

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CIEMISTRY, AND MANUFACTURES.


## THE MAXIM MACHINE GUN.

The mitrailleuse, or machine gun, as hitherto constructed, is a weapon in which all the functions of loading, cocking, firing, and extracting the empty shell from the gun are performed by turning a crank or by working a lever. The first successful gun of this kind was the invention of Dr. Gatling, an American. This gun was brought out during the war of the rebellion, and before metallic cartridges, which are so essential to the success of a machine gun, had reached their present degree of perfection.
Dr. Gatling did not succeed in getting bis gun used to any extent in the war of 1860-64. The first machine gun which ever saw service in the field was the French mitrailleuse. This gun was large, absurd, and clumsy, and so heavy that it required to be drawn by horses; it would fire but 150 shots per minute. It did not comprise the necessary elements of success, and consequently failed.

The next machine guns to make their appearance were the Hotchkiss, the Lowell, the Nordenfelt, and the Gardner. All of these, except the Nordenfelt, were operated by a hand crank, the Nurdenfelt alone being actuated by a reciprocating lever. All of these guns must necessarily be mount ed upon a firm base, and be trained and elevated by screws and worm gears. If they were made to work freely upon a pivot or universal joint, they would not be firm enough to remain stationary while the crank or bandle was being operated. The safe speed at which a machine gun can be fired depends in a great measure upon the kind and age of cartridges used. For instance, if cartridges have been made for some time, a trifing amount of moist ure may have accumulated in the powder near the primer. When this dampness occurs, the cartridges are sad to hang fire, that is, they do not explode at the instant being struck. Suprose that one cartridre in a thousand exple, are performed by the recoil resulting from the free, and the weapon can be elevated and depresse. should bang fire; it would be necessary to operate the gun the barrel under the influence of the recoil acting as the ing and firing is effected. The barrel, B, which is inclosed sufficiently slowly on the entire series to give this slow cartridge time to explode, otherwise it might be drawn from the barrel before it exploded, or in the act of exploding, in either of which cases it would disable the gun. To this may be attributed a great deal of the trouble in operating machine guns, and their liability to get out of order when most needed. In the gun of which we publish illustrations herewith and which is the invention of Mr. Hiram S. Maxim, of Hatton Garden, London, slow cartridges do not offer an obstacle to the rapid firing of those which will explode quickly, from the fact that no cartridge can be drawn from the gun until it bas exploded, as it requires the force of its own explosion to unlock the block from the barrel and extract the empty shell. In Mr. Maxim's new gun there is but one barrel, and all the functions of loading, cocking, firing,


Fip. 1.-THE MAXIM SELF-ACTING MACHINE GUN,
piston, the block as the crossbead, and the sear and trigger as the valve gear. The cartridges to the number of 333 are placed side by side in a canvas belt, secured together with brass eyelets and strips. One end of this belt is connected to the arm, and the gun is operated by band until the first cartridge is driven into the barrel. Then the trigger is pulled this cartridge explodes, the breech bolt is unlocked from the barrel, the empty case is extracted, moved to one side, a loaded cartridge is brought in front of the barrel, the arm is cocked, the cartridge pushed home, and the trigger pulled, when the explosion of the secoud cartridge operates the same as the first. Thus the firing may be kept up automatically without any action on the part of the attendant as long as there are any cartridges in the belt. Our engravings represent respectively a side view and a front view of the gun and its stand, a longitudinal section of the barrel and the mechanism, and a detail of the firing derice. The weapon is mounted upon a tripod stand (Figs. 1 and 3) and between it and the top of the stand there is placed a magazine, which is protected from the enemy's fire by a pair of light shields. The gun can be rotated about the vertical axis by means of a handle (Fig. 1) which turns a tangent screw; or if the three-armed nut at the boltom of the axis be slackened, the barrel can be moved by hand to spread the fire over a considerable area. If a definite piece of ground is to be subject to the fire, such as a bridge, a pass, or a ford, the gun can be sighted in succession to each end of the space and its motion beyond those limits prevented by adjusiable nuts on the screw spindle. The elevation of the barrel is altered by turning the haud wheel on the strut. stretching from the stand to the rear of the By slackening a clip on this strut the screw is thrown and the weapon can be elevated and depressed. in a water jacket (Fig. 5), is capable of a longitudinal motion of about seven-sixteenths of an inch upon the explosion of a cartridye, and moves back, pushing before it the breech bolt, the sear, and the rest of the moving parts. Its motion is in the first instance opposed by two springs, which are forced outward by the toggle arms. As soon as the arms have passed the cen ter, the springs begin to close again, and aid the motion of the barrel. At first, as we bave already said, the barrel and the block or breech piece, A , travel back at the same speed, but for the speut shell to be extracted and the new cartridge to take its place, the block, A, must leave the barrel a considerable dis. tance for the other mechanism to come into play.

The iwo are at first fixed together by the locking latch, C , which is held down by the stop, N. A slight Continued on p. 398.

# §riuntific gmmerica. 

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors. published weekly at

## No. 361 BROADWAY, NEW YORK.

## o. D. MUNN.

A. E. BEACH.

## TEREMS FOR THE SCIENTIFIC AMERICAN.

## One copy, one year postage included.. One copy, six months postage included

Clubs.-One extra copy of The Scientific Am erican will be supplied grat is for every clut of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. PostaRe prepaid.

MUNN \& CO 361 Brodmar
'Ihe Scientiac American Supplement Is a distinct paper from the Scientific american. 'VHE SUPHLEMENT Is issued weetsly. Every number contains 16 octavo pages, uniform in size
with Scientiric American. Terms of subscription for Sopplement With SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT,
85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined llates. - The Scientific american and Supplement will be sent for one year postage tree. on receipt ot
papers to one address or different adaresses as desired. The satest way to remit is by draft, postal order, or repistered letter. Address MUNN \& CO., 361 Broad way, corner of Franklin street, New Y

Sclentife American Export Edition. The Sciwntific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Sci wivTric Americav, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses.
T'erms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost.
The ScIFNTIFIC AM wincAn Export Edition has a large guarant The Scifntiric Am kilican Export Edition has a large guaranteed circu-
tation in all commercial places throughout the world. Address MUNN \& lation in all commercial places throughout the world. Address MUNN \&
CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, DECEMBER 13, 1884.

Contents.
(11ustrated. articies are marked with an asterisis.)


TABLE OF CONTENTS OF

## THE SCIENTIFIC AMERICAN SUPPLEMENT

## NO. 467,

For the Week ending December 13, 1884.
Price .10 cents. For sale by all newsdealers.

1. CHEMISTRY AND METALLURGY.-Determination of Tannin. P

II. ENGineerring and mechanics.-The New Dam at Sures



III. TECINOLOGY-On Various Toning Batbs.-Several expert




V. ARCHITECTURF.-The New Technical High School at Berlin.

Vi. BoTA AY, ETC. - An Improved Hyactnth class...


Vmi. MISCELLA NEiOUS.-The Nem York Street Cars.:

## belt material.

The first idea of a belt for machine purposes is a leather band, but other materials have been used for many years; the writer remembers seeing a six inch or an eight inch belt that bad ruu for more than a year in a wood working establishment, which was made of cotton cloth-sail duck. The belt connected two pulleys of three feet and two feet diameter respectively, the shafts of which were on the same level. To compensate for the shortening and lengthening of the belt by the changes in humidity of the atmosphere, a pivoted idler was used. This change of length appeared to be the only serious drawback to the employment of cotton as belt material; for the adhesion of the material to the face
of the puiley was excellent. Rubber belting is simply cloth and rubber united by being pressed between heavy rollers; its strength depends on the fibrous portion-the cloth. There has recently been another cloth belt put upon the market, that depends for its adhesiveness to the pulley face on cotton. This a woven belt, the woof or warp of which is of a series of continuous steel wires, the filling being coarse cotton yarn or twine. No preparation is given the cotton, either before or after the
weaving, and the "shed "in weaving is so arranged that the steel wires, on which the strength of the belt depends, are entirely covered. One of these belts has been noticed by the writer for more than two years-a twelve inch belt leading from the fly wheel of an engine-and it shows no sign of destructive wear yet, and has absolutely no stretch. From these examples it would appear that under some circumstances (those of a dry atmosphere, equable temperature and an unshipable belt), cotton might prove to be an excellent substitute for leather for belting purposes.
There appears to be only one sort of leather that is pro perly applicable to belt making-that from the skin of the ox or Bos tribe. During a residence of several years in one of the British American provinces, the writer was compelled by circumstances to make his own belts, of such material as could be obtained. Moose hide leather was tried, but it had a quality of indefinite stretch; to obtain a six inch wide belt strips not less than ten inches wide were required, and these were wetted and stretched by powerful winches for several days bef ore they were fit to cut to width. The leather wa very thin for the width of belt, but it was wonderfully tena cious and adbesive. Raw hide (untanned skiu) will do fairly well as a belt if kept soft by oil, but it lacks the hug of leather, and has little elasticity.
Ox leather belts stand at the head of those of all other materials for the satisfaction of all demands on belts. No other belts will stand the wear of the shipper; cotton belts are weakened when wet; rubber belts are rotted when oiled but leather will stand wet and dryness, cold and heat, and lasts a long time even when oil saturated.

## GOLD LEAF.

If a sheet of gold leaf is held up against the $\mathbf{K g h t}$, it appears to be of a vivid dark greeu color; this means that the light is transmitted through the leaf. When it is considered that this leaf is a piece of solid metal, a better idea of the extreme tenuity of thickness of the leaf cau be comprehend ed than by any comparison by figures; nothing made by the band of man equals it in thinness. This extreme thinness is produced by patient hammering, the hammers weighing from seven to twenty pounds, the lighter bammers being first used. When the true method of this beating is under stood, the wonder expressed sometimes that gold leaf beating should not be relegated to machinery ceases; the art belongs to the highest department of human skill and judgment. Apprentices have served a term, and have been_com pelled to abandon the business, because they never could acquire the requisite skill and judgment combined necessary to become auccessful workmen.
The only pure gold leaf is that used by dentists for filling carious teeth, and it is called foil. It is left much tbicke than the gold leaf for gilding-indeed, it could not be beaten so thin; for thin or leaf gold an alloy of silver and copper is required to impart the requisite tenacity. Dentist's foil weighs six grains, five, four, and three grains per sheet, or leaf, according to its thickness. The last operation on the leaf is annealing. This is done over a charcoal fire, the leaf being laid singly in a sort of corn popper-a square receptacle with wire bottom at the end of a bandle-over which is held a similar cover to prevent the flame from carrying the leaf away. An instant's exposure to the flame induces a red heat, when the leaf is laid on a sheet of a book.
The material for gold leaf and dentist's foil is coin gold. The gold is precipitated by muriatic and nitric acids over a fire to separate the gold and silver, the copper of the alloy passing off in the heat. The silver from gold coin amounts
to about seven pennyweights to $\$ 800$ worth of coin-the to about, seven pennyweights to $\$ 800$ worth of coin-the
amount usually treated at a time. This reduction and separation of the metals is the usual method, and does not require special description.
The pure gold is then melted in sand crucibles with the proper proportions of silver and copper to produce the color of leaf desired, very fine ornamental effects being produced in gilding with leaf of differing shades. The fluid metal is poured intoiron moulds, making bars seven inches long, one
and an eighth inches wide, and one-fourth of an incl thick. These bars are forged, like iron, between auvil and hammer, to even the edges, and theu rolled in powerfully geared rolls to a ribbon not thicker than writing paper and one inch wide. Of course, in the rolling as in all the processes, there must be occasional annealings.

Now comes the first of the beating processes. These squares of gold (one inch square) are placed in a pile alteruating with larger squares (four inches or more) of "kutch" pa per, a material made from a pulp of animal membrave-raw hide, intestines, etc.-and the outside of the pile receives a square of parchment. The hammering then begins with a seven pound hammer on a block of marble that rests on a solid foundation. After one hour's beating the pile is warmed at a fire to anneal the gold, a process requiring care, so that the kutch paper be not burned. Four hours of beating sufficesfor this preliminary process, 180 squares of gold being treated in one pile. The final process requires great skill. The partially beaten squares are packed as before, but with alternates of gold beater's skin, until the pile conains 900 sheets. The beating is continued with increasingy heavier bammers until the final finish with the twenty pound bammer. The gold beater's skin comes from England, and the best of it-and the most of it-is made by one family-Frederick Perkins. The skin is so thin as to be al most transparent, and yet it is double, two thicknesses. It is prepared from the larger intestine of the ox. Each sheet of the skin is rubbed on each side, before the pack is made and whenever the pack is rearranged (placing the outer gold in the center and vice versa), with a powder made from calcined gypsum of a very pure sort, imported from Germany. This is to prevent the gold from sticking to the skin.
In beating, the work of spreading the gold is from the center of each square of gold out toward the edges, and the finished squares are thicker at the edges than in the center. A contrary spreading would split the edges and ruin the squares. In rearranging the squares in the process of beating they are sometimes torn, but another piece laid on as a patch, lapping over the torn place, will be firmly welded in he after beating.
The finished squares are cut to a size of three and threeighths inches, and packed in a "book" holding twentyfive sheets, the paper leaves being rubbed with red ocher to prevent sticking. These books of twenty-five sheets are sold at from thirty to forty cents each. The cutting of the leaf is done by knives, which are simply slips of the outer shiny shell or skin of the Malacca cane such as is used for walking sticks. The outer rind contains silex or fint in minute, invisible particles, forming a peculiar edge. Steel will not answer the purpose.

## criminal ignorance.

The October number of The Locomotive has an editorial article on the foolish carelessness of engineers of stationary engines that ought to be generally read, because it tells the trath where sabterfuge and pretense has sometimes blinded judgment. Engineers are not, as a class, pretenders and cheats; but there are many who pretend to know their business who are simply and only swindlers; who do not know the manual of their business even, and never thought of knowing its chemical and mechanical reality.
The Locomotive says:
The carelessness sometimes displayed by engineers (?) who have charge of boilers is simply criminal, and deserves the severest penallies. A recent occurrence, will illustrate this. Visititig an establishment where we bad boilers insured, our attention was attracted by the suspicious actions of the en-
ineer. Watching for what he supposed was a forable pportunity, he climbed up on top of the boilers and headed opportunity, he climbed up on top of the boilers and headed toward the safety valve, a ways keeping as nearly between
it and us as he could, but not, however, succeeding in al ways keeping from view. Reaching the valve he busied himself a few moments about it, and then returned with a nonchalant air to where we were. The following conversation then occurred:
Irspector: "Tired of living, are you?"
Ingpector: "I thought perhaps you were."
Inspector: "I thought perhaps you were."
Engineer: "What makes you think so?"
Inspector: "Why, from the use you make of that wedge you now have in your overalls pocket. I see that you had the safety valve fastened down with it. Now, if you want o die, why don't you go out and jump into the river, and drown yourself; then nobody's life but your own would be endangered?'
Engineer: " Those boilers are all right. I don't believe a boiler can blow up so long as there is plenty of water in it. tha end of the chapter
This fellow had actually made an iron wedge, and driven in in the forked guide above the lever, so that it was impossible for the valve to lift, in order to "bottle up the steam," as he expressed it. And this in spite of the fact that the pressure was all that could be safely allowed; and he had also moved the weight out on the lever fifteen pounds beyond the limit allowed. This is an actual occurrence.

## PULLEYS AND GEARS.

In American practice, pulleys bave led gears for more than hirty years. There was a time when no large establishment driven by power could be arranged to run except by gearing; all the main shafting was geared to the prime mover, and if that was a steam engine a jack wheel instead of a belt imparted motion from the fly wheel or crank shaft. The writer remembers a set of cards in a cotton mill; the cylinders, licker-ins, doffers, and even the doffer combs, were all connected by gear wheels. Years after the grinding, wearing, noisy main gears were superseded here by the moothly running pulleys and belts, the English adhered to the toothed wheel system. It had its value; it has its advantages, and the gear wheel is taking its place as a valuable adjunct to machinery of all kinds. One of these advantages is its absolute security; "give a tooth take a tooth" is an old adage in mechanics, and is an absolute law in gear-
ing; there is no slipping and no failure of transmission of power.
But there were objections to the gear, and although some have been removed, others remain. One of the great objections to the gear, as it was formerly made, was its tendency to crowd apart-the two gears working against each other rather than with one another. But with the recentimprovements in gear teeth cutting that objection is entirely removed; gears properly cut run together with no inclination whatever to come apart, except with a speed that develops centrifugal force. Some recent experiments seem to prove that the forcing apart tendency of well cut gears is reduced to nil; while on the other hand the connection of pulleys by belts necessitates a very strong pulling together, proportioned to the diameter of pulleys, width of belts, distances apart of the pulleys, and their relative positions.
Another objection to the use of gears is where the reach is considerable between the shafts; in which case the only connection feasible is by means of one or two intermediates, as the direction of revolution may demand. If the two connected shafts are to revolve in the same direction, a single intermediate may be used; but it is evident that the diameter of this wheel must be sufficient to reach between the peripheries of the two other wheels, else three intermediates must be employed. Sometimes these transmitters-or otherwise idlers-are unhandy, and then the advantage of pulleys and belts is apparent. The belt and pulley have a reach that is impossible without a train of gearing or a belt connection of links of machine chain. Except for this lack of reach it is evident that the gear connection is superior in itself to the pulleys and belt, which at its best must be considered a makeshift for an absolute transmitter.

## a basic metal.

The title of "the iron age," which has been applied by some writers to the present period, seems to demand some modification or addition; copper las become fashionable in our houses, in our public buildings, and in our monuments. It appears pure, or in alloys forming bronzes and brasses of a varity of color and a number of degrees of tenacity, obduracy, and durability. This is a revival of the fashions of several generations ago. It is a good one, however, for there is a limit to the tractability of iron and steel, and the eye tires of non-colored metal as it would of neutral tinted clothing.
The capacity of copper for combining with others forming different alloys is not possessed so fully by any other metal; with zinc the brasses that may be made vary from the deep red of the copper itself to the gray white of the zinc, and in tenacity from that of the toughest, purest copper to the hard brittleness of spelter. In combination with tin its products are still more varied in color and perfect in beauty.
Not one of the alloys of copper is subject to destructive oxidation when exposed to air, water, or steam; but by weather exposure the beauty of the bronzes is enhanced and
their durability insured. There is more brass used in the machine shop than formerly; the work of the machinist of today is not limited to irnn and steel; he must know the qualities of the "composition" be is working and how to work it well. Brass ininishing can bardly be called a distinct trade nowadays. Recently there was noticed in a large machine manufacturing establishment one of its products that consisted of three-fourths by weight of copper and its compounds and only one fourth of iron and steel. The work was of such a character as required the skill and tools of the machinist and the conveniences of the machine shop. Said the superintendent, a machinist of more than thirty years' experience:
"I can tackle any job now. Time was when I would have sent copper and brass work to the coppersmithand the brass finisher, but we must do these mixed jobs if we would do any work. So I compelled myself to learn the working of these metals, and then I taught my men. A machinist who can't work copper, bronze, and brass is not a competent workman."
The value of copper compositions in machinery is very great; a casting of bronze or of brass is wholly unlike one of iron in its tenacity, and it may combine this sometimes necessary quality with a hardness (durability under wear) that no iron casting can possess. These combined qualities cannot be imitated by any other metal. The writer once successfully proved this advantage. A small pinion made first of cast irou, then of cast stcel, and lastly of forged Lowmoor iron, broke, or stretched beyond usefulness, when one of tough bronze was tested with satisfactory results.

