Srientific ब्shmairam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

$$
\begin{array}{ll}
\text { O. D. MUNN. A. E. BEACH. }
\end{array}
$$

TELEMS FOR THE SCIENTIFIC AMERICAN. One cony, one year postage included....
One copy, six months postage included
Clinbs.-One extra copy of tree Scientific Amen inn 160 kratis for every clut of five subscribers at $\$ 3.20$ each; additional coples at same proportionate rate. Postage prepaid.

MUNN \& 00.361 Brodmar
The Scientiac American Supplement Is a distinct paper from the SCIENTificamerican. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size ls issued weetly. Every number contains 16 octavo pakes, uniform in size
with SciEntiric American. Terms of subscription for Sopplement, 85.00 a year, postage paid, to subscribers Single copies, 10 cents. Sold by all news dealerst broukhout the countrs.
Combined lintes. - The Scientific american and Supplement will be sent for one year postage free. on receipt ot se
papers to one address or different adaresses as desired. The safest way to remit is by draft, postal order, or repistered letter. Address MUNN \&CO., 361 Broadway, corner of Franklin street, New Y_{0}

Sclentife american Export Edition.
The Sclivetific American Export Edition is a larke and splendid perilarge quarto pages, profusely illustrated, embracing: (1.) Most of the large quarto pages, profusely hlastrated, embracing: and pages of the four preceding weekly issues of the Scl wivTIFIC AmEuicas, with its splendid engravings and valuable information: (2.)
Commercial, trade and manufacturing announcements of leading houses Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any nart of the world. Single copies 50 cents. Manufacturers and others who desire world. Single conples 50 cents. hanutacturers and others who desire
to secure foreign trade may have large. and bandsomely displayed announcements published in this edition at a very moderate cost.
The SCIRNTIFIC AM IumCAN Export EEition The SCIENTIFIC AM cimican Export Edition ihas a large guaranteed circulation in all commercial places throughout the world. Address MUNN \&
CO., 361 Broadway, corner of Franklin street. New York

NEW YORK, SATURDAY, DECEMBER 13, 1884.

Conteuts.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT

NO. 467,

For the Week ending December 13, 1884.
Price 10 cents. For sale by all newsdealers.

1. CHEMISTRY AND METALLURGY.-Determination of Tannin. ${ }^{\text {Py }}$.

ARCHITECTURE.-The New Technical High School at Berin.

VI. BOTANY, ETC.-An Improved Hyachnth Glass....
VII. MYGIENE, MEDICLNE, ETC.-Herbst's Method of Filling Teet

belt material.

The first idea of a belt for machine purposes is a leather band, but other materials bave heen used for many years; the writer remembers seeing a six inch or an eight inch belt that had run for more than a year in a wood working establishment, which was made of cotton cloth-sail duck. The belt connected two pulleys of three feet aud two feet diameter respectively, the shafts of which were on the same level. To compensate for the shortening and lengthening of the belt by the changes in humidity of the atmosphere, a pivoted idler was used. This change of length appeared to be the only serious drawback to the employment of cotton as belt material; for the adhesion of the material to the face of the puiley was excellent.
Rubber belting is simply cloth and rubber united by being pressed between heavy rollers; its strength depends on the fibrous portion-the cloth. There has recently been another cloth belt put upon the market, that depends for its adbesiveness to the pulley face on cotton. This a woven belt, the woof or warp of which is of a series of continuous steel wires, the filling being coarse cotton yarn ortwine. No preparation is given the cotton, either before or after the weaving, and the "shed " in weaving is so arranged that the steel wires, on which the strength of the belt depends, are entirely covered. One of these belts has been noticed by the writer for more than 1 wo years-a twelve inch belt leading from the fly wheel of an engine-and it shows no sign of destructive wear yet, and has absolutely no stretch. From these examples it would appear that under some cir cumstances (those of a dry atmosphere, equable temperature and an unshipable belt), cotton might prove to be an excellent substitute for leather for belting purposes.
There appears to be only one sort of leather that is pro perly applicable to belt making-that from the skin of the ox or Bos tribe. During a residence of several years in one of the British American provinces, the writer was compelled by circumstances to make his own belts, of such material as could be obtained. Moose hide leather was tried, but it had a quality of indetinite stretch; to obtain a six inch wide belt strips not less than ten inches wide were required, and these were wetted and stretched by powerful winches for several days before they were fit to cut to width. The leather was very thin for the width of belt, but it was wonderfully tena cious and adbesive. Raw hide (untanned skin) will do fairly well as a belt if kept soft by oil, but it lacks the hug of leather, and bas little elasticity.
Ox leather belts stand at the head of those of all other materials for the satisfaction of all demands on belts. No other belts will stand the wear of the shipper; cotton belts are weakened when wet; rubber belts are rotted whenoiled but leather will stand wet and dryness, cold and heat, and lasts a long time even when oil saturated.

gold leaf.

