process are fully equal to, or rather better than, the best charcoal bars made by the old process of refining iron scrap with cbarcoal refineries, while the price is altogether out of all proportion in favor of the steel. There are makers still using both charcoal and coke iron, but they are anxiously watching the progress of their formidable rival, and will undoubtedly find themselves obliged to abandon the manufacture of iron bars. A considerably greater number of plates can be made from a ton of steel bars than from a ton of coke iron bars, and in consequence of the greater closeness of grain and beautiful surface of the black steel plates betore tinning, considerably less tin is required to make a steel plate look equal to one of iron.
Beyond strengthening some of the rolling mills, no alteration of plant is required to work steel. At present, the Siemens-Martin steel is used for bars known as cbarcoal bars, and the Bessemer for bars known as coke bars. The only difference seems to be a want of reliability and uniformity in the Bessemer bars, which will probably be remedied, as they sometimes come in too bard for working in the mills, and the plates will not always stand the bending test both ways. On this point there is scarcely full knowledge, and it is the opinion of some that it will take vears to fully appreciate all that can be done with steel.
With reference to the alleged poisonous nature of some plates, there does not appear to be the sligbtest ground for supposing that the tin can be adulterated in any way withut detection; and the minute black specks sometimes complained of are due to a variety of causes, which may be raced back to a few microscopical portions of manganese being left in the steel ingot. The presence of lead would be at once detected, in bowever small a quantity. It has been suggested that possibly terne plates may bave been accidentally used for canning meat. These, being coated with a mixture of lead and tin, can be safely usedforpacking dry goods; hut if used for wet goods or acids, would be bighly dangerous. It bas been pointed out that the air acting on the contents of a tin of fish might cause the formation of oxide of tin, and it appears safer to remove the contents as soon as opened to a china jar, rather than use them from the opened tin itself. Palm oil is universally used as a fiux in the tinning bouses. Some patent oils and a few compositions baving resin as a basis bave been tried, but bave not made any great progress, and palm oil still bolds its own. The introduction of the "Morewood" rolls in the tinning pots bas quite revolutionized the system, as the coating is much moreequal, while much less tin is wasted than by the old listing pot, so that all plates may be said to be coated by this process now. By regulating the speed of the rolls, the maker can arrange the amount of tin to be deposited on each plate to an almost exact nicety.

Hard into Soft Castings.

In a communication to the Academie des Sciences, M. Forquignon states that when white iron castings are beated to a point a little under that of fusion, they become transformed into gray iron. The cbange is due to the separation of carbon from its previous combination with the metal, and its deposition in the bulk of the casting. By careful experiments recently conducted, M. Forquignon bas found the following results: He beated a number of white iron pigs for 172 bours in a stove from which the gas was carefully exbausted, and afterward analyzed the product. The irgn originally contained 3 per cent of combined carbon; while the material as taken out of the experimental furnace was found to contain only 0.895 per cent of carbon in combination, and 2061 per cent of carbon in the grapbitic state. This change must bave been due wholly to the slow and continued beating of the tnetal. It is not stated whether there was any perceptible difference between the outside and inide of the metal under treatment, which might be expected under sucb conditions. The process bas a certain resemblance to the usual method of softening steel, in which the effect of continued beating is to decompose the mixture of pure metal and carbon.