## To Foretell Weather.

Weather wise prognosticators seem to be on the increase. In last week's issue we quoted from a Cincinnati observer his method of foretelling the changes in the weather, from watching the babits of animals; and there now comes from the South a weather prophet who adds a long list of the signs which he has observed to precede changes in the weather.
Few intelligent persons, says the Southern Planter, can have any sympathy with the so-called prophets who oracularly announce phenomena, giving dates, occasionally making lucky hits, but as often firing their random shots altogether wide of the mark. That there is, however, something in weather philosophy, intelligent persons will be quite ready to concede, and they will be in accord with the view of the writer when he recommends the observation of

## natur says:

If one could read the signs, each day foretells the next, to-day is the progenitor of to-morrow. When the atmosphere is telescopic, and distant objects stand out uususually clear and distinct, a storm is near. We are on the crest o the wave, and the depression follows quick. It sometimes lappens that clouds are not so indicative of a storm as their total absence. In this state of the atmosplere the stars are unusually numerous and bright at nigbt, which is also a bad omen. It appears that the transparency of the air is prodigiously increased when a certain quantity of water is uniformly diffused through it. Mountaineers predict a change of weather when, the air being calm, the Alps covered with perpetual snow seem on a sudden to be near the observer,
and their outlines are marked with great distinctness on the and their outlines are marked with great distinctness on the distant sounds more audible.
There is one redness of the east in the morning that means storm; another that indicates wind. The first is broad, deep, and angry; the clouds look like an immense bed of burning coals; the second is soft and more vapory. At the point where the sun is going to rise, and a few minutes in advance of his coming, there rises straight upward a rosy column, like a shaft of dyed vapor, blending with and yet partly separated from the clouds, and the base of which presently comes to glow like the sunhimself. The of which presently comes to glow like the sun.
day that follows is pretty sure to be windy.
It is uncertain to what extent birds and animals can foretell the weather. When swallows are seen hawking very high, it is a good indication, because the insects upon which they feed venture up there only in the most auspicious weather.
People live in the country all their lives without making one accurate observation about nature. The good observer of nature holds his eye long and firmly to the point, and finally gets the facts, not only because he has patience, bat because his eye is sharp and his inference swift. There are
many assertions, the result of hasty and incomplete obmany assertions, the result of hasty and incomplete ob-
servation, such as, for instance, that the way the Milky Way points at night indicates the direction of the wind the next day; also, that every new moon indicates either a dry or a wet month. There are many other stories about the moon too numerous to mention. Again, when a farmer kills his hogs in the fall, if the pork be very hard and solid he predicts a severe winter; if soft and loose, the opposite; overlooking the fact that the kind of food and the temperature of the fall make the pork hard or soft. Numerous other instances could be cited to prove that the would-be shrewd farmer does not interpret nature in the rigbt way, and that his conclusions, being hasty and incomplete, are wrong; and until he studies nature understandingly, using a little common sense, so long will he be more or less under the ban of superstilion and ignorance.

The Bell Telephone Patents Sustained.
The great telephone suit has been decided by Judge Wallace in favor of the Bell Telephone Company. The People's Company will, it is said, take an appeal to the United States Supreme Court, but they are in the mean time enjoined from putting up and operating any telephones under the Drawbaugl inventions. The suit of which the present opinion is the result was commenced in 1880, and the principal points relating thereto have already been referred to in these columns. Judge Wallace in his opinion says:
"The issues made by the pleadings are practically resolved into the single question-to which the proofs and arguments of counsel are mainly addressed-whether the patentee, Bell, or Daniel Drawbaugh, of Milltown, in Cumberland County, Pennsylvania, was the first inventor of the electric speaking telephone."
The theory of the defendants, according to the opinion of Judge Wallace, is that some of Drawbangh's instruments
were made in 1867, and others at various times before 1874.
"It is in proof that thirty-three patents were granted for improvements in telephones in 1878, sixty-four in 1879, more than one hundred in 1880, and ninety-four in the first six months of 1881. According to the theory of the defendants, therefore, as early as F'ebruary, 1875, Drawbaugh had not only distanced Bell in the race of invention, but also Gray and Edison, and had accomplished practically all that has siace been done by a host of other inventors."
The testimony on both sides is reviewed at length, and the Judge concludes:
"Succinctly stated most favorably for the defendants, the case is this: One hundred witnesses, more or less, testified that one or more occasions, which took place from five to ten years before, they think they saw this or that device used as a talking machine. They are ignorant of the principles and of the mechanical construction of the instruments. But they heard speech through them perfectly well, and through one set of instruments as well as the other. This case is met on the part of the complainants by proof that the instruments which most of the witnesses think they sa wand heard through were incapable of being heard through in the manner described by them; and further, that the man who knew all abnut the capacity of lis instruments never attempted to use
them in a manner which would demonstrate their efficiency them in a manner which would demonstrate their efficiency after he could bave patented them, and for five years after they were mechanically perfect, knowing all the time that a fortune awaited the patentee, and with no obstacles in his
and reap the fame and profit of the invention. Without regard to other features of the case, $\mathfrak{i t}$ is sufficient to say that the defense is not established so as to remove a fair doubt of its truth; and such doubt is fatal. dered for complainant."

## Congress and the Patent office.

The Hon. Benjamin Butterworth, Commissioner of Paents, labored earnestly during the last session of Congress o obtain from that body the relief which the Patent Office o sorely needs, in the way of increased appropriations for the employment of additional examiuing and clerical force, and urging the necessity for enlarged departments for the ransaction of the steadily growing business of the office. Mr. Butterworth is now himself a member-elect of the next Congress. This body, however, does not meet, except it be called together in extra session, until December, 1885, and unless the present Congress takes some favorable action before its dissolution in March next, the Patent Office will coninue to go on in its present crippled condition for a year, and perbaps a year and a half, to come. Mr. Butterworth succeeded last spring in getting a slight increase on the former appropriation, but bis present position is such as to give added force to any effort he may now make in behalf of the inventors of the country to obtain from the Government what has only thus far been withheld by the grossest injustice.
In the mean time we trust that inventors themselves will not be entirely idle. There are enough of them in each Congressional district who have been greatly annoyed or injured by former delays in the Patent Office to exercise a potent influence on the action of their representatives. Let all such inventors, as well as those who are expecting in future to have business relations with the Patent Office, write direct to their representatives, urging prompt action on this hitherto greatly neglected matter. The present session is a short one, lasting only till March, but the appropriations now made must govern the business of the office for the year commencing nest July. It is evident, therefore, that there is no time to lose, and interested parties should strongly urge that this appropriation should be one of the first considered, and not to be left to the hurry and accidents of the closing days of the session.

## Madagascar.

Madagascar consists of a central plateau or highland rising from 4,000 feet to 5,000 feet above the lowlands of the coast, and from this plateau rise occasional volcanic cones, the highest, Ankaratra, being 8,950 feet above the sea. These volcanoes extend from the northern extremity of the island o the 20th parallel of south latitude. South of this appear granitic rocks, at least as far as $22^{\circ}$ south latitude. Athigher latitudes than this the rocks of the interior are practically unknown to Europeans. According to a recent paper by Mr. F. W. Rudler, F.G.S., several crater lakes and mineral springs abound; and to the north of the voleanic district of Ankaratra there is a tract of country containing silver, lead, zinc, and copper ores. As regards building stones, besides the granite which is so general, there are vast beds of sandstone and slate between the district of Ankaratra and the fossil regions in the southwest of the central plateau. These fossils, according to M. Grandidier, the recent French traveler in the interior, are referable to the Jurassic system, and comprise remains of hippopotami, gigantic tortoises, and an extinct bird of the ostrich species. The coasts of the country are rich in timber, and it would also appear that the interior is a good mineral field.

## More Time for American Inventors.

For the purpose of allowing American inventors every possible facility for participating in the London "Inventions" Exhibition the time during which applications will be received has again been extended, the limit being now fixed at Jan. 31. As the exhibition opens in May next, it is hardly to be expected that there will be any further postponement, so intending applicants for space should take this as a last notice. The Hon. Pierrepont Ed wards, British Consul in New York city, who will furnish the necessary printed forms for applicants, reports that the number of applications thus far from this country have been quite large, and the interest shown by our people in respect to the exhibition is quite encouraging.
Mr. Edwards is untiring in his efforts to interest American inventors in the exhibition, and he is encouraged to believe that the display of their works will be most creditable to the nation.

## The Slaughtering or Cattle,

The process of killing and dressing beef at the stock yards, says a contemporary, is not as expeditious and wonderfulin character as is that of killing and dressing hogs. The features most noticeable are the two methods used in killing the animal at the start. One of these methods is through the use of the rifle, and the other the lance. In both the animals are driven singly from the yard into a narrow box stall open at the top. A dozen of these stalls are in a row, and over their tops are laid some loose planks on which the slayer walks with rifle or lance in hand. In the case of the rifle the executioner puts a ball into the animal's brain at short range, which kills instantly. Not a groan is heard, not a muscle moves. The animal falls like a lump of lead, and is at once dragged from the stall into the slaughter-house, where the throat is cut and the process of dressing is completed.

EXPERIMENTS ON SUPERHEATING AS A CAUSE OF BOILER EXPLOSION.
On the 9th of April, 1883, Commandant Treve laid before the Academy of Sciences a note upon the different means proper to prevent the explosion of steam generators, and, in the course of his paper, attributed a large uumber of explosions to a peculiar state of the water called superheating.

| First Series of Experiments.-The object that these had in | three degrees. The ebullition was accompanied with vio- |
| :---: | :--- | :--- |
| view was a study of ebullition in ordinary glass vessels. It | lent movements of, the vessel. When vaporization was ex- |
| was desired to ascertain what importance the long prepara- | cited by one of the means indicated for superheated water, |
| tion which physicists cause their vessels to undergo may | there was at times a violent ebullition accompanied with |
| have from the standpoint of superheating. | projections. |
| Balloons of good, clear glass and small dimensions were | Second Series of Experiments.-These experiments were |
| selected, and pure water and dilute aqueous solutions of | performed at the shops of the Orleans Railway, in France, |



Fig 1.-Elevation. Fig. 2.-Section throngh ca. Fig. 3.-Elevation. Fig. 4. - Plan (Scale 34).
Plate I--EXPERIMENTS AT THE CONSERVATORY.
The Minister of Public Works having invited the Central ${ }^{\text {various materials were boiled therein. The heat was ob- upon the saw mill boiler, and the lobject of them was as }}$ Committee on Steam Engines to examine the processes pro- tained from a Bunsen burner, the flame of which was spread follows:
posed by Commandant Treve, a number of experiments out by means of wire cloth. The temperature was given by It results from the experiments of physicists that superwere made by that body, and a report was drawn up, from a thermometer which dipped into the liquid. The ebullition heating is in all cases favored by a stagnation of water dur which we extract the following:
Not finding in the industrial facts that have been observed $\begin{aligned} & \text { of the pure water and of the salige and alkaline solutions } \\ & \text { gave rise to but a few insignicant movements, even when }\end{aligned}$ up to the present any decisive proof in favor of M. Treve's theory, the sub-committee endeavored to eulighten itself through experiments, as follows:
t was prolonged for some time.
Slightly acidulated water gave rise to very marked superheating, which, however, did not exceed more than two or
ing a more or less prolonged stoppage, having for effect the expulsion of the imprisoned air. Let but a slightly nergetic action occur on the superbeated liquid, and evapo ration will take place and a large quantity of steam will be (Continued on page 397.)


THE PNEUMATIC TELEGRAPH LINE AT PARIS. $\mid$ train arrives (which he knows through the noise of the The line of pueumatic tubing, which was laid as far back shock), closes the line by means of a valve maneuvered by as the year 1867, was, on the 1st of January, 1878, 205 miles in length, ths representing from the beginning an miles in length, this representing from the beginning an
average of 8,830 feet laid per year. Now the total length is average of 8,830 feet laid per year. Now the total length is
111 miles, to which must be added the 12.5 miles of tubing 111 miles, to which must be ad
that secure communication with the centers of power. It includes a double main line, in which terminate 72 sec ondary ones, with various branches, plus a direct line between the central station and the Bourse.
The number of offices that have been opened for the service of the tubes is 75 , this including those of the Chamber of Deputies and Senate.
The 111 miles of lines are suppled by 8 stations, having steam engines of a total power of 315 horses, and 4 auxiliary water moturs, which can eventually be used in addition. The traius run every three minutes upon the direct three minutes upon the direct
line from the central station line from the central station
to the Bourse, every five to the Bourse, every five
minutes upon the principal line, and every quarter of an bour only upon the few branches. The lines consists of tubes of $21 / 2$ inches internal diameter, that are bored perfectly true, so as to present no projection that might interfere with the running of the boxes. The boxes or travelers move through the tubes under the action of compressed (or rarefied) air produced by special pumps.
After the dispatches have been put into the box, the latter is closed by means of a rubber sheath which almost entirely covers it. The last box of each train carries at its back part a sort of collar formed of a flexible leather ring 31/4inches in diameter, whose edges, being in contact with the inner surface of the tube, obstruct the latter completely without interfering with the movement of the box. The box thus arranged is called the piston box, and performs the part that a locomotive does on railways, while the simple boxes correspond to cars. There is, however, the difference that when the passengers ( $i . e$., the dispatches) are not numerous the locomotive itself carries them to their destination. Each box is capable of containing twenty dispatches.
The apparatus shown in the engraving serve as stations for the trains, and, as in all stations, there is a starting and an arriving side. The apparatus of the same line are thus grouped in pairs, and, moreover, are exactly alike, so that, if need be, the direction of the train may be reversed. They consist essentially of a vertical tube (in which the line terminates) ending in a square chamber whose anterior face is provided with a door that closes hermetically. It is through this latier that the boxes are introduced and taken out. The curved tubes that are seen here and there upen the central tube of each apparatus serve to connect the line tus serve to connect the line
with the vacuum or pressure with the vacuum or pressure
apparatus by means of cocks that are maneuvered by a small band wheel. The large collecting tubes placed horizontally communicate through tubing with the reservoirs, in which the play of ervoirs, in which the play of
the pumps is constantly rethe pumps is constantly re-
newing the stock of comnewing the stock of
pressed or rarefied air.

Finally, in case a box that has reached one of the apparatus must start again through the contiguous one without getting a vacuum or pressure from the station itself (which is something that bappens in all intermediate offices that are not connected directly with a center of power), it is 40 centimeters of mercury, the velocity may reach six-tenths necessary that the compressed or rarefied air shall be capable of traversing the station in order to drive the train toward the following stations. The two chambers that form the heads of the apparatus are then connected by opening a cock piaced upon a connecting tube situated behind. In order to prevent a box that has reached the head of an apparatus from falling into the line, the tubist, as soon as a


NEW SYSTEM OF PNEUMATIC TUBES AT THE CENTRAL TELEGRAPH OFFICE, PARIS.

TALLICHET'S IMPROVED REFRIGERATING CAR. ment of train's arrival from being lost in the atmosphere when the door of the apparatus is opened
The figure also shows several indispensable accessories. The pressure gauges indicate at every moment the degree of pressure or vacuum-an attentive examination of the movements of the needle upon the dial clearly stowing to an experienced agent any irregularities that may occur in the running of the "piston." A manıpulator placed over the door, and an electric bell surmounting the "cap" of the apparatus, serve for exchanging starting and arriving signals. Finally, a series of iron plate sheaths serve for holding the exchange boxes. The velocity of the boxes varies with the length of the line and the amount of power that determines their motion. Under favorable circumstances, that is to say, upon very short lines, and with a difference of pressure of

The entire line will be finished this year, and telegram tu cards will soon be circulating in all the wards. - La Nature

According to the theory of F. Siemens, flame is the result of an infinite number of exceedingly minute electrical flashes, | which are caused by the swift motion of gaseous particles. | $\begin{array}{l}\text { prar. } \\ \text { car }\end{array}$ |
| :--- | :--- |

## IMPROVED REFRIGERATING CARS.

The object of, an invention recently pateuted by Mr . Henry Tallichet, of Austin, Texas, is to provide an improved system of refrigeration and apparatus for applying the same to practical use. The body of the car bas any approved double or packed walls serving as non-conductors of heat, and suitable side doors. The car is fitted with two chill rooms, one near each end, and of a size to afford free alr spaces at the sides and ends, the center air space being wider for access to the rooms through their doors. These rooms are jacketed with a porous material, and rest upon a slat floor, beneath which are water tanks in which may be stored water or ice, with the drippings of which the porous jackets are kept saturated by a pump located in the center air space, and having suitable pipe connections for dis. charging the water on to the top of the rooms. The pump is nperated from one of the car axles. The bottom of the tank descends each way to a well formed by a depression, and into which the suction
The play of the valves is likewise utilized for preventing |pipe extends. Air is forced into the space between the top the compressed or rarefied arr that fills the line at the mo. of the tank and floor on which the rooms rest by one or a zıgzag construction, which serves as a rack to hold the ice and keep it above the drip water. This portion of the pipe is set in an inclined position, and at one end has a branch passing outward and downward and opening to the onter air, and at the other end has a branch passing down into the chill room. Air enters the pipe, and as it passes through the zigzag part in the ice chamber is deprived of 1 ts moisture by condensation, and appears in the chill room in a pure, cool, and dry condition, best sulted for purposes of ventilation. The incline of the worm permits of a self-discharge of the condensed vapors. At a point as far removed as possible from the cold air outlet, there is passed into the chill room the open end of a pipe the other end of which opens into the case of one of the exhaust fans at the roof. This pipe acts constantly to exhaust and circulate the air of the chill room, thereby avoiding the deleterious effects of "dead air." An arrangement is provided for reducing the temperature of the chill room by saturating its top and side walls with the cold water drip of the ice chamber; this is accomplished automatically and at any premedilated temperature by au electrical contrivance acting on a valved outlet from the ice clamber. The water escaping from the ice chamber fills a shallow tray formed on the chill room of a roof by narrow ledges, and flows down the sides of

## A Suggestion to Employers.

The Bridgeport (Conn.) Daily Standard hits the nail on the head when it recommends a year's subscription of the Scientific American as the best Christmas present an employer can make his workman, or a father his son. The editor further adds:
"And let any manufacturer try the experiment of asking each man in his employ as to the interest he would take in reading such a periodical if it was placed before him, and information that can be furnished at a small outlay. For every paper thus put in the hands of his employes he would receive four times its value by reason of the increased inter est which would be taken in whatever work might be in derived from the enhanced skill of the workmen. The weekly visits of the periodical would constantly remind each man that his employer was concerned in his welfare, and that he bad exerted bimself to show that interest. We know from personal experience that information gained from the columns of the scientific journal above mentioned is invaluable to the person who is interested in science, art, or natural history, and it would be truly a pleasure to learn he would ever afterward be satisfied was a good one, which he would ever afterward be satisfied was a good one.
We await to see how many will follow the good suggestion of our valued contemporary before this month closes -Ed.

## Putnam River, Alaska.

The Ounalaska (Lieut. G. M. Stoney, U.S.N., commanding) arrived in San Francisco, Oct Jber 25, having completed the exploration of Putnam River so far as the time allotted would permit. The river was explored by a steam launch three hundred miles, when rapids were encountered; then a canoe was taken and towed by hand about eighty miles further; and from this point a short portage brought a portion of the party to the head waters of one of the northern tributaries, which was fed by two large lakes. A mountain near one of these lakes furnished a view far to the eastward, up the main valley of Putnam River, and slowed it flowing in undiminished volume as far as the eye could reach. The natives reported that seven days' journey further up the river there was a great lake, looking like a sea; and it is thought that this is the source of the river. There is little doubt that the river has its origin as far east as the British possessions, and probably near to the Mackenzie.
Putnam River empties into Hotham Inlet just north of Selawik Lake and to the southeast of Kunatuk River. There is a large delta at its mouth stretching back about forty miles, which is pierced by over one hundred channels, one of which is about one mile in width. The river is navigable to boats drawing from five to six feet of water, up to the rapids. Here the water flows at about ten knots per hour. The river and most of its tributaries lie within the Arctic circle. Most of the tributaries are from the north, and they are generally shallow but rapid flowing, while the water is very cold; in some instances the observed temperature being $38^{\circ}$, while in one case it was $33^{\circ}$. Ouly one considerable branch was found flowing from the southward. This is called the Pah River by the natives, and it is used by them in journeying to the south; for a very short portage from its source enables them to reach one of the northern tributaries of the Yukon River, and they are thus brought in easy communication with the trading posts. It is believed that like easy portage can be made from the Putnam to the river discovered by Lieut. Ray near Point Barrow, and which empties into the Arctic Ocean.
The country about Putnam is mountainous. Long ranges extend along either side, but they are peculiar in existing in small detached groups, each of which possesses distinguishing characteristics, some being clearly defined, sharp, rocky peaks, while others are smoothly rounded. The higher ones are estimated at about three thousand feet. From the tops of those which were ascended the whole country to the north appeared to be a confused mass of mountain peaks, and the natives stated that the country was of the same character to the Arctic Ocean.
The country explored was found to possess a warm and agreeable summer climate, the thermometer baving reached $115^{\circ}$ in the sun, while the nights were cool. The valley of the Putnam is heavily timbered with spruce, birch, cotton wood, larch, and willow; while flowers were in abundance, roses being seen in large numbers. Cuttings of these latter, together with specimens of coal, gold, and copper, and a huge fossil trunk, form a part of the material collected for the Smithsonian Institution.
While Lieut. Stoney was absent, Ensign Purcell remained with two men in charge of the schooner, and made a survey of Hotham Inlet and the Selawik. He found that the Sela wik River represented on the charts has no existence; but there is a chanuel, six miles in length, connecting Selawik Lake with a chain of three lakes to the eastward. He also found a five fathom channel over the Hotham Inlet bar.
The Ounalaska is a fifty-four ton schooner, and Lieut Stoney was provided with two officers and a crew of eight men. There were no naturalists with the expedition.
While returning from his expedition, Lieut. Stoney en countered several severe gales. During one of the most se vere he employed oil for stilling the waves, with marked success. The oil was rigged upon a spar to which a drag was attached, and the vessel was so maneuvered that the drag stond off the weather bow. The vessel holding the oil was so constructed that the oil was forced out in portions by each advancing wave. All the waves were affected by the oil, but the great foaming combers most markedly.