If a sheet of gold leaf is held up against the Kght , it appears to be of a vivid dark green color; this means that the light is transmitted through the leaf. When it is considered that thisleaf is a piece of solid metal, a better idea of the extreme tenuity of thickness of the leaf cau be comprehend ed than by any comparison by figures; nothing made by the hand of man equals it in thinness. This extreme thinness is produced by patient bammering, the hammers weighing from seven to twenty pounds, the lighter hammers being first used. When the true method of this beating is under stood, the wonder expressed sometimes that gold leaf beating should not be relegated to machinery ceases; the art be longs to the highest department of human skill and judg ment. Apprentices have served a term, and have been _com pelled to abandon the business, because they never could acquire the requisite skill and judgment combined necessary to become successful workmen.
The only pure gold leaf is that used by dentists for filling carious teeth, and it is called foil. It is left much thicke than the gold leaf for gilding-indeed, it could not be beaten so thin; for thin or leaf gold an alloy of silver and copper is required to impart the requisite tenacity. Dentist's foi weighs six grains, five, four, and three grains per sheet, or leaf, according to its thickness. The last operation on the leaf is annealing. This is done over a charcoal fire, the leaf being laid singly in a sort of corn popper-a square recepta cle with wire bottom at the end of a landle-over which is held a similar cover to prevent the flame from carrying the leaf away. An instant's exposure to the flame induces a red heat, when the leaf is laid on a sheet of a book.
The material for gold leaf and dentist's foil is coin gold. The gold is precipitated by muriatic and nitric acids over a fire to separate the gold and silver, the copper of the alloy passing off in the heat. The silver from gold coin amounts
to about seven pennyweights to $\$ 800$ worth of coin-the amount usually treated at a time. This reduction and separation of the metals is the usual method, and does not require special description.
The pure gold is then melted in sand crucibles with the proper proportions of silver and copper to produce the color of leaf desired, very fine ornamental effects being produced in gilding with leaf of differing shades. The fluid metal is poured intoiron moulds, making bars seven inches long, one and an eighth inches wide, and one-fourth of an incl thick. These bars are forged, like iron, between anvil and bammer, to even the edges, and theu rolled in powerfully geared rolls to a ribbon not thicker than writing paper and one inch wide. Of course, in the rollin

Now comes the firstof the beating processes. 'Ihese squares of gold (one inch square) are placed in a pile alternating with larger squares (four inches or more) of "kutch" paper, a material made from a pulp of animal membrane-raw bide, intestines, etc.-and the outside of the pile receives a square of parchment. The hammering then begins with a seven pound bammer on a block of marble that rests on a solid foundation. After one Lour's beating the pile is warmed at a fire to anneal the gold, a process requiring care, so that the kutch paper te not burned. Four hours of beating ufficesfor this preliminary process, 180 squares of gold being treated in one pile. The final process requires great skill. The partially beaten squares are packed as before, but with alternates of gold beater's skin, until the pile conains 900 sheets. 'The beating is continued with increasingy heavier bammers until the final finish with the twenty pound barnmer. The gold bealer's skin comes from England, and the best of it-and the most of it-is made by one family-Frederick Perkins. The skin is so thin as to be al most transparent, and yet it is double, two thicknesses. It is prepared from the larger intestine of the ox. Each sheet of the skin is rubbed on each side, before the pack is made and whenever the pack is rearranged (placing the outer gold in the center and vice versa), with a powder made from cal cined gypsum of a very pure sort, imported from Germany. Tris is to prevent the gold from sticking to the skio.
In beating, the work of spreading the gold is from the center of each square of gold out toward the edges, and the finshed squares are thicker at the edges than in the center. A contrary spreading would split the edges and ruin the squares. In rearranging the squares in the process of beating they are sometimes torn, but anotber piece laid on as a patch, lapping over the torn place, will be firmly welded in the after beating.
The finished squares are cut to a size of three and three eighlhs inches, and packed in a "book" bolding twentyfive sheets, the paper leaves being rubbed with red ocher to prevent sticking. These books of twenty-five sheets are sold at from thirty to forty cents each. The cutting of the leaf is done by knives, which are simply slips of the outer shiny shell or skin of the Malacca cane such as is used for walking sticks. The outer rind contains silex or fint in minute, invisible particles, forming a peculiar edge. Steel will not answer the purpose.