## Patent drawers.

The top part of the drawers is made of woven or knit inen or cotton fabric, and the legs are made of the same material down to or a little behind the knees, and the lower part of the legs are of open work fabric. The perforated part of each leg is provided with an upright slit in the usual manner, and with bands or buttons at the lower end to hold the drawers leg securely, and at the same time prevent the sod from slipping off. The apertured parts permit of a free circulation of air, thereby keeping the legs cool and making the drawers comfortable and agreeable during hot weather. The front of the upper part of the drawers


## TOWLES' DRAWERS.

closed p
e other
This in vention has been patented by Mr. Wm. P. Towles of 145 Baltimore Street, Baltimore, Md.

## COMPOSITE MICA SHEET.

An invention recently patented by Mr. John L. Rorison, f Bakersville, N. C., is specially designed to meet the wants of retailers of stoves, who, with punch, rivet, and hammer, can join two or more small pieces of mica to form a sheet of any size and shape. Figs. 1 and 2 represent the completed sheet of mica, Fig. 3 shows the pieces separated, and Fig. 4 is a section through the rivet. In uniting four pieces the inner corner of each piece is slightly cut away, so that when they are put together a central opening will be formed for the passage of the rivet. The inner edges of each sheet are notched, so that when put together the edges lap past each other, forming good joints, and are at the same time locked in place. The contiguous edges being placed together, the rivet is inserted, when the washer is put upon the smaller end and the rivet headed down, thereby causing the head of the rivet and the edges of the washer to grasp aud firmly hold the pieces. When only two pieces are used to form


RORISON'S COMPOSITE MICA SHEET.
the sheet, the edges are notched to form the lock joint, and the centers of the adjoining edges are cut away to make passage for the rivet.

Civil Service Reform in Mines.
The recent mine explosion in the Connellsville region has led the mine inspectors to take steps to prevent a repetition of these horrors. This morning the inspectors met in this city. 'hey will draw up a bill to present to the Legislature; in which miners ignorant of the business will be excluded from the mines. Pit bosses and men having charge of the ventilating of the mines will be required to pass a thorough exmination before taking a position. It is also proposed that the inspectors move for establishing a school for the purpose of furnishing free instruction to men whose purpose is to engage in soal mining.

## Magic Photographs.

What are called'magic photographs are positives printed in a latent state upon white paper that it is only necessary o immerse in ordinary water to have the image appear.
The means employed for obtaining this curious and surprising effect are as lollows: The positives are printed, from any negatives whatever, upon paper sensitized with chloride of silver, such as may be purchased of any dealer in photographic supplies. The printing is done with the aid of sunlight, either direct or diffused, in an ordinary printing frame, or, more simply, between two plates of glass held together by means of spring clips.
The image, when once printed, is fixed in a bath composed of 10 grammes of byposulphite of soda dissolved in 100 grammes of ordinary water. It is not toned with gold, but is thoroughly washed with water after coming from the bath, so as to remove every trace of the hypo from the fibers of the paper.
This washing is absolutely necessary, in order that the paper may remain perfectly white after it has been treated with the following bath:

Bichloride of mercury.......... ............... 5 grammes.
The image, when immersed in this bath, soon gradually begins to lose color, and finally disappears altogether. When the paper has become entirely white, it is washed in water and allowed to dry.
If it be desired to cause the latent image to reappear, it is orly necessary to immerse the paper in a weak solution of hyposulphite of soda, or better of sulphite of soda.
To the back of these photographs there is attached a piece of bibulous paper impregnated with sulphite of soda. In this way, when the paper is immersed in water, the sulphite at once dissoives, and the image quickly appears.
The bichloride of mercury (corrosive sublimate) is a sub stance that should be used only with great precaution, as it s a violent poison. Care should therefore be taken to allow no delicate part of the body to come intu contact with it, and to put the vessels containing it in a safe place out of reach.
The sensitive paper adapted for this curious recreation may be either albumenized or salted simply.
The sensitizing is performed by floating upon a 10 per cent nitrate of silver bath, for five minutes, either salted paper that may be purchased in this state or be easily prepared by immersing white paper in water containing 5 parts of table salt to 100 .
After sensitizing, the paper is suspended by one corner, and allowed to dry in a dark place. For the balance of the operations one will proceed as above directed.
The rationale of the phenomenon is as follows: The image formed by the light is colored by the reduced silver. This image, when bleached by the bichloride, contains both calomel (chloride of mercury) and chloride of silver. Sulphite of soda possesses the property of dissolving chloride of silver, and of blackening chloride of mercury by forming a sulphide. -Leon Vidal, in La Nature.

## How to Keep Cider Sweet.

Pure sweet cider that is arrested in the process of fermentation before it becomes acetic acid or even alcohol, and with carbonic acid gas worked out, is one of the most delightful beverages. The Farm, Field, and Fireside recom mends the following scientific method of treating cider to preserve its sweetness. When the saccharine matters by fermentation are being converted to alcohol, if a bent tube be inserted air tight into the bung, with the other eud into a pail of water, to allow the carbonic acid gas evolved to pass off without admitting any air into the barrel, a beverage will be obtained that is fit nectar for the gods.
A handy way is to fill your cask nearly up to the wooden faucet when the cask is rolled so the bung is down. Get a common rubber tube and slip it over the end of the plug in the fancet, with the other end in the pail. Then turn the plug so the cider can have communication with the pail After the water ceases to bubble, bottle or store away.

## Shameful Treatment of Inventors.

The fact that the revenues of the Patent Office are largely in excess of its expeuditures is an unanswerable argument in favor of the very considerable increase of the clerical force in that office. American inventors do not ask to have reduced the fees which must be paid to get a patent. What they want is that their applications shall receive immediate attention, and that the money demanded of them shall be used to secure this for them. As the matter now stands, they are compelled to pay for that which they do not get. They are forced to submit to long and often ruinous delays because there are not enough clerks in the office to do the work, and meantime the money which they pay to have the work done is suffered to lie idle and accumulate untilit now amounts to a fund of two or three million dollars. It would be difficult, we think, to conceive of anything more asinine than such an arrangement. -The Textile Record.
It is too bad, as our contemporary says, with such a large amount to the credit of the Patent fund, that the Patent Office should be crippled in its usefulness for the want of a sufficient clerical force to attend to the business, owing to a lack of a little Congressional wisdom. The inventors of the country are not small in nuabers or weak in influence; and it is incumbent upon them to use their individual influence with the Congressmen from their respective districts in respect to the necessities of the Pavent Office.

EXPERIMENTS ON SUPERHEATING AS A CAUSE OF BOILER EXPLOSION.
(Oontinued from page 394.)
quickly emitted. Such a thing occurs at the moment o starting a generator that has slowly cooled during an entire night, with register and ash box closed, and with a fire corered uniformly with cinders. It was of interest, then, to ascertain whether, under such circumstances, the opening of the steam port, by causing an ebullition, would not bring about a sudden forward motion of the pressure gauge.
The boiler experimented upon was a tubular one, having the shape of that of a locomotive, and the following dimensions: Heating surface, $65^{\circ} 4$ square meters; capacity of the water reservoir, 3,130 liters; capacity of the steam reservoir, 1,089 liters.
During its normal operation this boiler vaporized about 425 liters of water per hour. It was heated by wood.
Observations were made on the 22d and 23d of June, 1883, and were resumed on the 11th of July, and continued every day till the 1st of August. In the morning, at the moment of setting the boiler in operation, and while the steam port was being opened, an observer had his eyes fixed upon the pressure gauge. But these observations showed absolutely nothing abnormal in the movements of the gauge. If the fire was quick at the moment of starting, the pressure continued to rise until the engine had acquired its normal speed; and, when the fire was covered, the pressure slowly lowered.
Third Series of Experiments.-In a boiler in normal operation the temperature of the steam is the same as that of the water. If, at a given moment, the water becomes superheated (to take that particular state in which it ceases to vaporize), the tension of the steam becomes independent of the temperature of the water, and there must, therefore, occur a difference bet ween the temperature of the two. An endeavor was made to seize differences of such a nature, and, with this end in view, a series of experiments was planned in which the differences of the temperature of the steam and water of a boiler should register themselves for a long time.
The arrangement adopted for taking the temperature is shown in Plate I., Figs. 1 to 4.
The boiler experimented upon. was that of the Conservatoire des Arts et Metiers. It was a cylindrical one, haviug four lateral feed-water heaters, a heating surface of 13 square meters, and a grate surface of 27.5 square decimeters.
A thermo-electric pile was constructed for suspension in the boiler in such a way that a series of solderings should dip into the water, while others of equal number should remain in the steam. This pile, which was 45 centimeters in length, consisted of 15 iron wires and 15 German silver ones, 15 millimeters in diameter, soldered successively by their extremities. These wires were arranged according to the generatrices of a boxwood cylinder, 40 millimeters in diameter, having an aperture running through it length wise for the passage of the copper wire by which the pile was suspended vertically from the self-closing cover of the manhole of the boiler.
The ends of contrary polarity, which remained free, were connected with a galvanometer needle, whose deflections were registered every quarter of an hour upon a sheet of paper by means of a puncture made by a vertical point fixed to the needle's extremity. This registering apparatus, with clockwork movement, was the same as had been successfully employed by Gen. Morin for measuring at the different points of a ventilating chimney, the excess of internal temperature over that of the surrounding air
Each positive experiment included the registering, every twenty-four hours, of the position of the galvanometer needle, before firing up and until the boiler was under pressure, at the time the engine was set running, and while the latter was operating under nearly a constant pressure, and finally during the period of cooling, up to the next day or day after. Then the paper was changed in order to obtain a new diagram corresponding to the firing up again, before or after a new feed, until the pressure had risen to the normal one of five atmospheres, and had permitted the engine to run regularly.
No notable deviation was exhibited in the position of the galvanometer needle during all these alternations, or during the wbole duration of the observations, which were greatly prolonged.
It resulted from an examiuation of the diagrams that the temperature of the steam pole was in general not quite so high; but the difference was always below $2^{\circ}$. This is explained by the proximity of the sides of the boiler, the temperature of which was naturally lower than that of the steam, and which radiated agaiust the steam pole.
During the night of August 26-27, the galvanometer needle became strongly disturbed, as shown by the tracings. What was the cause of it? We do not know; but, at any event, the form of the tracing does not permit it to be attributed to superbeating, seeing that the movements occurred between half-past one and six o'clock in the morning, that is to say, during the period of cooling. Further, the diagram shows that the deflections of the needle occurred suddenly and disappeared slowly, while the contrary would have taken place had superheating been the cause of the movements.
It is thus established by direct experiment that no appreciable difference is shown between the temperature of the water and that of the steam during any of the periods comprised in the observations, either during the running or during firing up or cooling.

Fourth Series of Experiments.-Finally, it was desired to ascertaiu whether, by depriving water entirely of the air in solution, by means of an extremely prolonged ebullition, the phenomenon of superheating could not be obtained in a metallic boiler.
The experiments were performed at the laboratory of the Ecole des Ponts et Cbaussees, at the Trocadero.
The boiler, A, used (see Plate II., Figs. 1 to 3) consisted of an iron cylinder provided with strong cast iron hapds. This was tested to a pressure of 15 kilogrammes per square centimeter. Its capacity was about 21 liters, and it was
heated by a large Bunsen burner, B, having two crowns, heated by a large Bunsen burner, B, having two crowns,
one of them carrying 6 , and the other 12 jets. The gas pipe was provided with a pressure regulator, C. By varying either the number of jets or the pressure of the gas, the conditions of heating could be modified within wide limits. The boiler was provided with the following accessories: A good Bourdon pressure gauge, D, divided into quarter kilogrammes; a water gauge, E ; a safety valve, F ; and various cocks. It was also provided with two horizontal mercurial thermometers that passed through stuffing boxes, $G$ and $H$, and the bulbs of which entered, one of them, the water, and the other the steam. Their tubes were external to the boiler.
The arrangements made for obtaining a prolonged ebullition were as follows: From one of the cocks, I, which debouched a little over the center of the boiler, branched a tube that bentso as to run nearly to the bottom of a vertical cylindrical vessel of water, K , made of galvanized iron. The water in this reservoir had been previously boiled, and the same was the case with that which was to be added from time to time to replace the water which had evaporated. The capacity of this vessel was 50 liters.
The boiler being heated, the steam produced bubbled up through the water in the vessel, K , and kept it at a boil ing point. As the cover of $K$ had but two narrow apertures, one of them for the passage of the steam pipe, and the other for the exit of the excess of steam, it will be seen that there always existed at the surface of the ever hot water in K an atmosphere of steam, and that the water could not dissolve any air.
The operation was as follows: The boiler was heated for about an hour and a balf, and then the gas was shut off. Through the condensation of the steam by cooling, the boiler became completely filled with water drawn from K. In half an hour, heat was again turned on, when there flowed through the feed pipe, first, water, and next steam. For alternately admitting and cutting off the gas, a small apparatus was used that consisted of a hydraulic working beam, L, which maneuvered the gas cock, M.
The boiler had been cleaned with caustic potash, and then washed with a large quantity of water. The apparatus was set running January 4, 1884, at 3 o'clock P. M. The experiments, properly so-called, began January 15. The water had therefore boiled, before the first experiment, for eleven days, night and day, with an interruption of half an hour every two hours, corresponding to about 200 hours of continuous ebulition. It may be admitted that on the 15th of January the boiler and water were absolutely devoid of air.
During this entire period the two thermometers were obwithin aboune to time, and were always found to agre already explained in our account of the Conservatoire experiments.
The experiments, properly so called, were performed on he 15th of January and the days succeeding, and were as ollows:
All the cocks were closed, and the boiler being submitted to the action of heat, the temperature and pressure conse quently rose. At intervals, simultaneous observations were made of the thermometer which dipped into the water, of he one which was in the steam, and of the pressure gauge. Finally, the conditions of heating were varied, so as now to cause the temperature to rise $50^{\circ}$ in half an hour, and then to rise only $28^{\circ}$ in six hours and a half.
The last experiments were performed after the boiler had been kept closed, and slightly heated for nearly fifteen hours, and the result of them may be summed up as follows:
The two thermometers were constantly in accord; the difference, which was always less than $2^{\circ}$, as in the Conservatoire experiments, is very naturally explained by a few small variations in the construction of the instruments and the ac tion of pressure upon their bulbs, and especially by the un equal effect of radiation from the sides of the boiler. It was remarked, in fact, that the thermometer in the steam gave on the cications laan the other when when it lowered. A the moment of opening the escapement no abnormal move ment in the needle of the pressure gauge was ever seen.
Conclusions.-In conclusion, the committee believes that i has in no wise been demonstrated, up to the present, that the superbeating of water has caused any boiler explosion, nor that superheating has ever occurred in generators used in the industries. If it does occur, it is only in extremely rare cases, and through the concurrence of exceptional circumThere is, therefore, no need for the moment of examining the remedies that have been proposed for preventing the Derheating of water in generators.
Description of Plate I.-P, thermo-electric pile; $p p^{\prime}$,
wires for connecting the poles of the pile and the galvano
meter, $G$; $Q$, needle of the galvanometer, $G$, that moves around
the axis of the suspension wire, $g$; $c$, cam of the registering apparatus, moved by clockwork and allowing the disk, D , to rise every 15 minutes under the action of the weight, F $\Gamma$, man-hole, closed by the cover, $H$, which latter is provided with two stuffing boxes, $r, r$
Plate II.-A, boiler; B, Bunsen burner; C, pressure regulator; D, Bourdon pressure gauge; E , water gauge; $\mathbf{F}$, safety valve; $G$, thermometer in steam; $H$, thermometer in water; $\boldsymbol{J}_{i}$; feed cock; K , freed water tank; $b$, steam eduction aperture; $c$, water gauge; $d$, blow-off cock; $\mathbf{L}$, hydraulic working beam fed by the bottle, $e ; \mathbf{M}$, gas cock; N , lighter; $f$, blow-off cock of the boiler; $g$, escape pipe.-Abstract from Annales des Ponts et Chaussees.

## Acetate or Soda Heaters.

For the last two years experiments have been making toward the warming of cars by means of a heat giving fluid, which continues for several hours to throw out heat with approximate regularity, for a time depending upon the original degree of heat imparted to the liquid. The cars of the De Kalb Avenue line in Brooklyn, seventy in uumber, bave been beated by this system during the last winter to the satisfaction of the company, and presumably to that of the public.
A large iron pipe containing the compound passes under each seat of the car; through the center of the pipe uns a smaller pipe, through which steam is passed when it is desired to heat the compound. When heat is applied to he pipes from a steam boiler in the station, the crystals in he acetate of soda used are liquefied, and remain so until he temperature begins to fall perceptibly. Then the crystals begin to form, and the liquid throws out an increased heat A thermometer taking the temperature of a pipe of the heat ed compound shows that during the first hour or two there is a slight fall in the temperature, then a sharp rise while crystallization takes place, and then a gradual fall.
A record of the temperature of one car kept during twenty days showed that after each ruu of sixteen miles, the temperature of the car was upon an average less than one degree lower when the car returned to the station than when it started out. The cost of heating cars by this system is said, by the company which controls the patents, to be not more than for stoves, while the heat is pleasanter and the atmosphere is free from gas and smoke. The compound in the pipes will last for an indefinite number of years, for all that is known to the contrary, being hermetically sealed.
This company now propose to introduce the same system as an improvement on heating by ordinary steam radiation. Steam coils often heat ton violently in small rooms, and either give too little or too much heat. By using the steam to heat a reservoir of the compound liquid, the steam can be urned off when the room is sufficiently warm, and the reservoir will continue to throw out a constant amount of warmth for several hours. A small pipe full of the compound, 3 feet long and 4 inches in diameter, is made for heating private carriages.

## Earth Worms.

An interesting paper on the habits of earth worms in New Zealand is contributed to the New Zealand Institute by Mr. A. TT. Urquhart. The species are not named, but with such wonderful opportunities as Mr. Urqubart possesses for making a coilection of these, may we hope that, in addition to his following out his painstaking observations as to their babits, he will also advance science by making a careful collection of the forms and placing them in the bands of some of the able naturalists of the Auckland Institute for description? It will be remembered that Darwin assumes bat in old pastures there may be 26,886 worms per acre, and that Henson gives 53,767 worms per acre for garden ground and about half that number in corn fields. Mr. Urqubart gives, as the result of his investigations of an acre of pasture land near Auckland, the large number of 348,480 worms as found therein. It being suggested to him that in his selection of the spots for examination he may have unconsciously selected the richest, the experiment was again ried in a field seventeen years in grass. A piece was laid out into squares of 120 feet, and a square foot of soil was aken out of each corner; worms banging to the side walls of the holes were not counted, and in one hole, where the return of worms was a blank, the walls were crowded with worms. As a result there was an average of 18 worms per quare foot, or 784,080 per acre. Although this average is very striking when compared with that of Heuson, it is worthy of note that the difference between the actual weight of the worms is not so marked. According to Henson, his average of 53,767 worms would weigh 356 pounds, while Mr. Urqubart finds that the average weight of the number found by him came to 612 pounds 9 ounces.

## Indelible Stamping Ink.

E. Johanson, of St. Petersburg, gives the formula for a convenient ink for marking clothing by means of a stamp: 22 parts of carbonate of soda are dissolved in 85 parts of glycerine, and triturated with 20 parts of gum arabic. In a small flask are dissolved 11 parts of nitrate of silver in 20 parts of officinal water of ammonia. The two solutions are then mixed and heated to boiling. After tos liquid bas acquired a dark color, 10 parts Venetian turpentine are tirred into it. The quantity of glycerine may be varied o suit the size of the letters. After stamping, expose to the sun or apply a hot iron.-Pharm. Rec.

## the maxim machine gun

(Continued from first page.)
motion carries the catch free of the stop, and a little more lifts the catch, by its tail coming in contact with the stop. The bolt aud the barrel are then free of each other, and the former receives a rapidly accelerated motion from a lever pi voted on the barrel, and moves with it. As the barrel approaches the end of its stroke the point of the lever meets a stup. and commences to rotate about its pivot. In doing this it forees formard a piece connected to tbe block, first with a slow motion and then with a gradually augmenting one, as the leverage of one arm increases and that of the other diminishes while the lever rolls over the stop and the piece. By the action of the lever the barrel is arrested, while the block and the mechanism attached to it continue to move until the crank, l, gets on to the back center. As soon, however, as the block has commenced to leave tbe barrel, and before the latter has come to rest, the extractor, $M$ strikes the peg which stands in its path, and turning on its pivot on the barrel, draws the shell about $1 / 4$ inch out of the gun. This extractor bastwo arms, shown in dotted lines, which take hold of the empty cartridge at each side, and withdraw it witb certainty. The extraction is completed by a book shown (Fig. 5) attached to the crosshead.
This book runs under a fixed spring, which is curved upward at each end to reduce the pressure when the shell is being started, and when it is about to be released. The empty cartridge case is deposited in one of the pockets of the cylinder, $G$, which is partially rotated just as tbe crank reaches the back center, and is carried round to be dropped out after the next shot. This cylinder is visible in Fig. 4, where a shell is seen in the act of falling out. The partial rotation of the cylinder brings the next pocket, which has already been charged, into a line with the barrel, and now the first series of operations is complete. The recoil has taken place, the breech block unlocked, the shell first started, and then completely extracted and removed, and the new car tridge brought into position for loading.
The next series, which is about to commence, consists in cocking the bammer or striker, pushing the cartridge home, lock ing the breech piece, and releasing the sear. As the crank approaches the back center the tail, $D$, of the cocking leve meets the stud, J , and the catch is caugh and detained by the sear. The main spring, which is somewhat indistinctly shown coiled round the striker, is thus compressed, and held ready for action When the crank has passed the center th breech block moves toward the barrel pusbing the cartridge before it until the latter is home and the block is locked by the catch, C.

The momentum of the crank and cross head is sufficient to carry the barrel for ward until the toggle arms, $d d$ pass the center, and the springs, $e e$, are in a position to urge it to the end of its travel If the gun is set for very rapid firing they do this immediately, and tbe sear coming into contact with the cam, K , the striker is released, and the cartridge fired. Afte the shots have been fired the same cycle of operations is repeated, with this dif ference that the crank, instead of starting from the position shown in Fig. 5, occupies the dotted position, and commences to rotate in the opposite direction. It neve makes a complete revolution. But if the gun be not set for a rapid rate of firing there is a panse after the breech is locked, and the length of the time is determined by the adjustment of a hydraulic buffer resembling in principle a cataract cylinder. This appliance (L, Fig. 5) consists of a piston working in a cylinder with a by pass between its two ends. This by-pass pruvided with a handle working over a quas outside of the case. This quidrant is madravt on the between nil and the maximum, according to speeds which is afforded between the two ends of the cylinder the various angles. The rate of fire can be reduced in practice to one shot in every twenty-five seconds, and by very careful adjustment to one in fifty seconds. The operation of the hydraulic buffer is as follows: Upon the upperside of the barrel is a stop which, just before the end of the forward stroke meets the piston of the buffer, as clearly hown in Fig. 5. Under theinfluence of the :prings, $e \boldsymbol{e}$ it forces the liquid through the plug until the barrel has moved far enough to lift the sear, and


Fig. 4.
empty belt is fed oi.\% of the opposite side of the machin (Fig. 4), and the lengths can be taken apart by unhooking and refilled ready to be fed in again.
The external handle of the hydraulic buffer also acts as a trigger, for if the by-pass be opened when the gun is loaded the explosion follows instantly, while if it be entirely closed the gun cannot be fired. As a means of precaution the sear is mechanically locked when the by-pass is stopped. The crankshaft is carried through the casing, and is furnished with a handwheel which is worked in starting the gun until the first fire has taken place. It is also used whenever a faulty cartridge, which will not explode, stops the artion. In such case a single revolution throws out the obstacle, and the automatic action is at once resumed.
The gun stands about 3 feet higb, and is 4 feet 9 inches from the muzzle to the rear of the firing merhanism. It can deliver any number of shots per minute from two or three to six hundred, the latter being, of course, a kind of trial trip performance, under favorable conditions. At al rates, it is perfectly steady, and the gunner is perfectly free to concentrate all his attention upon the aim, without havin his vision or his steadiness interfered with by turning a han dle. No one can fail to be struck,says Engineering, to which we are indebted for these notes with thewonderful ingenuity and great promise of this new wea

Fig. 3.
then the explosion takes place. There is a valve in the piston of the buffer to allow it to be returned quickly by a pring during the recoil of the barrel
This completes the description of the introduction, firing and extraction of a cartridge, but it remains to explain how the charges are withdrawn from the belts mentioned above, and introduced into the pockets of the cylinder, G. The full

A New Electrical Lantern.
pon. Its automatic action, its power of regulation, and its rapidity of fire must recommend it to the military authorities, while its steadiness and the small demandsit make upon the attention of the man in charge must greatly enbance its value in action, where it is not the number of hots, but the number of hits, that count.

Ao attempt bas been made by Mr. A. P. Trotter to con struct lanterns which shall diffuse powerfu lights, such as that of the electric arc, with out incurring the loss entailed by the use of opal glass. This was done with certain lamps fixed at the Health Exhibition, by a special modification of prismatic lenses (such as are used for lighthouses), adapted for ordinary lanterns. The general shape of the lanterns is the same as that of the more improved street lanterns for powerful gas flames-an inverted cone closed at thetap by an opat glass cepp in the form of a much flatter cone. The glazing of the lantern, however, instead of being with plane glass, is with specially moulded panes, bearing on them a number of prisms at one-fourth iuch pitch. The prisms are formed on both sides of the glass, those on the front being borizontal, and those at the back running vertically. The effect is to break up the light source into a multitude of images of itself; care being taken that the angle of the prisms does not give a chromatic effect. Each pane so formed for a 2 foot 6 iach lantern, is 14 inches long, tapering from 8 inches wide at the top to 2 inches at the bottom; and ten of these go to form the lantern. It is claimed that the absorption of light by such a lantern is only 10 or 15 per cent, as against 40 to 60 per cent with ground or opal glass.

## A New Camera Lucida.

A new camera lucida has been invented by Dr. Schroder, possessing many advantages over the well known contrivance of Dr. Wollaston. The pencil emerging from the eye piece of the microscope is reflected twice, as in the old instrument, but the view of the paper and pencil is obtained belt is drawn out of the magazine (Figs. 1 and 4), and passes hy means of another prism placed under the first; the penover the wheel, F , which has recesses in each flange for the ends of the cartridges to rest in. This wheel is geared to the cylinder, G. In the firing position a hook or extractor, E, stands below the cartridge, and when the crosshead goes back this catches a cartridge and draws it into a pocket on the underside of the cylinder, where it leaves it to be carried upward to the barrel by the rotation of the cylinder. Th


Fig. 5.-THE MAXIM SELF-ACTING MACHINE GUN.
il from the microscope is totally refiected, and cannot pass hrough the film of air between the prisms, and the paper is seen directly between the two prisms, which offer no more obstruction to the view tban a thick piece of plate glass.
The position of the image does not shift when the eye is moved, and the painful strain caused by the bisection of is moved, and the painful strain caused by the bisection of
the pupil in the Wollaston instrument is entirely avoided.

Drawings can be taken either with the body of the microscope at the usualinclination of $45^{\circ}$, or in a vertical position, both more comfortable in every respect than the old horizontal one, and preventing disturbance of the illuminating arrangement by having to shift everything when a drawing is required.

## SOME SPECIMENS OF FINE CATTLE.

The accompanying representation of a select berd of catthe is from the pencil of Mr. Cecil Palmer, who has obtained considerable distinction in making pictures of this class; our engraving, for which we are indebted to the courtesy of the Rural New-Yorker, being a reduced copy of an original 28 by 36 in in size. The cattle represented all belong to the same family, the Aaggie, a breed imported from Holland, and now in possession of Messrs. Smiths \& Powell, of Syracuse, N. Y.
At the right stands Neptune, the bead of the family, and lying down in the foreground is Aaggie Katbleen; she bas given this season, the first after her importation, 9,525 pounds of milk in seven months and five days to Nov. 1. Aaggie Beauty, standing in the water, bas a milk record of 80 pounds 6 cunces in a day. As a three-year-old in Hol land she gave $681 / 2$ pounds in a day; as a four year-old she gave, the first year after importation, 13,573 pounds, and made in one week 10 pounds of butter. Just above this one is Aaggie, baving a milk record of 18,004 pounds 15 ounces in a year, and next behind her is Aaggie Beauty 2d, a daughter of Aaggie Beauty, who has given this season, as a three year-old, 7,793 pounds in seven months and six days
which they change to the dark blue color as they grow older which, if I an not mistaken, they acquire in their third year. Should there be a number of ponds near by, they seem to give preference to some certain one, at which they may almost always be found, unless previously frightened away, when they betake themselves to the next, where if they are not followed they remain for a time, and in the course of an hour or so wend their way back to the aforesaid pond. Now let me describe to you some of the labits of these birds, as I have observed them when lying in concealment on the shores of one of these ponds. Young and old feed together in perfect harmony, and a beautiful sight it is to see the snowy white plumage of the young birds intermingled with the dark blue of the old.
How proudly and yet how stealthily they step through the tall grass in search of their food! Suddenly one pauses, darts his beak at an insect, and again pursues his way. Yet in their chosen baunt they are constantly on the lookout for danger; pausing, they raise their loug necks, and peer about them closely for some cause of alarm; assured that all is safe, they again betake themselves in search of whateve they may fancy as an article of diet.
ground or when wading in the water in search of food, it is horizontal, or perhaps the breast is carried a trifle below the tail. The way in which they carry their necks when flying is different from their near relative, Ardea Herodias (great blue heron), being the shape of a broad, shallow $U$, with the head a little higher than the shoulders, whereas in $A$. Herodias, it is folded similar to a reef. Should they be suddenly approached, they fly away with a boarse, harsh, croaking oise.
Occasionally they stroll for some distance into the woods, for the beetles, insects, etc., to be found there. I lave seen them forty to fifty rods from the water. When there they sometimes rise and fly a few yards, and then alight again; in such cases they do not fly bigher than four or five feet from the ground. I bave never seen these birds in the rusbes; they seem to prefer the grass from two to three feet high on the shores. Their manner of alighting is different from that of other herons. When about to alight, they throw themselves back into the air perpendicularly, with wings and tail widely expanded, and neck partially drawn in (representing as near as possible the screens tbat are made from them by taxidermists), then glide toward the spot selected, pause an instant,


## SOME SPECIMENS OF FINE CATTLE.

to Nov. 1. At the left in the background is Aagrie Rosa, who as a five-year-old in Holland gave 91 pounds in a day, and last season gave 16,156 pounds in the year. The one in the right of the background is Aaggie May, the dam of the calf sbown, and she bas given this season, as a three-yearold, 57 pounds 13 ounces in one day, and 8,705 pounds in six months and sixteen days to Nor. 1.

Ardea Corulea.
Reader, I see before me a small lake or pond, lying in a vast tract of pine forest, unbroken, save here and there by the clearing of the settler who has cast bis lot in this sunny clime of Florida; a pond that is decked bere and there with beautiful water lilies, beneath which lies the alligator, ever ready to catch bim who dares intrude on his domains; a pond wherein dwells the deadly moccasin, and whose slores are covered with a rank growth of wild oats and trees from which bangs the long Spanish moss-a landscape pleasing to the eye, but seen only by him who seeks Nalure in all her glory. It is such a place as this that the little blue beron inhabits, and to which I shall take you for a glimpse of him as he is when freest from the fear of danger, and when pursuing his natural vocations. The little blue heron (Ardea Ccerulea), sometimes called the little white beron, is a constant resident of Florida, frequenting the small ponds, lakes, bayous, and lagoons, where its food is to be found, and where I have seen them assembled six or eight in number. The young are pure white in color (hence the name little white heron), from

Presently, one in bis wanderings comes to a log lying partly on land, partly in water; mounting this, he proceeds to dress his plumage and to sun himself. With head drawn down between the shoulders, he stands motionless for an hour at a time, and it might seem as though he were asleep, but not so; let him hear but the snapping of a dry twig in the woods, and instantly every nerve is on the alert. Stretching out his neck, be gazes intently in the direction of the noise, and should he perceive sufficient cause for alarm, he immediately springs into the air together with the rest of his companions who are not far off, when unless fired at they generally aligh on the opposite shore, and seek refuge in the tall grass, or else alight in a tree. Should the one, however, who first heard the noise perceive no cause for alarm, he sometimes signals to his companions in some way, when they all arise, and fly few times over the spot, and then alight again.
Let us now suppose that they have alighted in a tree where we can see them plainly. There they sit pluming themselves, but jet keeping a sbarp lookout to see if they are followed. If everything remains quiet after a lapse of ten or fifteen minutes, they begin to fly down one at a time. Close at band lies the upturned root of a fallen tree; on this they alight first, then from there they fly to the ground. The last one to leave his perch usually tarries a few moments as if to take a lastlook, then he also flies down and joins the rest, when they soon work their way to some favored spot.
When perched on a tree they carry their body in an oblique position, at an angle of about $45^{\circ}$; but when walking on the
wheel, and alight. Sometimes these birds become so far accustomed to civilization that they will approach quite close to a building from which much noise proceeds. To il lustrate: I saw one alight on the shore of a pond, in plain sight of and within a stone's throw of a large saw mill (which at the time was running at full speed), and remain there unil frightened away by the mill hands. I have never heard this bird utter any note, except the note described when suddenly surprised, and then only when surprised.
Description : Length, $225 / 8 \mathrm{in}$.; extent, 38 in ; iris light yellow in both stages of plumage. Bill dark blue at base, black at tip. Lores yellowish blue, tarsus pea green, toes pea green, claws blackish drab. In white plumage, mostly white, but generally showing some traces of blue, especially on the wing tips, In the full or blue plumage, slaty blue, or dark grayish blue, becoming purplish red or maroon colored on the neck and head. Bill on loral space, blue, shading to black toward the end. Legs and feet black
E. M. Hasbrouck.

The oldest person in the State of Wisconsin. John Jondro, aged 121 years, died on Saturday morning, Nov. 29, 18ヶ4, at Arkansaw. Mr. Jondro was born in the parish of Pbillip, near Montreal, in 1763. He was in the employ of the Northwestern Fur Company forty years, and during the last forty years he has lived in this neighborhood. In his younger years he served some time in the Federal army, and often related interesting tales of army life. His age is taken from the statement of the parish prelate of Phillip.

## Artificial Sea Water for Aquaria.

The following, by Prof. R. E. Hoffmann, of Berlin, is tran
sion:
In former years hardly any salt water aquaria were found in inland countries, because the expense and trouble of furnishing a constant supply of salt water were too great. Even the Berlin Aquarium, with its abundant funds, was so far from the nearest sea coast as to make the supply of natural sea water uncertain, and it suffered from this condition of affairs. The people of Berlin wittily called this chronic condition of their aquarium its "sea sickness." Although every new institution has to pass through a period of so called "children's diseases," this peculiar "sickness of the Berlin Aquarium proved very obstinate, and even tbreatened the life of the young and tender child whose birth had been hailed with so much joy. The Vienna Aquarium had to pass through similar experiences, and the stockholders were obliged to pay dearly for the experiment. As mat ters stood at the Berlin Aquarium, the use of artificial sea water seemed very desirable; but many a well planned experiment based on scientific principles proved a failure; for although the component parts of sea water are well known, and any chemist can easily prepare it from a receipt, it seemed at first impossible, in a chemical way, to breathe the
" breath of God" into our scientific sea water, and to impart to it the secret of true vitality. At last, however, long after the institution had been opened, Dr. Hermes succeeded in solving the problem in a scientific manner, and proved in the most incontrovertible way that the maintenance of inland sali water aquaria was no longer dependent on the nearness of the sea coast. Dr. Hermes succeeded in satisfying every demand, as regards sea water, within one week.
The very bold assertion of the director of the zoophyte aquaria in the zoological garden in Regent's Park, London, that artificial sea water, even if a chemical analysis cannot discover the least difference between it and natural sea water, is never beneficial to animals and plants, has been disproved by the success of the Berlin Aquarium. Since we have succeeded in manufacturing artificial sea water which possesses all the qualities necessary for the life of animals and plants, and which, by the use of suitable apparatus, can be kept and which, by the use of suitable apparatus, can be kept
fresh for years, nothing prevents inlaud towns from baving fresh for years, nothing prevents inland towns from having
sea water aquaria, whicb, in many respects, are peculiarly interesting.
As sea water aquaria have a great future in Germany, and will rapidly increase in number if proper directions for their maintenance are given, I will describe the manufacture of the water in such a manner that any one can easily prepare it himself. To 50 liters (about $131 / 4$ gallons) of pure hard well water take 1,325 grammes ( $461 / 2$ ounces) of common salt, 100 grammes (about $31 / 2$ ounces) of sulphate of maguesium,
150 grammes (about $51 / 4$ ounces) of chlorate of magnesium 150 grammes (about $51 / 4$ ounces) of chlorate of magnesium
(chlormagnesium), and 60 grammes (about 2 ounces) of sulphate of potassium, all of which can be obtained at any drugstore, but generally not entirely pure; and foreign admixtures and impurities may easily cause the death of all the animals. Each of these chemicals is dissolved in water by itself; accordingly they may all be poured together and allowed to stand quietly for several hours, so that little stones and other impurities may settle to the bottom. All particles of dirt floating on the surface should be carefully removed by dipping. The mixture is then poured into another vessel, and diluted with fresh water until the hydrometer indicates the proper degree of saltness. The quantities given above will produce about 50 liters (about $131 / 4$ gallons) of sea water.
This composition I have ascertained comes very near to that of natural sea water, for, besides the component parts given above, it also contains small quantities of soda, iron, and potash. I obtain the chemicals for preparing my sea water, which contains all the seven ingredients in their true proportions, from a friend of mine who is a chemist, and am prepared to supply others. Most of the sea water found in the market contains only the four first mentioned salts, and is likewise suitable for filling the basin. Oneshould becareful, however, not to put animals in such freshly manufactured sea water, as this would almost beyond a doubt kill them. It is well known that sea water is 0.027 gramme heavier than fresh water; its weight is therefore 1.027 . Everything lacizing in this weight must be carefully added from time to time by pouring in fresb water as the water evaporates, while this is not the case with the salts. The solid ingredieuts of sea water constitute about $31 / 2$ per cent of its weight, or one-balf oance to a pound of water. A hydrometer is indispensable for ascertaining the degree of saltness.
Newly manufactured sea water slould be placed in the open air in some cool place, and allowed to stand for some they should be added, because they impreguate the water with oxygen. After some weeks the algæ will spread all round them clouds of diminutive seeds, which adhere to the walls, and quickly grow under the influence of light. By supplying oxygen they make the water, after it has been filtered several times, still more fitted to receive animals. Of sea plants, the green ulvæ and the confervo are particularly suitable for recently manufactured salt water.
In the beginning only a few hardy animals should be placed in the water, which will flourish and thrive in it; and after a while an attempt may be made with more tender animals, which, if placed in the water in the beginning, would
probably have died. If no algæ can be obtained, the water
should be allowed to stand longer. Any one who can afford to wait uutila green cover of alge spreads over the panes, will do well to defer placing the animals in the water till that time, and a little patience is very commendable during the entire process. Like wine, salt water, if properly treated, improves with age, as special apparatus continually supply it with oxygen by niglt, and keep it agitated. The water in the Hamburg Aquarium has not been changed for fifteen years, and is still perfectly clear, transparent, and odorless, in shorl, of the very best quality; and all that has to be done is to make up for accidental losses or evaporation. The water of the salt water aquarium is changed or filtered only when it begins to get turbid, or if some change is to be made in the arrangement of the aquarium. It will always be advisable, however, to keep at least a double supply of sea water on hand, and place it in the cellar in well corked botles, as any sudden emergency will then be fully met.
I have never been able to obtain natural sea water which was as clear as the artificial, through which one can see everything distinctly, even on the most remote corner of a large aquarium, which it would be very difficult to do in vatural sea water. I have brought up sea water in a dipper which, when poured into a glass, was as clear as crystal and had a brilliant blue color; but this is possible only on the high seas, and when the water is brought up from a considerable depth. Fishermen take too little care and trouble in bis respect: close to the shore they will dip up the water re sembling a thick, yellow, and stinking juice, and ship it to ther places. For this reason I use artificial sea water prepared in the manner indicated above, and even without addng any plants I succeed in keeping my animals alive.
It is self-evident that the principal point in constructing salt water aquaria is the treatment of the water, which, after all, is the element which decides the well-being and sickness, life and death, of the animals. Care should be taken to keep the water well supplied with oxygen, which is easily done by means of the aerating apparatus; and to see to it that the normal proportion between the salts and sea water is always maintained, and as soon as anything appears to be the water begins to get turbid it should be filtered, and during an abnormal state of the weather it should be cooled. Only when these conditions are fulfilled will it be possible to keep up a successful salt water aquarium; only thus shall we be enabled to have in our rooms an exact representation of the bottom of the sea, with all its mysteries and wonders. I, therefore, repeat in conclusion, "The treatment of the water is the main thing."