criminal ignorance.

The October number of The Locomotive has an editorial article on the foolish carelessness of engineers of stationary engines that ought to be generally read, because it tells the trath where subterfuge and pretense has sometimes blinded judgment. Engineers are not, as a class, pretenders and cheats; but there are many who pretend to know their business who are simply and only swindlers; who do not know the manual of their business even, and never thought of knowing its chemical and mechavical reality.
The Locomotive says:
The carelessness sometimes displayed by engineers (?) who have charge of boilers is simply criminal, and deserves the verest penallies. A recent occurrence will illustrate this. Visiting an establishment where we had boilers insured, our attention was attracted by the suspicious actions of the en ineer. Watching for what he supposed was a favorable
opportunity, be climbed up on top of the boilers and headed opportunity, he climbed up on top of the boilers and headed
oward the safety valve, always keeping as uearly between toward the safety valve, a ways keeping as ucarly between
it and us as he could, but not, however, succediug in al ways keeping from view. Reaching the valve he busied himself a few moments about it, and then returned with a nonchalaut air to where we were. The following conversa tion then occurred:
Irspector: "Tired of living, are you?",
Ingpector: "I Ithought perliaps you were."
Inspector: "I thought perlaps you were."
Engineer: "What makes you think so?"
Inspector: " Why. from the use you make of that wedge ou now have in your overalls pocket. I see that you bad he safety valve fastened down with it. Now, if you want to die, why don't you go out and jump into the iver, and drown yourself; then nobody's life but your own would be endangered? '
Engineer: "Those boilers are all riglt. I don't believe a boiler can blow up so long as there is plenty of water in it. bave been running boilers twenty years." And so on to he end of the chapter.
This fellow had actually made an iron wedge, and driven t into the forked guide above the lever, so that it was impossible for the valve to lift, in order to "bottle up the steam," as be expressed it. And this in spite of the fact that the pressure was all that could be safely allowed; and he had also moved the weight out on the lever fifteen pounds beyond the limit allowed. This is an actual occurrence.

PULLEYS AND GEARS.

In American practice, pulleys bave led gears for more than hirty years. There was a time when no large establishment driven by power could be arranged to run except by gearing; all the main shafing was geared to the prime mover, and if that was a steam engine a jack wheel instead of a belt imparted motion from the fly wheel or crank shaft. The writer remembers a set of cards in a cotton mill; the cylinders, licker-ins, doffers, and even the doffer combs, were all connected by gear wheels. Years after the grindng, wearing, noisy main gears were superseded here by the moothly running pulleys and belts, the English adhered to the toothed wheel system. It had its value; it has its advantages, and the gear wheel is taking its place as a valuable adjunct to machinery of all kinds. One of these advantages is its absolute security; "give a tooth take a tooth" is an old adage in mechanics, and is an absolute law in gear-
ing; there is no slipping and no failure of transmission of power.
But there were objections to the gear, and although some bave been removed, otbers remain. One of the great objections to the gear, as it was formerly made, was its tendency to crowd apart-the two gears working against each otber rather than with one another. But with tbe recent improvements in gear teeth cutting that objection is entirely removed; gears properly cut run together with no inclination whatever to come apart, except with a speed that develops centrifugal force. Some recent experiments seem to prove that the forcing apart tendency of well cut gears is reduced to nil; while on the otber hand the connection of pulleys by belts necessitates a very strong pulling together, proportioned to tbe diameter of pulleys, widtb of belts, distances apart of the pulleys, and their relative positions.
Another objection to the use of gears is wbere the reacb is considerable between the sbafts; in which case the only connection feasible is by means of one or two intermediates, as the direction of revolution may demand. If the two connected shafts are to revolve in the same direction, a single intermediate may be used; but it is evident tbat the diameter of tbis wheel must be sufficient to reach between the peripberies of the two otber wheels, else tbree intermediates must be employed. Sometimes these transmitters-or otherwise idlers-are unbandy, and then the advantage of pulleys and belts is apparent. The belt and pulley have a reacb tbat is impossible without a train of gearing or a belt connection of links of macbine cbain. Except for this lack of reach it is evident that the gear connection is superior in itself to the pulleys and belt, which at its best must be considered a makeshift for an absolute transmitter.