A Florida Woman Who Runs a Sawmill.
The following letter, written to the Northwestern Lumberman, contains a number of homely truths that apply to all sorts of mechanical work:
Your letter of a late date requesting me to give my experience as a lumber manufacturer is at hand. I will state at the start that I am not in the business through choice; but baving loaned money to parties with which to purchase a saw mill, I was compelled by their failure to make even the first payment to take the machinery from them. I then put my sou-in-law, Ernest Wever, who promised great things, in charge. I told him I knew nothing of sawmilling, but I knew that the sawdust was too fine and the scratches on the boards too close together. I left him to run the mill, but in a short time I found he could do no better than other men, and I took him out of there so quick it made his head swim. I moved the mill a distance of 20 miles, fording the Hillsborough River, and placed it near my own house, at an actual expense of $\$ 9$; and in a few days I had everything in good order. I have my own teams and carts, and take timber from my own lands.
Although accustomed to manage my own affairs, commencing by the time I was grown, I found difficulties enough in making lumber, and I have often said that a sawmill and Satan belong in the same family, and some people say that since I became the owner of one they are sure of it; but while they talk I am at work. This is the trouble with half the country sawmills: There is too much talking and not enough work. Why, Mr. Editor, the most of men talk over a $\log$ long enough to saw it into inch boards. Then when they get started they discover that the fireman has not steam enough; then they must all sit down and talk again. By the time steam is up and one or two boards sawed, a belt must be repaired, which might just as well have been attended to before working bours in the morning or at noon. Then one man sews the belt while all engage in talk again. When the belt is ready, the sawyer gets it into his mind that the machinery needs oiling; then he
hunts up the oil can, for he never has a place for anything, and goes around squirting oil into every hole but the right one, while the other hands go on with their talking. The next day they are out of logs, and the mill hands do nothing except to allow "their time to go on." The day following some of the men are reported sick, and more time is lost At the end of the month there is little lumber and no money, and they all wonder why saw milling does not pay.
I knew well enough that machinery is made to run, and to keep the saw shating for ten hours a day and six days in the week. In order to do this the mill must be kept in goiod order, not by repairing broker parts, but by keeping it from getting broken. And I soon saw that the parts of machinery out of sight were neglected the most. I would
suppose any man would know that it is the inside of things
that needs attention-the inside of the boiler, the inside of the cylinder, the ioside of the pump or inspirator is of far more importance than the outside. Nothing makes me more angry than to see a man rubbing up the outside of bis boiler when I know the mud is six inches deep inside, baking, burning, and blistering the irou; yet I have seen but few
saw mills except my own. But I saw how that was mansaw mills except my own. But I saw how that was managed before I took poss
are managed no better.
Many a man in the sawmill business would do well if he could get skilled labor, but this State is cursed with a tribe of sawmill tramps who claim to know everyl hing, and when tried can do nothing. They are always on foot and out of money, yet if we are to believe them they have been the superintendents of the largest mills in America. Every one of them has been Goveruor Drew's principal sawyer for at least ten years, receiving not less than $\$ 6$ a day. They all know more of machinery than the men who make it, and are ready, not to commence sawing, but to commence cuting, changing, splicing, and rebuilding, with a promise that if I will give them $\$ 3.50$ per day and board they will double the capacity of my mill and be ready for work in about three
weeks. I have never been deceived by one of them, but weeks. I have never been deceived by one of them, but they leave their mark wherever employed. One-half of them ought to be hung and the other half sent to the penitentiary. One came to me a few days ago who was an exception, for, not withstanding he was "the best sawyer in Florida," be was willing to work for $\$ 10$ a month and board, or $\$ 12$ if he boarded "hisself"一-hungry looking wretch! I wouldn't have boarded him even a day for $\$ 2$, and I knew he couldn't board himself at any such price. Said I, "Do you see that road out there?" He very meekly said he did. "Then," said I, " you go out there, and when you get to it you take either end you like; the one that will put you out of my sight the quickest will suit me the best." He went. If he had not, I would have put the dogs after him in three minutes.
I employ none but the best hands-not paying too much or too little, for one fault is about as bad as the other.
I can't say just what my lumber costs me, but I know that when sold I have taken in more money than I have paid out. I am 53 years old, or about that, was born in Florida, and was raised at a time when bookkeeping was not thought of. I now have my second husband, and I am the mother of ine children, seven of whom are now living. Several of the elder are doing business for themselves, yet they always come to "mother" for advice, and when they don't take it they wish they had. I have always managed my own business, and I expect to while I live. I a wake in the morning and plan the day's work while the men are asleep, and at the breakfast table I give every one his orders, including my hushand, who never objects to my doing the thinkng for the family.
My first advice to men who contemplate going into the sawmill business is-don't do it, for not one in twenty of you
has the ability to succeed. If, however, you are determ:ned has the ability to succeed. If, however, you are determ:ned to try it, be careful that you get the best machinery, strong and heavy enough to stand the bad treatment of awkward hands. Buy the most durable belts, no matter what they cost, for half the failures in our backwoods mills are caused by constant breaking of belts. And when a complete out fit is secured, locate where you can get timber and sell lum ber. Keep your machines in good order, taking spe
cial care of all parts out of sight. Pay your hands in cash, cial care of all parts out of sight. Pay your handsin cash, and not in promises, for they work for the money, and not you can't pay, shut down, stack your lumber, and discharge all hands. Your mill will neither eat, drink, nor wear anything while standing still. But when you do run, work everything to its full capacity. Harriet Smith.
Tuckertown, Fla., November 17, 1884.

## A Bird Catching Tree.

Among the transactions of the New Zealand Institute Mr. R. H. Govett gives some startling facts as to the bird-killing powers of Pisonia brunoniana or P. sinclairii. A sticky gum is secreted by the carpels when they attain their full size but is nearly as plentiful in their unripe as in their ripe con dition. Possibly attracted by the fies which embalm them selves in these sticky seed vessels, birds alight on the branches, and on one occasion two silver-eyes (Zosteropos) and an English sparrow were found with their wings so glued that they were unable to flutter. Mr. Govett's sister thinking to do a merciful act, collected all the fruit bearing branches that were within reach and threw them on a dust heap. Next day about a dozen silver-eyes were found glued o them, four or five of the pods to each bird. She writes - Looking at the tree, one sees tufts of feathers and legs where the birds have died, and I don't think the birds could possibly get away without help. The black cat just lives under the tree, a good many of the birds falling to her share but a good many pods get iuto her fur, and she has to come and get them dragged out."
In a note Mr. T. Kirk says that Pisonia umbellifera, Seeman $=P$. sinclairii, Hook. f., is found in several licalities north of Whangerei, both on the east and west coasts, also on the Taranga Islands, Arid Island, Little Barrier Island, and on the East Cape, possibly in the last locality planted by the Maoris. The fruiting pericarp is remarkable for its viscidity, which is usually retained for a considerable period after the fruit is fully matured. It can be readily imagined that small birds tempted to feed on the seeds might easily that small birds tempted to feed on
become glued to a cluster of fruits.

## On Steel Hardened by Pressure.

The new process invented by M. Clemandot for hardening steel was lately examined by M. Ad. Carnot, and made the subject of a report presented by him, as a chairman of a committee, to the French Societe d'Encouragement for National Industry. The methed in question consists in heating the metal to the proper degree of softness, and submitting it while cooling to heavy pressure. The result is the formation of a hardened steel possessing properties similar to those developed by the operation of quenching.
The remarks and explanations contained in M. A. Carnot's paper are quite interesting and practical, but somewhat lengthy. We give below a condensation of the most important points.
The use of strong pressure in working steel, he says, was tried some years ago in England by Whitworth, but with a different object and under different circumstances. Then the idea was to prevent the flaws due to air bubbles forming during the solidification of cast steel. Similar trials ẉere also made in France, but always in the same manner, that is, by operating on the steel while yet in the semi-liquid state. M. Clemandot, on the contrary, takes steel already worked, either cast, hammered, or rolled, which be only heats to cherry-red heat, and then submits, under a lydraulic press, to a pressure of from one thousand to three thousand kilogs. per square centimeter (about six and a half to twenty tons per square inch). The metal is allowed to cool in the press, and when withdrawn has acquired the new qualities, and needs no annealing or supplementary process whatever.
The metal thus produced sensibly differs from ordinary steel slowly cooled in the air without pressure. It is much finer grained, and considerably harder and tougher. To a certain extent it resembles steel hardened by quenching in water, yet the two are not identical.
On examining the process it will be seen that it consists of two physical effects, different although nearly simultanenus. One is continuous and powerful pressure; the other rapid cooling.
Strong pressure must cause, on one hand, a rise of temperature in the metal, and also a tightening of the steel molecules while they are yet soft enough to weld together. On the other hand, the cooling of the steel must be very rapid between the plates of the hydraulic press. It must be all the more so that a high pressure tends to render the contact very close between the objects and the heavy metallic plates of the press. Hence the final result of the operatiou is a double one: it combines to a certain extent the effects of is a double one: it combines to a certain extent the effects of
hammering or rolling with those of hardening by quenching in water.
To better understand where the old processes and the new one differ and where they are similar, it is well to examine separate!y the various methods of working steel.

## hammering and rolling.

When steel is heated to redness, and allowed to cool slowly, it is apt to acquire a granular structure, often at the same time allowing a part of the combined carbon to separate in the state of graphite. The operations of hammering and rolling the metal, while yet very hot, prevent to a certain extent the granular change, render the steel tougher and more homogeneous, aud lessen the proportion of carbon which is lost in the shape of graphite. These operations,
however, last but a short time, so that on being left to itself however, last but a short time, so that on being left to itself
the metal soon crystallizes again, and in the end is not very the metal soon crystallizes again, and in the end is not very
different in texture from what it would have been if it had been left alone.
The effect of the bydraulic press must be quite dissimilar. The actual pressure, it is true, cannot equal that produced by the pounding of heavy hammers, but it is uninterrupted while the objects are cooling. Hence the molecules of the metal are possibly welded together permanently, thus forming a very tough and elastic steel.

## tempering.

The tempering of steel appears to have the effect of preventing the metal from crystallizing. Vrhether mercury, oil, pure water, or saline water be used for quenching, the principle is the $\operatorname{sam} \triangleq$, and consists in a rapid cooling of the metal. The results are chemical and physical.
The chemical effects are still imperfectly known, yet it is generally admitted that steel contains, after quenching, a larger proportion of combined, or rather dissolved, carbon than before, while untempered steel contains more free carbon in a state resembling graphite. The chemical effects of tempering may therefore be said to closely unite the carbon and the iron, or to prevent the separation of the two substances already combined.
The physical effects are more complicated than is generally believed. At first the exterior strata contract on cooling, and strongly compress the internal portions, still soft and malleable, in such a way as to probably weld together the molecules of the metal. This first action may be compared to that produced by hammering the red hot steel.
But now a secondary action begins, which is quite different, and all the more noticeable that the piece is larger. At the moment of the sudden hardening of the surface the inside layers are yet hot and strongly dilated. Hence, when the latter, on cooling in their turn, tend to contract, the external strata having become hard and rigid cannot follow the motion, and this must create unequal tensions between the various sections of the steel.
There are no direct experiments proving the truth of this theory, but two facts indirectly show its correctness. One is the decrease observed in the specific gravity of steel when
it is tempered. The other is the internal cracking so frequently noticed in large pieces of tempered steel, and which occurs sometimes at the moment of quenching, sometimes
shortly afterward, and again after a longer delay, when the shortly afterward, and again after a longer delay, wh
piece is struck or exposed to changes of temperature.
If it is considered that the internal inequality of tension above alluded to may become so considerable as to rise above the tenacity of the metal, the cause of these cracks becomes readily intelligible.
The remedies proposed for these fatal defects have all been either useless or impracticable. Among them the quenching in boiling water succeeds to a certain extent, but fails to afford the hardness obtained otherwise. The plan of cooling from the center instead of the exterior is excellent in theory, but alnost impossible in practice.

## hardening by pressure.

A mistàken idea must be, to begin with, brushed aside. It has been written by some that hardening by this process could only be obtained by pressure in a mould of the exact dimensions of the steel object.
Such is not the case. The pressure needs only be applied to two opposite surfaces of the object, previously heated to a cherry red heat. A square bar, for instance, straight or curved into horseshoe shape, has only to be laid flat on the plate of the hydraulic press. A cylinder or torus may have the pressure applied on two opposite edges, and so forth. As a rule, of course, it is advantageous to apply the pressure to the greatest surfaces. To work under the best conditions the steel object, previously heated as sald above, should be compressed as speedily as possible. To this purpose the press is prepared so as to leave between the two plates space just sufficient to admit the object, and the pressure being applied at once, is carried as quickly as possible to the extent fixed beforehand. Care must be taken also that the metallic plates, which are in direct contact with the object, be clean and level, so as to be good heat conductors.
Thus the double result mentioned above, is obtained, namely, a tightening if not a welding of the steel molecules, owing to the powerful and uninterrupted action of the press, and at the same time, through contact with cold metallic masses, a rapid chilling similar to quenching in a liquid. And yet there is between the two processes this esseutial difference, that steel tempered by immersion increases in volume, thereby decreasing in specific gravity, while under the action of the hydraulic press steel retains its original volume, and escapes the state of internal distention already volume, and escapes the state of internal distention already
spoken of. Direct experiments have proved that a priori theories are confirmed by actual facts.

## MAGNETIC EFFECTS' OF COMPRESSION.

Between ordinary tempered steel and compressed steel there exists one more similarity, namely, the acquired power
of forming magnets. A steel bar sufficiently rich in carof forming magnets. A steel bar sufficiently rich in carbon becomes, after hardening by pressure, readily magnetized, just as.if it had been bardened by immersion. Recently instituted trials have demonstrated that magnets made with compressed steel are slightly inferior in power to those composed of ordinary tempered steel, but the metal possesses the singular property of retaining its coercive
force even after annealing and welding. Like ordinary steel it loses its magnetization on being heated to redness, but while common steel must be tempered again to make a magnet, compressed steel can be magnetized without further preparation.

The conclusions of the report are that M. Clemandot's iuvention deserves encouragement, as affording anew process for imparting to steel the hardness, homogeneousness, and capacity for magnetization hitherto obtained through
tempering by immersion; certain disadvantages of this last process are at the same time obviated. It is the opening of a new way worthy of investigation.

## Poisonous Cheese.

At the October meeting of the American Pubfic Health Association at St. Louis, Professor V. C. Vaughan, M.D., of the State Board of Health of Michigan, read a paper on the "Study of Poisonous Cheese." It is well known that
cases of severe illness follow the eating of some cheese, escases of severe illness follow the eating of some cheese, es-
pecially in North Germany and America, but in France no such cases are found. In Michigan, within the last six months, over three hundred cases of cheese poisoning have been reported. The symptoms produced are dryness of the throat, nausea, vomiting, diarrhœa, headache, and double vision-the same symptoms as gastro-intestinal poisoning. Cases of cheese poisoning are rarely fatal, six deaths in three hundred and forty-two cases occurring in Holland in 1874, a little over two per cent. Cheese that may be harmful to man may be eaten by lower animals without danger, and a cat once ate cheese that had poisoned thirty people, but the feline experienced no toxic effect. Coloring cheese with annatto may be looked upon, perhaps, as a justifiable adulteration. Samples of cheese that had poisoned many people indicated the presence of acids, litmus paper turning blue. The indications then were that the poison was caused by
chemical acids and not by bacteria. Microscopic examination, however, revealed the presence of a spherical bacillus subtilis which did not affect a cat when injected beneath the skin. Only poisonous cheese violently reddens litmus paper, and this is a test easy of application. Every grocer should try the experiment when be cuts a new cheese. The following are the conclusions: 1. That toxic material in poisonous cheese is a compound soluble in acohol. 2. The
growth of the bacillus subtilis. 3. The difference between poisonous and non-poisonous new eheese is one of degree rather than of nature.

## The Process by which Steel Pens are Made.

A representative of the New York Sun, has been investigating the steel peu manufacturing business of this country, and reports as follows:
About a million gross of steel pens are worn out every year in the United States. What becomes of them? Twenty years ago most of the steel pens used in this country were imported. Now comparatively few are imported, and there are several factories in the country in which. they are made in large quantities. One factory is in Connecticut, another is in Pennsylvania, and a large one is in Camden. The manufacturers say that the industry has been fostered by the protective tariff, and that if the tariff were to be taken off, the market would be flooded with cheap steel pens at lowe prices than ours and of inferior quality. At present the importation of foreign pens is mainly confined to high priced articles.
It was at first doubted that steel pens could be made in this country, but it was soon learned that the requisite skilled labor could be obtained for high wages, and the success of he pioneers led one manufacturer after another into the business, until now the field is pretty well supplied. Most of the work on these little instruments is done with the aid of very nice machinery worked by women and girls. The steel used is imported, because it is believed that the quality is more uniform than American steel. This uniformity of quality is necessary because of the very delicate tempering required in the manufacture of the pens. That mysterious quality of steel which gives different grades of elasticity and brittleness to-different colors of steel is a quality that re quires expert manipulation on the part of the workman who does the tempering. He must know the nature of the mate rial with which he works, and with that knowledge must exercise a celerity and skili that seizes upon the proper instant to fasten the steel at a heat which insures the requisite quality.
First the steel is rolled into big sheets. This is cut into strips about three inches wide. These strips are annealed, that is, they are heated to a red heat and permitted to cool very gradually, so that the brittleness is all removed and the steel is soft enough to be easily worked. Theu the strips are again rolled to the required tbickness, or, rather, thinness, for the average steel pen is not thicker than a sheet of thin letter paper. Next the blank pen is cut out of the flat strip. On this the name.of the maker or of the brand is stamped. The last is a very important factor. There are numbers that have come to be a valuable property to manufacturers. Many clerks say they cannot work to advantage unless they have particular styles of pens. The result is that by passing the word from one writer to another a market is soon created for a favorite style. Each steel pen has therefore to be stamped with sufficient reading matter to identify it thoroughly. The stamping is done with very nicely cut sharp dies that cut dee $\rho$ and clean, so that the reading matter will not be obliterated by the finishing process. Next the pen is moulded in a form which combines gracefulness with strength. The rounding enables the pen to hold the requisite ink, and to distribute it more gradually than could be done with a flat blade.
The little hole which is cut at the end of the slit serves to regulate the elasticity, and also facilitates the runuing of the ink. Then comes the process of hardening and tempering. The steel is heated to a cherry-red, and then plunged suddenly into some cool substance. This at once chauges the qual ity of the metal from that of a soft, lead-like substance to a brittle, springy one. Then the temper of the steel must be drawn, for without this process it would be too britlle. The drawing consists of heating the pen until it reaches a certain color. The quality of the temper varies according to the color to which the steel is permitted to run. It is the quick eye for color and the quick hand to fasten it that constitutes the skill of the temperer of steel. When the steel is heated for tempering, it is bright. The first color that appears is a straw color. This changes rapidly to a blue. The elasticity of the metal varies with the color, and is fastened at any point by instant plunging in cold water.
The processes of slitting, polishing, pointing, and finishing the pens are operations requiring dexterity, but by long practice the workmen and workwomen become very expert. There have been fer changes of late years, and the proces of manufacture is much the same that it was twenty years ago, and the prices are rather uniform, ranging from 75 cents to $\$ 4$ a gross, according to the quality of the finish. The boxes sold almost universally contain a gross.
Fancies come and go in the styles of pens as in other fashions. One American maker alone turns out about 350 different patterns. Some are very odd, such as the stub pens, the draughtsman's pen, which makes two parallel lines at once; the mammoth pen, suited to use on rough paper and the pen with the turned-up point, that writes a thick mark, yet runs smoothly over the paper. Then there are delicate pens for ladies, pens that make a fine bair line and yet can spring out to a heavy shading. Already the American steel pens have become famous abroad, and many are exported. Many pens are made of other netals besides steel One kind is the German silver non-corrosive pen for red ink Another is an imitation gold pen made of non-corrosive metal. There are pens of all colors and sizes for all trades and professions,

## ENGINEERING INVENTIONS.

An electro-magnetic car uncoupler has been patented hy Mr.John D. Reed, of York, Neb. There
is a pivot d shackle on the drawhead with an electrois a pivot d sharkle on the drawhead with an electro-
magnet for operating it, conductors, contact strips on magnet for operating it, conductors, contact strips on
thie ends of ine cars for nniting them, with numerous parts and details of com
be uncoupled by electricity.
A vessel and apparatus for cutting channels in water ways has been patented by Mr. John Gates, of Portland, Oregon. The veesel has propelling
apparatus and a movable rudder, with tanks or compartments for sinking the stern to auy desired depth, a
hoisting apparaus, and cables with anchors, to hold the stern in position to cut a chaunel by the backwas from the screw.
A pilot car
A pilot car has been patented by Mr. Jose Pesana y Pinol, of Madrid, Spain It lias transserse
partutions with buffer springs, with a water tank and partitions with buffer springs, with a water tank and
bar or block of lead held transversely on the car, the side bars and braces having hinges, so the car can col lapse, and the springs, water tank, and lead take up
the force of concunsion, the car eeing adapted to be coupled to the front of

## AGRICULTURAL INVENTIONS.

A potato planter has been patented by Mr. Joseph L. Ullathorne. of Memphis, Tenn It consists of a frame, rolling drum with wheels, and an open
sided hopper arranged behind, and will also distribute a fertilizer in the furrows at the time of planting the
A combined sod cutter, seeder, and harrow has been patented by Mr William $\mathbf{F}$. Hubbard, of Wal
la Walla, Washington Ter. This invention covereal spe la Walla, Washington Ter. This invention roversa spe
cial construction and combination of parts in $a$ machine mounted on wheels, to be drawn over a fleid by a team. to pulverize hard sol!, and at the same tume dro

A cultivator bas been patented by Mr Thomas E. Gregg, of Mineral Spring, S. C. This nn vention covers a novel construction and combination to
facilitate the cultivation of cotton and other piants planted in rows or drills, and also to promote conveni ence in ad justing the cultivator to work deeper or shal
A spade wheel plow has been patented by Hiram Skillings, of Minneapolis, Minn. 'This invention covers modificatiuns and improvements un the construction of a spade wheel plow previously patented by th
same inventor, the changes being principany with the iew of reducing the expense of manufacture and to $\underset{\text { spades. }}{\text { promote }}$
A stalk cutter has been patented by Messrs. Guerneey W. Davis and George A Davis, of Pine Bluff. Ark. A cutter roil bus end diske witb radia
grooves on therr ne warince and habs on their outer entral faces. winge wish on dec secured thereto being breaking down two rows of corn, cotton, or other stalks, and cutting them into pleces
A harrow has been patented by Mr Wil liam W Robinson, of Odebo lowa The teeth are
carried by rocking beams under control mfat an an change the angular position of the weeth he ground, but the beams are of now construction with peculiar means for fastening the $t$ eth as well as
for carrying the beams and connecting them with the devices by which they are rocked

## miscellaneous inventions

A nut lock has been patented by Mr Seth A. Lesan, of Mount. Ayr. Iowa This invention screw boli, a screw nut, washer; and key for securing nuts upon screw bolts.
A gate has been patented by Mr Absalom King, of Wawpecong, Ind. This invention relates to gates adapted to close by their own weight, on farm
and other roads, to prevent the straying of stock and to this end covers a special construction and combina

## ion of parts.

A weather board gauge has been patented by Messrs. William J. Dyerand Thomas W. Maxey of
Nevada, Mo. This invention provides a means for carNevada, Mo. This invention provides a means for car-
penters to more accurately space weatber boards, and penters to more accurately space weatber boards, and
hold them exactly in proper reiatior to previously placed hold them exactly in proper reititior to $p$
boards, while naiiing them in position
A log turner bas been patented by Mr. Wirjam F. Fidler, of Rock Cave Weest Va. This invention and tackle the carriage, and to knees or the hook and tackle, the carriage, and ts knees or blocks ior
preventing the log from sliding laterally out of place while being turned
A copy book has been patented by Mr: Edward P Conner, of Alameda. Cal. It woludes a book
support, which may be siout up with the book or spread out and extended, a novel arrangement of covers. and other special features, designed to afford a copp book
which will faciltate giving instruction in penmanship An ale faucet protector has been patented by Mr. George Hurschman. of Morristown, Pa. It has a flanged base, with an opening and recess in front, so
it can be easily secured in place, and the faucet readily applied, detact
A wire fence has been patented by Mr. Lafayette $W$. Lindley, of Danville, Ky. It is a fence
which can be erected or taken down very rapidly, and folded compactly for storage or shipment, and is an improvement on a former patented invention of the
A window bead fastener has been patented by Mr. Ezra W. Talbott, of Napoleon, Ohio. This is in place on the frame in such a manner that it can be leadily removed or secured in place, and need not be
nailed or screwed.

A stencil holder has been patented by Mr. John W. Bennett, of Halifax, N. S., Canada. This in of two clamp plates or frames for holding the stencil
plates, and means for fastening the plates ingether and plates, and means for fastening the pla
A piano forte attachment has been patented by Mr. Emil Hofinghoff, of Barmen, Germany. This invention covers a bar held to be movable across the trings, a series of tongues being fastened to the bar, and these tongues having rubber surfaces facing the
strings, whereby the tones of the piano are chauged. trings, whereby the tones of the piano are chauged.
Au anchor support and tripper has been patented by Mr. Rufus P. Trefry, of Bridgewater, N. ., Canada. The anchor is so made as to hold by the
fuke, while its stock comes against the hull oo the ves el, and $1 t$ is also so constructed as to facilitate its castng off. without danger of fouling.
A game apparatus, or a new and improved ame, has been patented hy Mr. James A. Fitzgerald, of Salt Lake City, Utah Ter. It is formed of a verti
cally siotted board held between two standaras rubber face plates being secured on the surfaces of the bars between the slots, and the game being ayed with a series of disks or flat rollers.
A device for transmitting power by belts and puiceys has been patented by Mr. Nicholas Yagn,
of St. Petersburg. Russia. This invention covers a of S. Petersburg. Russia. This invention covers a
mean o nsing pressure rollers upon both driving and mean o using pressure rollers upon both driving and
driven pulleys to ncrease the power transmitted hy riven pulleys to increase the power trancen An improved universal joint has been pa tented br Mr. Rollin $\mathbf{H}$ Gleason, of Egan, Dakota Ter. The invention consists in providing one of two abntut ming of two shafts revoring a ocket, which has an nwarduy projectung rib or flange upon its opposite inerior sloes, with other novel features.
A shield for brooms has been patented by Messrs. Neil W. Dew and Columbus F. Rohertson, of
Charleston, IIl. A safety shield of novel construction is made to cover that portion of the broom where the straws are joined to the handle, and thus largely dispense with the labor of winding and braiding, while
giving a neat and durable finish.
An inkstand has been patented by Mr. Morris Herzberg, of West Point, Ga. It has a remov able apertured tube, with a spring, and a vertically reprocating dip cup resting on the spring within the of covering the pen bolder with ink, and if the ink stand is upset only the ink in the dip cup will be spilled.
A hoop fastener has been patented by $\mathbf{M r}$. William D Richardson of Springfield, III. This in. vention consists or a flat metal key; with converging rows of projecting barbs on one side and a flange or lip
on the other side at the end; the key to be driven on the other side at the end, the key to be driven
between the hoop and the barrel staves, with its barbs in contact with and burying in the wood, and the end
An apparatus for painting wire fences h een patented by Messrs AlonzoL. Marsau and Henry C Hill of Milton. Iowa This invention relates to apparatus in which revolving brushes are supported in a
paint reservoir moved along the wire, and provides for paint reservoir moved along the wire, and provides for
moving the apparatus continuousl $\gamma$ without stopping at the posts or removing the brushes off of contact in passing the posts

A roll for forming link blanks has been patented by Mr Jesse T Wright. of New Albany, Ind.
The curved ends of blanks to be sabsequently punched are made on the last pass when rolling the bar to prepare for the blanks in deep, narrow grooves of the rolls, for passing the bar edgewise, with dies corresponding to the length of the blanks, and for shaping the en
separating the blanks for car coupling links.

A measure for grain, shot, and other like articles has been patenied by Mr. Hiram W. White, of Yankton, Dakota Ter. This invention covers a apecial construction and arrangement of parts, bins with hop-
per shaped bottoms, having lozenge shapad apertures, a measure, with novel means for operating the slides chamber, and other peculiar features
An improvement in the manufacture of bichromate of soda has been patented by Mr. William Simon, of Baltimore, Md. It consists in evaporating
the solution of neural chromate of soda to dryness before adding the sulphuric or hydrochloric acid, and adding to the dry salt common sulphuric acid, wherehy hydrous sodinm sulphate crystallizes out, wbence th cally separated.

## NEW BOOKS AND PUBLICATIONS

Traité Pratique d’Electricité IndustriElle. Par E. Cadiat et L. Dubost
This work, as its title indicates, is a practical treatise
on the subject of electricity and it has been the puron the subject of electricity and it has been the pur-
pose of the authors to present the subject in a form as free from technicalities and abstrase mathematical caling and instructive and a ready work of reference to the artisan, theengineer, and mechanic. The first part of the treatise is devoted to definitions and fundamental laws as well as the most important subject of onits and
measures. Then follows an examination of the differmeasures. Then follows an examination of the
ent kunds of batteries, dynamos, and electric generators, secondary batteries, etc. The third section contains a review of the various systems of electric lighting, also a
comparison between the cost of lighting by electricity comparison between the cost of lighting by electricity
andgasand the application of the former toi;he illuminElectricity as a motive force as applied to railway and aerial navigation is treated of in part four. There are two other sections, which are devoted to galvano-
plastic and electro metallurgy and telephong. This work of 500 pages contains numerous illustrations.
Pries 15 francs. Publisher, J. Baudry, 15 Rue des Price 15 francs. Publishe
Saints Pères, Paris, France.

## Gugivess aud zeryoual.

The Chargefor Insertion under this heaad is one Dollar
a line fov each insertion; about eight words to a line. a line for each insertion; about eight words to a line.
Advertisements must be received at publication office Advertisements must be received at pubicication offic
aseavly as Thursday morning to appeny in next issue

Hearing Restored. A great invention by one wh was deaf for 20 years.
more, Cinctnnatt, Ohio.
It gives us pleasure to say that the Remington No. 2
Type-writers which have been in use in this oflice are giving the best satisfaction. We luke them better tha


Burnham. Parry Wrlliams \& Co..
Baldwin Locomotive Works. Philadelphia, Pa.
The Remington Type-writer is the one used by th United States Government. Wyckoff, Seamans \& Bene
dict, 281 and 283 broadway. New York city, sole agents. Linen Safety Hose, all sizes, at greatly reduced price eed a Co., New York.
Experimental Machinery Perfected,
patterns. etc. Tolhurst Machine Wo
Catalogue of Books, 128 pages, for Engineers an Flectricians, sent free. E. \& F. N. Spon, 35 Murray Wanted.-
Wanted.-To correspond with works, corporations cost, electric light plants, with or without engines and cost. electric light plants, with or without engines
boilers. $\quad$ " . C. Forsaith M achine Company,
Manch'ester, N. H.
Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 45 horse power. Our machine gives 65 Arc Lights with 45 horse power. Our
Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, 0 .
Practical Instruction in Steam Engineering, and situations furnished. Send for pamphlets. National In stitute, 70 and 72 West 23 S St., N. Y.
The Cyclone Steam Flue Cleaner on 30 days' trial
eliable parties. Crescent Mfg. Co., Cleveland, 0 . For Steam and Power Pumping Machinery of Sing and Duplex Pattern, embracing boller feed, fre and lo pressure pumps. independent condensing outfts, vac
uum, hydraulic, artesian, and deep well pumps, pressors. address Geo. F. Blake Mfg. Co... 4o Washing-
baks in boiler tubes Quinn's device for stopping leaks in
Address S. M. Co., South Newmarket, N. H.
Mills, Engines, and Boilers for all purposes and of every description. Send for circulars. Newell Univer sal Mill Co., 10 Barclay Street. N. Y.
Wanted--Patented articles or machinery to manafac-
ture and introduce. Lexington Mfg. Co., Lexington, Ky. "How to Keep Boilers Clean." Book sent free by mes F. Hotchkiss, 86 John St., New York
Stationary, Marine, Portable, and Locomotive Boiler speciaity. Lake Erie Boiler Woriss, Bu balo, N. Y.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J ForPower \& Economy, Alcott's Turbine, Mt.Holly, N. J. The Hyatt filters and methods guaranteed to render all kinds of turbid water pure and sparkling, at economi
cal cost. The Newark Fittering Co., Newark, N.J. Steam Boilers, Rotary Bleachers, Wrought Iron Tur Send for Monthly Machinery List
Chambers and 103 Reade Streets, New York
Walrus and Sea Lion Leather for polishing all kind of metal. Greene, Tweed \& Co., New York.
Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co., New Haven, Conn. If an invention has not been patented in the United States for more than one year, it may stily be patented in Canada. Cost for Canadian patent, $\$ 40$. Various othe foreign patents may also be obtained. For instructions
address Munn \& Co., Scientific American Patent agency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every descrip-
ion. Send for catalogue.

Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts. polishing compositions. etc. Com plete outft for plating, etc. Hanson \& Van Winkle,
Newark, N. J., and 92 and 94 Liberty St.. NCw York.
Supplement Catalogue.-Persons in pursuit of infor-
mation on any special engineering. mechanical, or scieniffc subject. can have catalogue of contents of the ScIintific amilican suppliemient sent to them free The SUPPlicmevt contains lengthy articies embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York. Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St.. N. Y. Munson's Improved Portable Mills, Utica, N. Y. Mineral Lands Prospected, Artesian Wells Borod, by Pa. Diamond Drill Co. Box 423 . Pottsville. Ea. See p. 332 .
C. B. Rogers \& Co., Norwich, Conn., Wood Working C. B. Rogers \& Co.. Norwich, Conn., Wood
Machinery of every kind. See adv., paze 350 .

We are sole manufacturers of the Fibrous Asbesto Removable Pipe and Biner Coverings. We make pur 19 East8th Street, New York.
Clark's Rubber Wheels. See adv. next issue.
Curtis Pressure Regulator and Steam Trap. See p. 286. Steam Hammers, Improved Hydraulic Jacks, and Tube
Emerson's 1884, Book of Saws. New matter. 75,000 Emerson's 1884, Smith \& Co., Limited, Beaver Falls, Pa
Free. Emerson, Smiter Hoisting Engines. Friction Clutch Pulleys, Cut-off Couplings. D. Frisbie \& Co., Philadelphia, Pa.
Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 302.
U. S Standard Thread Cutting Lathe Tool. Pratt \& Whitney Co., Hartford, Conn.
For best low price Planer and Matcher. and latest mproved Sash, Door, and Blind Machinery, Send fo
catalogue to Rowley \& Hermance, Williamsport, Pa. The Porter-Allen High Speed Steam Engine. South Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 286. Split Pulleys at low prices, and of same strength ani
appearance as Whole Pulleys. Yocom \& Son's Shafting apparance as Whole Pulleys. Yocom \& Son's Shafting

HINTS TO CORRESPONDENTS.

(1) J. T. W. writes: In the issue of Octoased to remove hair, etc. Now, will calcium sulphide effectually and permanently renove superinuous hair,
and if so, which of the sulphides of calcinm? A The and if so, which of the sulphides of calcinm? A The
calcium and barium sulphides are considered effectual calcium and barium sulphides are considered effectual
depilatories. The particular one that is used is the epilatories. The particular one that is used is the
$\mathrm{CH}_{2} \mathrm{~S}_{2}$ or $\mathrm{CaS}, \mathrm{H}_{2} \mathrm{~S}$, called by Watts the sulphydrate of $\mathrm{CaH}_{2} \mathrm{~S}_{2} \mathrm{O}$
calcium.
(2) C. J. D. asks: Is celluloid used to coat netals, as is nickel? Can you give me a good solution
to coat tin with to prevent acids from eating same? A. Celluloid is not used in the manner suggested. Celluold is soluble in chloroform. and by painting the sur a coating of celluloid will ho deposited. A coat of good nard drying asphaltic varnish would, we think, be more suited to your wants.
(3) H. A. D. asks for the formula for makon a fund substitute for silver plating which will last assiom cyanide in 6 parts water; add to it a concenrated aqueous solution of silver nitrate (free from acid) until the precipitate is redissolved. Mix this so-
and ution with flie chalk, and apply after previously clear-
(4) E. B. B. asks bow to extract the oil from the skins of duck or other water fowl, to be used or trimmings. A. Dip the feathers for a few minutes
in coal tar naphtha or benzine, and thendry by ex-
(5) V. J. P. asks if there is any way to
oold sulphur in solution in mineral oil (paraffine) to be hold sulphur in solution in mineral oil (paraffine) to be used as a labricator. A. Sulphur is frequent y a con-
stituent of crude petroleum; it is soluble generally in the fatty oils, in naphtha especially, when the liquids
(6) E. S. B. writes: In a late number you say 1 ounce of salicylic acid will prevent fermentation say 1 ounce of salicylic acid will prevent fermentation
in cider. Is this acid injurious to health? Woald it not be a good ingredieut in the composition of brine for the preservation of meat, making it unnecessary to use so much salt to make it keep? A. It is used as suggested by you for the preservation of meat. See
ScIentific American Supplement, No. 226, for exact Scientific American Supplement, No. 226, for exact
quantities to be employed. By some its use is conquantities to be employed. By some its use is con-
demned, while others assert that it is not at all injuridemned, while oth
ous to the health.
(7) P. S. M. asks the average amount of quare plate or pipe surface used in practice for heatng 1,000 cubic feet of room space in buildngs by hot
water or low pressure steam, say 5 pounds, and the same for high pressure steam. A. 10 to 12 square feet per 1,000 cubic feet for hot water, 7 to 9 square feet per 1,000 cubic feet for low pressure according to exposure, and 6
sure,
(8)
(8) G. C. G. asks a good receipt for preparing raw meerschaum for smoking purposes. A. When
freshly exhumed the mineral is covered with red, oily reshly exhumed the mineral is covered with red, oily
earth, and is so soft as to be easily cut by a knife. Its preparation is slow and troublesome. After removal In a hot chamber, then it is cleaned again and polished with wax. Then th different kinds, of which there are ten, are sorted and carefully packed with wood in principally Germany, where the bowle of the pipes are soaking them first in tallow, then in wax, and finally by polishing them with a sharc glass.
(9) J. C. A. writes: Can you give me a formula for an ink which after being printed on paper
the print can be transferred to cloth by a warm flat iron, the ink not to crack when the paper (printed on) is folded or rolled up? A. The process you desire has lead (or any suitable coloring material) with a litte resin, fixing the pattern by covering with a piece of paper and ironing with a hot iron. When the cloth paper and ironing with a hot iron. When the cloth
can be turned (as by placing between boards or book covers) without scattering the powder, it may be preferable to apply the heat directly to the hack of the fabric. It is also possible to prepare an ink by dis-
solving the coloring material and adding a thin solusolving the coloring material and adding a thin solu-
tion of muciage of gum acacia. The mixture should tion of mucilage of gum acacia. TT
have the consistency of thin paste.
(10) B. F. A. asks: 1. I have a casting 8 inches in diameter, how much sulphuric acid is re-
quired to make it 2 pounds lighter, and how strong quired to make it 2 pounds lighter, and how strong
shoold the pickle be? A. Castings are generally turned shoold the pickle be? A. Castings are generally turned
smaller by cutting away a certain amouut on the lathe. smaller by cutting away a ce estimate could be given. 2 .
From the data furnished no estimater Wat is the composition of inclosed mineral, and what acid will take therock off withoutinjuring the diamond?
It is found in hard coal mines. A. The epecimen is iron pyrites, or sulpbide of iron. Mechanical treatment will remove the coal; possibly a gentle heat might be used to burn away the coal. Acids would decompose
the mineral, and would be. Without influence upon the matrix.
(11) E. E. S. writes: I desire to construct a small elecrric engine, with power enough to run a sew-
ing machine or auch other machinery of about the
ing ing machine or such other machinery of about the
same size. Can you tell me where I can geta descrip. same size. Can you telime where I can get a descrip-
tion or directions for so doing? A. There is litle difference ebeween a small dynamo electric machine and
 in SUPPLLEMENT, No. 161, for the construction of a small
dynamo, you will be able to make a machine that will answer as a motor, by altering the adjusiment of the
(12) W. A. M. asks how to make yeast cakes known as dry hop yeast. and used for raising
dough for bread. A. Marion Harland gives the following: 2 quarts water cold, 1 quart pared and sliced potatoes, double handful nops, tied in a coorse bag, four
to make stiff batter, and 1 cup Indian meal. Boil the to make stiff batter, and 1 cup Indian meal. Boil the
potatoes and hop bag in two quarts of water for threepotatoes and hop bag in two quarts of water for three
quarters of an honr. Remove the hops, and while
boiling cullender into a bowl. Stir iuto the scalding liquor enough flour to make a stiff batter. Beat all up well enough fwo tablespoonfuls lively yeast, and set in a warm, place to rise. When light, stir in a cup of Indian meal,
roll into a $a$ seet a a uarter of an inch thick and cut into roll into a seeet a quarter of an inch thick ann cut into
round cakes. Dry them in the hot sun or in a very round cakes. Dry them in the hot sun or in a very
moderate oven, taking care they do not heat to caking. moderate ooen, taking care they do not heat to caking
When entirely dry and cold, hang them up in a bag in cool dry place.
(13) W. F. S.-Perbaps the best method of preventing frost from forming on window gla
cover the glass with a thin film of glycerine.
(14) A. De W. asks (1) if there is anything to bleach vaseline to a pure white or lard color. A.
According to the U. $S$. Dispensatory, vaseline or petro Accoring to the e. A. Dispeusatory, vaselne or perto-
latum is decolorized by passing it through charcol
when in a liquid condition. 2 . What is the beet thing when in a liquid condition. 2. What is the best thing to remove paint and grease spots out of last year's over-
coat without spoiling the goods? A. FIr the cleansing of various fabrics see table given in Soientifio Ameri-
cAN SUPPLEMENT, No. 155 .
(15) J. M. P.-Receipts for burnishing ink for shoes are numerous, but all the successful makers
of this article have secrets, either as to the ingredients of this article have secrets, either as to the ingredients
or he method of manufacture, which they gnard asa or the method of manufacture, which they gard as a
valuable property right. As pertinent to this enbject,
we have knowledze of an attempt by a New York wo have knowledge of an attempt by a New York
dealer to make an ink similar to that furnisber