A BASIC METAL.

Tbe title of "the iron age," whicb bas been applied by some writers to the present period, seems to demand some modification or addition; copper las become fashionable in our bouses, in our public buildings, and in our monuments. It appears pure, or in alloys forming bronzes and brasses of a variety of color and a number of degrees of tenacity, obduracy, and durability. This is a revival of the fashions of several generations ago. It is a good one, bowever, for there is a limit to the tractability of iron and steel, and the eye tires of non-colored metal as it would of neutral tinted clotbing.
The capacity of copper for combining with otbers forming different alloys is not possessed so fully by any otber metal; witb zinc the brasses that may be made vary from the deep red of the copper itself to the gray white of the zinc, and in tenacity from tbat of the tougbest, purest copper to the bard brittleness of spelter. In combination with tin its products are still more varied in color and perfect in beauts.

Not one of the alloys of copper is subject to destructive oxidation when exposed to air, water, or steam; but by weatber exposure the beauty of the bronzes is enbanced and their durability insured. Tbere is more brass used in the machine shopt ban formerly; the work of the macbinist of today is not limited to iron and steel; be must know the qualities of the "composition" be is working and bow to work it well. Brass innisbing can bardly be called a distinct trade nowadays. Recently tbere was noticed in a large macbine manufacturing establishment one of its products tbat consisted of tbree-fourths by weight of copper and its compounds and only one-fourth of iron and stecl. Tbe work was of sucb a cbaracter as required the skill and tools of the macbinist and the conveniences of the macbine shop. Said the superintendent, a macbinist of more than thirty years' experience:
'I can tackle any job now. Time was wben I would bave sent copper and brass work to the coppersmithand the brass finisher, but we must do these mixed jobs if we would do
any work. So I compelled myself to learn the working of any work. So I compelled myself to learn the working of
these metals, and tben I taugbt my men. A machinist who can't work copper, bronze, and brass is not a competent workman."
Tbe value of copper compositions in machinery is very great; a casting of bronze or of brass is wbolly unlike one of iron in its tenacity, and it may combine tbis sometimes necessary quality witb a bardness (durability under wear) that no iron casting can possess. These combined qualities cannot be imitated by any other metal. The writer once successfully proved this advantage. A small pinion made first of cast irou, then of cast steel, and lastly of forged Lowmoor iron, broke, or stretcbed beyond usefulness, when one of tougb bronze was tested witb satisfactory results.

To Foretell Weather.

Weatber wise prognosticators seem to be on the increase. In last week's issue we quoted from a Cincinnati observer his metbod of foretelling the cbanges in the weather, from watcbing the babits of animals; and there now comes from tbe Soutb a weatber propbet who adds a long list of the signs which be bas observed to precede cbanges in the weatber.
Few intelligent persons, says the Southern Planter, can
bave any sympatby with the so-called prophets who bave any sympatby with the so-called prophets who oracularly announce phenomena, giving dates, occasionally making lucky bits, but as often firing tbeir random sbots altogetber wide of the mark. Tbat tbere is, however, sometbing in weather philosophy, intelligent persons will be quite ready to concede, and they will be in accord with the
natural phenomena, which has been long practiced. He says:
If one could read the signs, each day foretells the next o-day is the progenitor of to-morrow. When the atmospbere is telescopic, and distant objects stand out unusually clear and distinct, a storm is near. We are on the crest of the wave, and the depression follows quick. It sometimes total absence. In this state of the atmo of a storm as their unusually numerous and bright at night, which is also a bad omen. It appears that the transparency of the air is prodigiously increased when a certain quantity of water is uniformly diffused througb it. Mountaineers predict a change of weather when, the air being calm, the Alps covered with perpetual snow seem on a sudden to be near the observer, and their outlines are marked with great distinctness on the azure sky. Tbis same condition of the atmospbere renders distant sounds more audible.
There is one redness of the east in the morning tbat means storm; anotber that indicates wind. Tbe first is broad, deep, and angry; the clouds look like an immense bed of burning coals; the second is soft and more vapory. At the point wbere the sun is going to rise, and a few minutes in advance of bis coming, there rises straight upward a rosy column, like a shaft of dyed vapor, blending with and yet partly separated from tbe clouds, and the base of which presently comes to glow like the sunhimself. The day that follows is pretty sure to be windy.