(16) J. S. O'B.-The American Bell Telephone Company claim to control all speaking telo-
phones. If they are able to sustain their clamm, you will, of course, not be entitled to make the telephone referred to for your own nse or for any other purpose.
The telephone described in SUPPLEMENT, No. 142, if well made, will talk for five or six miles. You should not use smaller than No. 14 iron wire; the No. 12 is the
size commonly used. A magneto call bell is generally used with this kind of telephone. Yon can get a good ground connection by attaching your wires to the wate pipes or to plates of copper, each having an area o
about 8 or 10 feet, buried in earth that is constantl
 ored engravings which have been badly soiled with printer's ink. Can you inform me what will remove
the same without defacing the victures? A. The process of cleaning soiledengravings is de:cribed in Scienstipro American Supplement, No. 44. It would apply also
toprinter' ink, but the process is a delicate one and toprinter's ink, but the process is a delicate one, and
great care must be taken not to injure the engraving great care must be taken not to injure the engraving
Hydrogen peroxide is another excellent bleaching gent.
(18) J. H. M.-As a young man desiring to become a thorough electrician, we think your better
way would be to secure employment in some establishway would be o secure employment in some estabish-
ment manufacturing eiectrical apparatus, and while
thus engaged to study the sabject of electricity. You might begin with Sprague's new work on electricity then study the works of Gordon and others on electric lighting and the general applications of electricity.
(19) D. W. asks how the polish is put on playing cards. A. All the successful manufacturers but the polish is made by a coating of size or varnish but the poilis is made sy a coating of size or varnish
and then passing the sheets, with metal plates, lirough polishing rollers
(20) D. E. C.-Lacquer for tin: Brass colort 3 ounces seed lac, 2 drachms dragon's blood, 1
ounce turmeric powder, $\mathbf{3}$ quart 95 per cent alcohol or ounce turmeric powder, $\mathbf{3}$ buart 93 per cent alcohol or
methylic alcohol; put in a botrle well corked, and place in a warm place and shake up occasionally for a week or ten days, then strain through a A fine cloth. Temper
with methylic alcohol so as to spread freely with a brush. Heat the oun in an oven abouta tas hot as boiling
water: bruah the lacquer on quickly. Vary the dragon's water: brush the lacquer on quickly. Vary the dragon's
blood and turmeric to suit your taete as to depth of blood and turmeric to suit your taste as to depth of
color.
(21) J. M F.-Lime cylinders for calcium
(21) J. M F.-Lime cylinders for calcium
ights are commonly made from selected pieces of unlights are commonly made from selected pieces of on-
slaked lime of good quality. They are aleo made of
lime oblained by caicining marele. We know of no method of utiizing slaked lime in a calciumlight.
(22) F. B.-Leclanche battery is gond for certain kinds of experiments. It will not yield a con-
stant current for a very long time; it certainly is cheap stant current or $a$ a ery long time; it certainly is cheap
and clean. and if you require a currentintermittently for feew moments at a time, it will probably answer your
purpose. If you want a continuous current, the Daniell or the gravity battery would be better for your
(23) A. F. L. asks the cheapest and most practical way to fnish cheap ,oft wood fornture, and
what ingredients are used for such fnishing. A. Fill the pores of the wood with a wheeler wood diller, then apply ore or two coats of white shellac varnish.
(24) J. C.-The process of separating fiber
of fiberand the kind of vegetable from which it is to
be separated. In general the vegetable may be reduced to a pulp by rolling or pounding, and then it may be washed away from the fiber. There are machines in use for thiy purpose, and a number of them have been patented. We know of no process of making the
fler tstryer than it is, atter being thoroughly freed
( ) J.
(25) J. F. D.-The great proportion of the cenriage hard ware used now is made of malleable iron, generalil cast in one piece. Some of the better kinds
of carriage hardware are made by the process of dro forging. The machinery used for producing such
(26) E. L. K. writes: I bave an oscillating engine cylinder 11/3 diameter, 2 inches stroke. Have am going to make boiler all of copper, and following dimensions to oftit: Drum 6 inches diameter, 6 inches long, shell one-sixteenth inch thick, heads a quarter of an inch thick, 40 drop tubes three-quarters of an inghb diameter outside, 6 inches long, one-sisteenth thick, this pasiling be thell jacketed. Would like to know how
tid nuch pressure is safe to carry, and if of sufficient capacile is to be well made. A. We doubt the propriety
boil of puting 40 tubes $3 / 4$ inch in a 6 inch head. If the
 you will add to its efflciency; one tube through center
will not be sufficient vent. Such a boiler, if properly nade with well brazed joints, ought to carry 30 pounds ressure and of capacity equal to your engine.
(27) H. M. F. asks (1) the size and kind of Wire to make a spark coil for lighting gas. A. You
will find instructions for making induction coils in Supriemmsr, No. 160. A simple magnetic coil of eight or ten nayers of No. 18 or 20 wire will answer for gas lighting purposes. 2. How many cells of Faure's se-
condary battery would it take to light an incaudescent condary battery would it take to light an incaudescent
light to read by, the secondary cells to be charved by ight to read by, the secondary cells to be charved by
one of Edison's large dynamos? How long would it take one of Edison'slarge dynamos? How long would it take
to charge them, and how long would they last? A. There is no economy in operating a single incandescent lamp by means of a secondary battery or in any other will pro. A sisteen candle power incardescent lamp bittery. To charge a secondary battery economically should take several hours, and the length of time during wh ch the battery will yield a current depends altogether upon the resistance of the circuit through which it has to work. If the resistance is high, the
battery will work f ) several hours, if the resistance is attery will work f ) several hours; ; the resistance 1 .
(28) J. H. C. asks: 1. Is there an established rule for the speed of the circumference of the paddle wheels of a steamboat to give best results? A. No. 2. What length should the paddles be in propor-
tion to width of boat? A. Usually about one-third, but tion to width of boxt? A. Usually about one-third, but
depends much on model and draught of waer. 3 . epends much on model and draught of water. 3 .
Would a one horse ergine run a boat capable of carryWould a one horse engine run a boat capable of carry-
ing a ton. the boat of fair pruportion, and at about what speedy A. It would run a a boat with speed, but little if any better thau with two pairs of oars. 4. Wiat length a $\alpha$ width of boat-not to drav moret than eight inches-would it requre to carry 2,500 pounds?
A. Depends much on model and weight of boatt if A. Depends much on model and weight of boat; if
model is sharp, boat not less than 34 feet loug and $61 / 2$ eet beam.
(29) E. L. S. asks: 1. What per cent of the bower required to run a dynamo machtne is utilized
the bestmotors in use, if they should receive the current from the dynamo A. About sixy per cent.
2. Where can I bus a mall dynamo or sufficient power 2. Where can I buy a mall dynamo or sumfcient power
to give electrical shocks? A. From any of ine dealers to give electrical shocks8 A. From any of the dealers
in electric supplies who advertise in our columns. 3 . n electric supplies who advertise in our columns. ${ }^{\text {andil }}$ About what is the electro-motive force of a small Grenet battery fin good order In volts? A. About 11/2
(30) C. G. S. writes: I have dipped my pencil into a yoblet, and brought up a drop of water. 1 . What force binds together the vencil and the drop?
A. The attraction of adhesion. 2. What holds the A. The attraction of adhesion. 2. What holds the
drop to tother drops? A. Cohesion. 8 . Why is not his ice instead of water? A. Because it is fluid. ${ }^{4}$. Ir 1 shake the pencil, in what direction does the drop
fall? A. In a tangent to the line followed by the point of the pencil. 5. If the drop were larger than the world, which way would the world gor A. II might follow the drop of water. 6 What other force is there in it which, according to Faraday, is equal to that 1 na
fash of lightning? Here are, then, flve great forces in a flash of lightning? Here are, then, five great forces in a
drop of water. What I wish to know is the name o those forces, as cohesion, gravity, etc. 9 A. If furniehed with the proper accessories, it might generate
an electric current, which would equial in quantity the an electric current, which would equal in
quantity of a very small fash of lightning.
(31) H. B. asks the size of boiler to give the best reaits in working a ten horse power engine (yer-
tical), and says be will also require tice steam for other uses. A. If for anthracite coal,
liter 32 or 34 inches diameter of shell and 11 feet in length;
20 or 22 return tubes 8 inches diameter. If bitumin ous coal be used, it would be best to make the boiler
18 icches or 2 feet longer. This boile 18inches or 2 feet longer. the awer with emall grate, and economically.
(32) H. B. M.-We understand the engines referred to. to be the same which have so often broken
down. You can rely upon it, that there is to te no
(33) W. H. M. asks for the length and or ginal cost of steamers Bristol and Providence, plying
between Fall River and New York? A. Three hundred and eixty-Itwo feet long; original cost understood
(34) F. W. writes: 1. Will you instruct me how to brild a Holzz electric machineq A. Consult
SƯPLIBMEST, 278, 279, and 282.2 . Is hard rubber or glass preferable? $A$. Use common window glases. 3.
What is the price of hard rubber in sheets?
A. We
helieve it is about a dollar a pound. 4. Does the machine work equally as well in damp as in dry weather
or does moisture in the air affect it, as is the case wit or does moisure in the air affect it, as is the case with
the old time electric machive with glass disk and rub bers ? A. It will work better than the old fashioned disk and rubber, but it will sometimes sail in very warund damp days, 5. Will size of spark be increased
by increasing size of plates? A. The size of a spark by increasing size of plates? A. The size of a spark
will be increased by increasing the size of the Leyden jars atlached to the machine. The length of the spark will be increased by using plates of larger diameter. 6 Would it be possible to utilize the spark for illuminat-
ing purposes, and if not, why? A. No. The current ing purposes, and if not, why? A. No. The current
generated by the Holzz machine has a very ligh intensity, w
mipmont.
(35) N. E. F. writes: If a man makes an im provement on the Bell telephone that does not infring
their patents, has he right to attach it to an instro their patents, has he a right to attach it to an instru-
ment he has rented of them, and use it for his own use A. We know of nothing to prevent you from applying
(36) C. M. writes: I have modeled flowers in clay, and would like to know tow to bake them so that I can paint them. What else would answer the same purpose a. clay? A. The method of baking the
fowers you have modeled in clay depends in a measure flowers you have modeled in clay depends in a measur
upon the characier of the clay, and we know of no wa upon the characier of the clay, and we know of no wa
to determine the best method without experiment. misture of glue. resin, and whiting is used for the orna ments of gilt frames, and it might tossiby answer your
purpose. It is moulded warm, and, of course, needs no baking.
(37) W. B. R. asks of what agate buttons are made? A. Genuine agate buttons are, of conrse,
made from natural agates; the artifcial article is made of colored glass.
(38) W. M. B. writes: I desire to sustain a weight, say 2,500 pounds, on two floats, 24 feet apart; the weight must be 4 feet from one and 20 feet from
the other float. I know the total displacement will be approximately 40 at cutic feet; how much d dsplacement will there be in the large float.four feet from the weight, and how mach in the sma:! float, twenty feet from the weight? I think approximately 82 cubic feet in the
large float and 8 feet in the small float. A. Your figures larye fiorat and 8 feet in the emall lioat. A. Your figures
are correct for the centers of floats from supporung of the material of the flaits and balance beam. The doats must be as much larger than your figures as is equivalent to the weight of the apparatus, in order to be
(39) J. T. writes: I use a good deal of wal rns tusk for handes, and very often they have a yellow stain in them. Insed to bleach them in the sun, but it
is a very dow process. Is there any quicker ways Elephant tusks are bleached in three or four days by immersion in turpentine. . eeping near the eurface, and
exposing to sunlight and probably thls is the best way now knowu for your purpos.
(40) G. W. B. asks: 1. What kind of cement used, and how to cement gum face on band saws? A. Oralinary rubber cement, such as you can purc base . Is there anything to ve put in glue to prevent moist are from disturbing the joints in patterns? A. A little bichromate of potash put into your glue will render it
insoluble, after exposure to light, 3 . Is there anything insolubbe, after exposire to light. 3. Is there anything
to prevent shellac used for patterns from getting dark of no way to prevent this.
(41) A. C. H. asks by what mode or proess the rust stains in old Leclanche porous
beremoved\& A. Try dilute sulphuric acia.
(42) E. L. H. asks is there any way or pro cess to reharden annealed brass rods? A. We know of
one, except redrawing or barnishing, which will only
(43) S. E. F.-Waxed paper, such as used or wrapping soap, 1s prepared by placing cartridge or
other paper on a hot iron Y I d rubbing with beeswax or brushing on a solution of wax in turpentine. On a large scale, it is prepared by opening a quire of paper flat ron against which is held a piece of wax, which, melt ng, runs down upon the paper and is absorbed by it Any excess ones.
the lower
ones.
(44) W. S. C.-In closed circuits for steam heating, the pressare of the steam along the flow pipes
and in coils in well arranged systems is so nearly equalized with the pressare in the boiler, that it requires bat small elevation of the water of condensation in the return pipe above the water level in the boiler toallow of its retarn by gravity. In this system all of
the radalators should be not less than from 1 to 5 feet above the water level in the boiler, according to the complication and extent of the circuil. The air is discharged at.the radiators, and no waste of water is neces-
(45) W. B. R. writes: I have about a tou of tacks slightly rusted. How can I clean them sul-
purric acid does it, but they rust again before I can ry them. Attrition in a rattler ruius the points. ${ }^{\text {I }}$ same? If with lime, how remove that? They must be of most nsers of tacks? cloth basket, dip in the sulphuric acid bath and quickIs plange in boilling hot water, then in boiling hot lime water, then throw the tacks upon a wire cloth over a
Are to dry quickly. The Jime water shonld only contain as much lime as the water will hold in solution cold. It $t$ hould not be milky.
(46) Dr. E. H.-Remove your carbon electrones from the porons cells of your battery, and soak black oxide of manganese from the cells, and soak the cells in warm water for the same period; then replace
the carbon electrodes in the cells, and fll with fresh
granulated blackoxide of manganese, and seal the cells with pitch, leaving a small aperture in the sealing for
the eicape of air, and we think you will flud your bat-
(47) G. D. writes: 1. Can you give formufor gelatine pads and the ink for une with them? A.
nsult article on "New Copying Process ", in SUPPLE. UENT 374. 2. I wish to light with bichromate batteries, asing at different times 2,5 , and 10 Edison lamps. How ans cells will I require in each case, and how should hey be connected-for quantity or intensity? A. We lamps with bichromate batteries. You will find it exceedingly troublesome and expensive. You can light one or two for experimental purposes readily ennugh, one or two for experimental parposes readiy ennugh,
but if you desire to run ten lamps for acual use, we adivise you to purchase a dynamo and a steam ens ine to
generate the current. If you conclude to try the experisenerate the current. If you conclude to try the experi-
ment of lighting by means of incandescent lamps, opeent of lighting by means of incandescent lamps, ope-
ratedfy batteries, you might begin with about 150 cells arbon bichromate battery of the Bunsen tyve. The amps should be connected in multiple arc and the bated for quantity.
(48) G. H. P. writes: I have a turbine water wheel which $\mathbf{I}$ am running with a full gate. using
it to drive a paper machine. I am told, if $I$ put on to drive a paper machine. I am told, if $I$ put on a larger diving pulley, that I will then drive the machinery faster with the same power. I contend that this cannot be eo. A. Our opinion is that you cannot
gain power by enlarging the pulley unless you can gain power by enlarging the puley unless you can
raise the head of water; much depends upon Ihe present speed and size of wheel. The opinion of the maker of Spee whel will be morer ere iable than that of those not
theowing the peculiarities of its consiruction. If the
kno knowing the peculiarities of its consiruction. If the
heel is now running at a very high speed, the reac wheel is now running at a very high speed, the reac-
tion may not be perfect; in such case, increasing the tion may not be perfect; in such case, increasing the
size of the pulley might be of beneft. Our reference to ize of the pulley might be of beneft.
(49) W. A. M.-Good glue mixed with about one.quarter its bulk of fine wood ashes makes a
trong cement impervious to oil. Gutta percha dissolved cemen in bisulphide of ot easily ponetrated by oil. Make the cement as thick as treacle. Warm the parts to be cemented, and press ogether tightly.
(50) W. O. McK.-The Scotch water gauge glasses are made of silica and kelp or potash, and are
slightly soluble, especially in acid waters, in which we understand, your State abounds, as we frequently hear fits action upon boiler tubes and p pes. Its action is nore marked where there 18 rapid circulation. If you and make comparison after a few months' use, you will robably find the hole larger by the dissolving or wearang
a way of the interior as well as the exposed end.
(51) W. S. P. asks: What is a solar compass? On what principle it works? A. The eolar at-
tachment is a frame with arms and graduated limb, placed nuon the telescope of a compass or feld transit laced nyon the telescope or a compass or field transit
or the purpose of obtaining local meridians by observation of the sun's position. We cannot give a detailed descr
(52) M. R. S.-The crystallizing baromeer or weather glass should not have a closed tube or cvered wilh gold beater's ekin or fish bladder so loosely that the difference of preesure of the air may be rang-
mitted to the liquid within the glase, otherwise it is of mitted to the liquid within the glase, otherwise it is of
no value whatever. The alcohol holding camphor in a no value whatever. The alcohol holding camphor in a
saturated sontion crystailizes variably with the pressaturated sontion crystailizes variably with the pres-
sure, and does not always rise and fall, contrary to the sure, and otbe norcury barometer.but often in the most
motions of the mer fantastic combinations. It is a pretty and curious instrument for the study of the formation of crystalline
(53) W. M. J. M. asks: Would it be adisable in building a small steam vacht with a high ressure engine to put the exhaust under the fan tail may be carried through the bottom and alongside of may beec, opening under the screw. It will partly condeuse in the pipes, and makes a little noise by concussion with the water. We do not think it of much ad-
vantage. Making the upper part of the exhaust pipe vantage. Making the upper part of the exhaust pipe
twoor three times larger than at the engine, will modify its intensity.
(54) S. R. L. asks for receipts for dyeing cotton fabric red, blue, and ecru. A. Red: Muriate in, two-thirds cupful, add water to cover goods; dise to boiling heat; put in goods one hour; stir icaragua wood one pound; steen on e-half hour at hand eat, then put in goods and increase heat one hour, ot boiling. Air goods, and dip one hour as before. ash without soap. Blne: For three pounds goods
blue vitriol 4 ounces, boil few minutes, then dip goods three hours; then paess them through strong lime water. Ecru: Continue the foregoing operation for blue by passing the goods through a solution of prussiate of
potash. Also see the receipts given in SoIrmyrio MERICAN SUPPLEMENT, No. 167.
(55) E. H. S.-Coal tar alone with gravel nd sand for side walks does not dry well. Asphaltum with equal parts of coal tar melted together aud ben made hot upon an irn plate (the mixing to be one in a large pan of fron), putting no more asphalt and tar upon the sand and gravel than will just make tstick together; then dump into place while hot, spread quickly, and beat level with a ram or heavy roller. Dust over the surface with inne eand before rolling or beat-
ing, to prevent the material from sticking to the roller ing, to prevent the material from sticking to the roller Or heater. This operation reauires a little care and exgiven measure of sand and gravel, and also for the proporions of eand and gravel required to make the hest pavement. Sometimes a thin bed of broken stone is
lavd as a foundation. Also a thin hed of coarse gravel land as a foundation. Also a thin hed of coarse gravel
(56) J. F. S. writes: Can you înform us a to preparation or mannufacture of "oil of apple" o "essence of apple," advertised by manufacturers an dealers in olls, extracts, essences, etc.? A. The es
sence of apple is composed of aldehyde 2 parts; chloroform, acetic ether, nitrous ether, and oxalic acid each 1 part; glycerin 4 parts; amyl valerianic ether 10 parts 2. Please give a formula for the manufacture of artificial cider. A. Imitation cider consists of 25 gallons soft water, 25 pounds New Orleans sugar; 1 pint yeast 2 pounds tartaric acid. Put all the ingredients into a
clean cask,and stir them up well arter standing twentyclean cask,and stir them up well after standing twenty
four hours with the bung out. Then bung the cask up tight, add 3 gallons spirits, and let it stand 48 hours after which time it will be ready for use. 3. And champagne cider. A. Champagne cider can be prepared by taking 10 gallons of cider, old and clear Put this in a strong iron bound cask pitched inside (like beer casks); add $21 / 2$ pints clarifed white plain sirup ung ready in it bicarbonate; bung it as quickly and as well as possible.