It is uncertain to wbat extent birds and animals can foretell the weatber. Wben swallows are seen hawking very bigb, it is a good indication, because the insects upon which tbey feed venture up tbere only in the most auspicious weatber.
People live in the country all tbeir lives without making one accurate observation about nature. The good observer of nature bolds bis eye long and firmly to the point, and finally gets the facts, not only because be bas patience, but because bis eye is sbarp and bis inference swift. Tbere are many assertions, the result of hasty and incomplete observation, sucb as, for instance, that the way the Milky Way points at nigbt indicates thedirection of the wind the next day; also, tbat every new moon indicates eitber a dry or a wet montb. Tbere are many otber stories aboul the moon too numerous to mention. Again, wben a farmer kills his hogs in the fall, if the pork be very bard and solid be predicts a severe winter; if soft and loose, the opposite; overlooking the fact that the kind of food and the temperature of the fall make the pork hard or soft. Numerous otber instances could be cited to prove tbai the would-be sbrewd farmer does not interpret nature in tbe rigbt way, and tbat bis conclusions, being basty and incomplete, are wrong; and until he studies nature understandingly, using a little common sense, so long will be be more or less under the ban of superstibin and ignorance.

The Bell Telephone Patents Sustained.
The great telepbone suit bas been decided by Judge Wallace in favor of the Bell Telepbone Company. Tbe People's Company will, it is said, take an appeal to the United States Supreme Court, but they are in the mean time enjoined from putting up and operating any telepbones under the Drawbaugh inventions. The suit of which the present opinion is the result was commenced in 1880, and the principal points relating tbereto bave already been referred to in tbese columns. Judge Wallace in his opinion says:
' The issues made by the pleadings are practically resol ved into the single question-to which the proofs and arguments of counsel are mainly addressed-whetber the patentee, Bell, or Daniel Drawbaugb, of Milltown, in Cumberland County, Pennsylvania, was the first inventor of the electric speaking telepbone.
The theory of the defendants, according to the opinion of Judge Wallace, is that some of Drawbaugb's iustruments were made in 1867, and otbers at various times before 1874.

It is in proof that thirty-tbree patents were granted for improvements in telepbones in 1878, sixty-four in 1879, more
than one hundred in 1880 , and ninety-four in the first six montbs of 1881 . According to the theory of the defendants, tberefore, as early as February, 1875, Drawbaugh had not only distanced Bell in the race of invention, but also Gray and Edison, and bad accomplished practically all that has since been done by a bost of otber inventors."
The testimony on botb sides is reviewed at lengtb, and the Judge concludes:
"Succinctly stated most favorably for the defendants, the case is tbis: One bundred witnesses, more or less, testified tbat one or more occasions, which took place from five to ten years before, they think they saw this or that device used as a talking macbine. Tbey are ignorant of the principles and of the mechanical construction of the instruments. But they heard speech tbrougb tbem perfectly well, and through one set of instruments as well as the otber. Tbis case is met on the part of the complainants by proof tbat the instruments which most of the witnesses tbink tbey saw and heard through were incapable of being heard through in the manner described by them; and furtber, tbat the man who knew all abnut the capacity of his instruments never attempted to use them in a manner which would demonstrate their efficiency an commercial value, but on the contrary, for ten years after be could hare patented ibem, and for five years after fortune awaited the patentee, and with no obstacles in bis
and reap the fame and profit of the invention. Without regard to other features of the case, it is sufficient to say that he defense is not establisbed so as to remove a fair doubt of its truth; and sucb doubt is fatal.

A decree is or dered for complainant."

Congress and the Patent office.

The Hon. Benjamin Butterworth, Commissioner of Patents, labored earnestly during the last session of Congress to obtain from that body the relief which the Patent Office so sorely needs, in the way of increased appropriations for the employment of additional examining and clerical force, and urging the necessity for enlarged departments for the transaction of the steadily growing business of the office. Mr. Butterworth is now bimself a member-elect of the next Congress. This body, bowever, does not meet, except it be called together in extra session, until December, 1885, and unless the present Congress takes some favorable action before its dissolution in Marcb next, the Patent Office will continue to go on in its present crippled condition for a year, and perbaps a year and a balf, to come. Mr. Butter worth succeeded last spring in getting a sligbt increase on the former appropriation, but bis present position is such as to give added force to any effort be may now make in bebalf of the inventors of the country to obtain from tbe Government wbat bas only thus far been witbheld by the grossest injustice.
In the mean time we trust tbat inventors themselves will not be entirely idle. There are enough of them in each Congressional district who have been greatly annoyed or injured by former delays in the Patent Office to exercise a potent influence on the action of their representatives. Let all sucb inventors, as well as those who are expecting in future to have business relations witb the Patent Office, write direct to their representatives, urging prompt action on this hitberto greatly neglected matter. Tbe present session is a sbort one, lasting only till Marcb, but the appropriations now made must govern the business of the office for the year commencing next July. It is evident, therefore, tbat there is no time to lose, and interested parties sbould strongly urge tbat tbis appropriation sbould be one of the first considered, and not to be left to the hurry and accidents of the closing days of the session.

Madagascar.

Madagascar consists of a central plateau or higbland rising rom 4,000 feet to 5,000 feet above the lowlands of the coast and from this plateau rise occasional volcanic cones, the bigbest, Ankaratra, being 8,950 feet above the sea. Tbese volcanoes extend from the nortbern extremity of the island o the 20th parallel of soutb latitude. South of th is appear ranitic rocks, at leastas far as 22° south latitude. Athigber latitudes tban tbis the rocks of the interior are practically unknown to Europeans. According to a recent paper by Mr. F. W. Rudler, F.G.S., several crater lakes and mineral springs abound; and to the nortb of the volcanic district of Ankaratra tbere is a tract of country containing silver, lead, zinc, and copper ores. As regards building stones, besides the granite which is so general, there are vast beds of sandstone and slate between the district of Ankaratra and the fossil regions in the soutbwest of the central plateau. These fossils, according to M. Grandidier, the recent French traveler in the interior, are referable to the Jurassic system, and comprise remains of hippopotami, gigantic tortoises, and an extinct bird of the ostricb species. The coasts of the country are rich in timber, and it would also appear that the interior is a good mineral field.

More Time for American Inventors.
For the purpose of allowing American inventors every possible facility for participating in the London "Inventions" Exbibition the time during whicb applications will be received bas again been extended, the limit being now fixed at Jan. 31. As the exbibition opens in May next, it is bardly to be expected that there will be any furtber postponement, so intending applicants for space sbould take tbis as a last notice. Tbe Hon. Pierrepont Edwards, British Consul in New York city, wbo will furnisb the necessary printed forms for applicants, reports that the number of applications thus far from tbis country bave been quite large, and the interest sbown by our people in respect to the exbibition is quite encouraging.
Mr. Edwards is untiring in bis efforts to interest American inventors in the exbibition, and be is encouraged to believe tbat the display of their works will be most creditable to the nation.

The Slaughtering of Cattle.

The process of killing and dressing beef at the stock yards, says a contemporary, is not as expeditious and wonderful in cbaracter as is that of killing and dressing hogs. The features most noticeable are the two methods used in killing the animal at tbe start. One of these methods is tbrough the use of the rifle, and the otber the lance. In botb the animals are driven singly from the yard into a narrow box stall open at be top. A dozen of these stalls are in a row, and over tbeir ops are laid some loose planks on whicb the slayer walks with rifle or lance in hand. In the case of the rifle the executioner puts a ball into the animal's brain at short range, which kills instantly. Not a groan is heard, not a muscle moves. The animal falls like a lump of lead, and is at once dragged from the stall into the slaughter-bouse, where the dragged from the stall into the slaughter-bouse, whe
throat is cut and the process of dressing is completed.