- (57) A. H. says a manufacturer of ladders here contends that ladaer rounds (for a common straight ladder) tapered off from the center gradualy to the ends down to the size of the tenons are stronger
and stiffer than to leave the rounds straight and taper them off at the ends just enough for the tenons; rounds the same size in the center. Is he right? A. No. He
(58) S. Van D. asks: Why does a sulphur ous smell always accompany a thunderbolt? A. The
vdor is supposed to be due to the formation of ozone.

INDEX OF INVENTIONS
For which Letters Patent of the United tates were Granted
November 25, 1884,
AND EACH BEARING THAT DATE. [See note at end of list about copies of these ;patents.]

## Acid, making hydrochloric, L. Mon Adding machine, Noyes \& Stark...

Adding machine, A. Stark......
Advertising device, J. C. Blevney.
Amalgamator, M. T. Van Derveer
Anchor support and tripper, R. P. Trefry.
Auger, post hole, G. W. Gilmour
Axle box. car, G. W. Sweeney
Bag and pouch fastening device, J. Fickinger.
Belt shifter or stop motion. H. A. Green..
Bench and stand, combined, J. W. Walter
Berth, automatic ship Bicycle, stillwell \& Nab Milliga
Bicycle. Stillwell \&
Blotter, N. O. Pyles
Blotting thimble or pad, A. B. Bromwell
Boneblack drier, E. P. Eastwick
Book support, adjustable, W. O. Johnso Bottle wrappers. material for, S. Friend Brake. See Lathe friction brake.
Brake shoe, D. Prew. ............................... Bridge, M. Kersten
Broom, M. A. Yoergensen.
Broom shield, Dew \& Kobertson
Brush, B. Normandin
Brush, B. Normandin
Brush, stove, C. Barrett...
Buckle. trace, J. J. O'Brien.
Burglar trap, G. Grebe...........
Butter worker, M. D. Woodbury

## Camera. See Phot Can. See Oil can.

Cannon, manufacture of, B. T. Babbitt
Cant dog and pry. combined, A. K. Doe
Car coupling, P. Brown
Car coupling, J. D. Kiely.
Car coupling, J. P. Lancas
Car coupling, J. A. Reid..
Car uncoupler, electro-magnetic, J.D. Reed.
Carrier. Shee Cash carrier
Cash carrier. C. Fisher
Caster, J.
Caster, J. I. Duncan.........................................
Chair. See Folding chair
Cauck. J. H. Westcott....
Churning device, A. Cairns....
Clock, electro-mechanical
Cock, stop, C. Pfaudler.......
Cooking and collecting the resulting gases an Collar, horse. S. L. McClana han.... ................ Cork strip for protecting steam and gas pipes, et
Corks, metallic cap for, A. L. . Bernardin.
Cultivator, T. E. Gregg
Cultivator, W. B. Patterson
Cultivator attachment, F. Albrech
Cutter. See Moulding cutter.
Derrick, T. Gaffney.
Digger. See Potato digger.
Drier. See Boneblack drier.
Driil. See Rock drill. Stone drill.
Easel, T C, Vail
Egg, fruit, and honey carrier. L. H. Taylor
Electric motor, Blodgett \& Tierrell.
Electric motor, G. 'Trouve................
Electricity gauge, J. \& H. M. Goodman..
Embalmer's and undertaker's cabinet,
Quayle.................................
Embroidery frame, I. Elder
Envine. See Gas engine.
Evaporator. See Sugar evaporator.
Eye bars. manufacture of. E. W. Feck

Fastener, metallic, G. W. Mçilll. Faucet, compound, C. H. Waters....
Faucet protector, ale, G. Hirschman reed lubricator: visible, T. Brabson
Feed water, heating, C. N. Petesch...
Fence post. M. J. Schott....
ence wire, barbed, Woodruff \& Hutchins Fertilizer. J. K. Young.
Filter, cooler, and refrigerator, combined, w. Templeton.
Firearm, w. Newcomb.
irearm, breech-loading, w. \& S. E. Folk
Firplace, E. Chickering
Folding chair and bathtub, combined, S. J. \& A. Beach.... ......................................
Frame. See frame
Frames, rames, etc., manufacture of covered, D. \& D.
C. Wheeler ................................ generator furnace.
urnace crown bar, White \& Hodgson urnace door. T. R. Butman......................50 to Garment fastener, A. V. Smith. Gas engine, B. Parker.. patrick
as furnac
Generator. See Steam generator.
Glass cutting machine, P. C. Claflin
Governor, steam engine, A. L. Ide.
overnor, steam engine, $\mathbf{H}$. Whiting. ............ Grain elevators, revolving chute for. J.
Grinding mill. roller, w. R. Fox .......
Gumming machine, Furnival \& Daniels Gamm protector, M. Bidwell
Handle. See Pail handle.
and
Harmonium and piano, combined, L. Küstner
Iarness, H. T. Fountain....
Harrow, Hetrick $\&$ Stimmel
Harrow, W. W. Robinson
Hay rake, horse, A. W. Stevenson
Hinge, spring, J. H. Alexander.
Hinge, spring. P. H. Walsh.
Hoisting gear, W. W. Wythe
Hoisting machine, J. Boyd.
Holder. See Hat holder. Stencil holder. Tidy
holder.
Horseshoe, w. v. Wallace.
Hose reel, Harding \& Hill
Hose reel, Harding \& Hill.........
Hot air furnace, J. B. Oldershaw
Hot air furnace, J. B. Oldersh
Hydraulic motor, N. Yakn...

son..............................
Joint. See Rail joint. Railway joint. Universal
Joint.
Kiln. See Boneblack kiln. Brick kiln.
Lace fastening. F. M. Munroe .
Lantern, W. S. Tryon..........
Lathe friction brake, U. \& H. E. Eberhardt..... Clegg
Letter she
detter sheet and envelope, combined reversible
 Lifting jack, J. S. Hood
Link blanks, roll for forming, J. T. Wright. Lock and latch, combined, H. L. Heaton ... .... Wadsworth...................
Lubricator. See Feed lubricato
Lubricator, L. B. Bailey
Malt husks, treating. P. A mmann.
Measure for grain, shot, etc., H. W.
etals, process of and apparatus for the tre
ment of ores for the extraction and separatio
of their, J. J. Shedlock.
Milk, apparatus for
Milk, apparatus for preserving. J. Meyenberg.
Mill. See Grinding mill. Roller mill.
Millstone driver, J. F. Callahan
Moulding cutter, J. Phillips............................
Motor. see Electric motor. Hydraulic mot Motor. See Ele
Spring motor
Mouse trap, D. B. Wirt....
Nailing machine. J. Nagle.
Nut washer, w. A. Jordan...................................
Oil and glue from bones, Ett ., extracting.
Seltsam.
 Ores, apparatus for disintegrating,
ㅍll handle, etc., S. C. Cary......... ..... ..........
Hill ..................................
Paper satchel, c. L. Lockwood
aper sizing and drying machine, comblned,
Pea and bean sheller, E. R. Young
Photographic camera. W. Clark...
janoforte attachment, E. Höflingholl
Piano pedal key attachment, J. Shaw.
Planter, J. в. Altman..............................
Planter and cultiva
Shannon .......
Plow. A. Schindier.
Plows. tongue latch for
Post. See Fence post.
Potato digger, C. A. Denison
ower by beits and pulleys, ...................
ting, N. Yagn....... .............................
Protector. See Hand protector.
Pump, w. S. McLeed ..
Rail joint, D. E. Bishop
Railway appliances by electricity, apparatas f.................
controling. J. T. Hambay
Railway joint and chair, combined, L. Haas.
Railway signals by eleotricity, apparatus for
trolling. J. T. Hambay.:
Railway switch, G. W. Parsons................
Rallway switch circuit closer, J. H. Hambay.
Railway switch locking device, T. Rowlands. Railway switch locking device. T. Rowlands. Railway switch stand,
Rake. See Hay rake.


## DESIGNS

## Basque, lady's, L. Tully........... ................... <br> Carpet, N. Komori................................... 15,581

 Cloak, miss, M. Kavanagh.Clock case, A. O. Jennings.
Costume, girl's, J. Q. Reed...
Costume. lady's, M. Turner.
Costume. lady's. M. Turner.


TRADE MARKS.
Baking powders, Oriole Baking Powder Company. 11,71
Baking powders,
Baking powders. Queen City Chemical Company.. 11,719
Bitters, Picon \& ©o.... ....................... 11,718 Bitters, Picon \& Co..............
Bitters, J. G. B. Siegert \& Hijos
Blacking and preparations for polishing boots.
Brown \& Son...
Bustles, E. E. Hods
Cigars, E. H. Gato.
Cigars, E. H. Gato........... ...
Coffee and spice mils, H.-H. Coles
Flour, wheat, J. Boyd, Jr., \& Co..
Food for infants, Fairchild Bros
$11,699,11,700$
.... .11 .707

C Foster. $\quad . \quad 11.69$
Medicines. certain named proprietary, Flowe Medicine Company .
Milk, condensed, H .
Milk. condensed, H. Nestle.... ..........................
Oil made from petroleum, lubricating, w.
Oil made from petroleum, lubricating, w. H
Compton........................................................
Patterns and linings for ladies' dresses, Mosch Patterns and
cowitz
Bro
Pens, metallic, Esterbrook Steel Pen Manufactur-

A printed copy of the speciflcation and drawing of
any patent in the foregoing list, also of any patent any patent in the foregoing list, also of any patent
issued since 1866 . Will be furnished from this office for 25
cents. In ordering please state the number and date
of the patent desired. and remit to Nunn \& Co., 361 Broadway, New York. We also furnish, copies of patent
granted prior to 1866 ; but at increased cost, as th granted prior to 1866 ; but at increased cost, as th
specifications, not being printed, must be copied by hand.
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the foregoing list, at a cost of $\$ 940$ each. For fuli instructions
address Munn \& Co., 361 Broadway, New York. Other
and

쿡 dxertiwnmfut.




FRICTION CLUTCH
Pulleys and Cut-off Couplings.


THERMOMETERS.
STANDARD THERMOMETER CO


THE BEST STEAM PUMP.



Pumps."

## PERFECT'

NEWSPAPER FIIE

MUNN \& CO.
 JUST READY

belew youman

Thie Hide range of



 Africuture and the imirevenentof food products.




 Terms: \$5.00 per annum

## Single copy, 50 cents

D. APPLETON \& CO., Publishers NEW YoRk.
Gustar E.Stechert, 766 Broadway, N. Y., Has For Sale, Anmaies des ponts et Chaussees.
Complete Set, 883 -80 partly bound halfmorocco, $\$ 160.00$
Crelle's Journai friir Mathematik. Complete Set, 1826-81, vol. 1-90, bound in half $\$ 500.00$
 Memoires et Comptes Rendus de la Societ ${ }^{\$ 250.0}$
 Proceedin Engineers.
chanical
Complete Set, $1847-83$, \&Register. Half calf, neat, $\$ 175.00$

 You need the Best Family, Religious, and Literary THE INDEPENDEENT, New York


A.A.GRIFFING IRON CO STEAM HEATING Appatid BUNDY STEAM PADIATOR



## ITTD EAS ENHND OVER 10.000 INUSE 

## NEW YORK BELTING \& PACKING CO.

 © The Odest and Largest Manufacturers of the Original $\boldsymbol{\sim}$




ROCK BREAKERS AND ORE CRUSHERS


 Ballas: Davidalibuvalawe SOLD BY THE POUND.
 Samples sent sort trial.
HOLLAND \& THOMPSON, Manufacturers, 217 RIVER ST., TROY, N. Y.

RIPON CATHEDRAL. - FULL PAGE


American Meteorolorical Journal.


FREE Silks for Patchwor


## FREE HOLIDAY PACKAGE. <br> 


do You WISH



WATCHMAKERS.

## THE CAMERON STEAM PUMP

 ※TANDARD OF mzOMMエmNer. 30,000 IN USE.$\qquad$

MANUFACTURED SOLELYEX
MANUFACTURED SOLELYBY
THE PUSEY \& JONES COMPANY $5=$

THE HARDEN STAR HAND GRENADE



| 10 |
| :---: |
| 0 |



SCIENTIFIC AMERICAN SUPPLE MENT. Any desired back number of the SCIENTIFI
AMEEICAN SPPLMENT can be had at thil offie fo
10 cents. Also to be had of newsdealers in all parts o

## PATENTS.

 ication of the Scientific Amirican, continue to esor Inventors.In this line of business they have had thirty-eggh years' experience, and now have inequaled facilities for he preparation of Patent Drawings, Specifcations, and
the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs.
Und unn \& Co. also attend to the preparation of Caveat copy Reports on Infringements of Patents. All business
and Reis. trusted to them is done with special care and prompt
A pamphlet sent free of charge, on application, conaining full information about Patents and how to pro are them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, As-
signments, Rejected Cases, Hints on the Sale of Patents, etc.
We also send. free of charge. a Synopsis of Foreign We aliso send. free of charge. a Synopsis of Foreign
Patent Laws, showing the cost and method of securing
patents in all the principal countries of the world MUNN \& CO Solicitors of Patent


## 

SHIPMAN STEAM ENGINE, A BOAT AND STATIONARY ENGINE.
No skilled attendant required! Safe from fire and
explosion! No expense when engine stops!



THE CORINTH CANAL-A DAN DESCRIP




SEBASTIAN, MAT A CO
IMPROVED 660 Screw Cutling Lathe



\# New Catalogue of Valuable Papers



HOW TO COLOR LANTERN TRANSPA fections for the preparation of of hotozraphichic transprian



ROOFS NEW IRON BLOWEA


RON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE




## 

FRET SAW OR BRACKET WOODS, PIINCHOICEANDRARE YARIETY' ALSO LATEST BOOFS OF DESHGNS. Manufacturers Mahogany and other Cabinet Woods. FOUNDRY PRACTICE




SEND FOR LIST OF FINISHED PULLEYS, at 4 cts. per pound. The JOHN T. NOYE DIFG. CO., BUFFALO, N. Y.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |



Nervous Debility

# ORUM $=$ FOREIGN PATENTS. Their Cost Reduced. 

## coutre

 yost foreign countries having been considerably re-uced, the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inven-CANADA.-The cost of a patent in canada is even less than the cost of a United States patent, and the Brunswick, I'ova Scotia, British Columbia, and ManiThe number of oir patentees who avall themselves of atents in Canada is very large, and is steadily increas ENGLLAND. - The new English law, which went into toree on Jan. 1st. enables parties to secure patents in
Great Britain on very moderate terms. A British pa Great includes England, Scotland, Wales, Ireland, and the Channel Islands. Great Britain is the acknowledged
nnancial and commercial center of the world, and her goods are sent to every quarter of the globe. A good in ention is likely to realize as much for the patentee
in England as bis United States patent produces for him at heme, and the small cost now renders it possible ent in Great Britain, where his rights are as well proected as in the United states.
O'THER COUNTRIES. - Patents are also obtained on very reasonable terms in France, Belgium, Germany
austria, Russia, Italy, Spain (the latter includes Cuba and all the other Spanish Colonies), Brazil, Britisb India, Australia, and the other British Colonies
An experience of tHIRTY-wIGHT year An experience of THIRTY-EIGHT years has enabled
he publishersof THE SCIENTIFIC AMERICAN to establish competent and trustworthy agencies ir all the principal foreign countries, and it has always been their aim to
have the business of their clients promptly and properIone and their interests faithfully guarded.

## A pall count ries, inclung a synopsis of the patent laws

 of all count ries, including the cost for each, and otheinformation useful to persons contemplating the prohis office.
MUNN \& CO.. Editors and Proprietors of The SctFNTIFIC AMERICAN, cordially inviteall persons desiring rade-marks, in this country or abroad, to call at their offices, 361 Broadway. Examination of inver.tions, con-
sultation, and advice free. Inquiries by mail promptly answered.
$\qquad$


A Aurtitements.
 sngravings may head advertisements at the same rate
per line, by measaremeint, as the letter press.
Adver tissments must be received at pubblicatio oftice
as Thursday morning to uppear in ext issue.

Pratt's Multiform Screw Driver.


Twelve scremwirlivers in one. The points as sean tin



 MILLERS FALLS CO., 74 Chambers St., Now York
VOLNEY W. MASON \& CO. FRICTION PULLETS CLUTCHES and ELEVATORS.

## TELEPHONES.

The United StatesTelephone Nifg Co. This Company is the owner of the patents of James
$\mathbf{W}_{\text {Mr }}^{\text {Mc }}$. Monough for speaking telephones
Mr

 ers, sellers, and users will ve proceeded against.
This Company are now prepared to seli. Tele-
phones of the most improved form. The United States Telephone Mapufacturing Co.,
I87 BROADW AY N. Y. DRAWING
 F. Brow's Patent
FRICTION CLUTCH. Send for Mllustrated Cata-
togue and Discount Sheet
to

The " MONITOR.' A NEW IAFTINGAND NON-


EJECTORS
Water Elevators,




WITMIERBY, RUGGG \&ICHARDSON, Manufacturers


## H.W.JOHIS' assesyos urquid pants

 ROOFING.merror Builaing Felt, Steam Pine and Boiler Covering, Stoam Pac
ing,
nill
Board Gask Fire-proof Coatings, Cement, acc.
H. W. JOHNS M'F'G CO., 87 Maiden Lane, Now York. 170 N. 4th St., Phila. $\quad 45$ Franklin St., Ohioago. MAGIC LANNTERN ELECRIC LIGHT TME LICHT MADE EASY!



BURNHAM'S SELF-ADJUSTING SWING CHECK VALVE. Users of Check Valves will please note the advantage these Valves possess
over all others. The ny Hearse the yoke
Hun foat weror
Hultorm war of
71 John Street, \#5




GEO.W.FIH. D




SUPPLY DEPOT
AMATEUR AND Professional Mechanics.




SPEAKING TELEPHONES.












## VNATPER.

Cities, Towns, and Manufactories Patent tube and gang well sistem. Wm. D. Andrews \& Bro., 233 Broadway, N. Y


Steel Castings $3=-2=$


1Rider's New and Improved COMPRESSION Hot Ain Pumping Engine New and Improved Designs.
INTERCHANGEABLE PLAN
DELAMATER IRON WORKS,



The fact that this suarting has is per cent. great
strength, a finer flish, and is truer to gauge, than an





## BRASS COE BRASS MFG CO

Footlathes


## 

 GASKILL'S STEAM PUMPS, GAsKilles high duND pumping engines. For public water supply M. Manufactured by
THE HOLLI M MFG. CO., Lockport, N. $\mathbf{y}$
KORTING UNIYERSAL Double tube INJECTOR国


NO ADJUSTMENT FOR VARYING STLE CONOMITIOS. PRESSURE.







With Harris Pat. Improvements, from 10 to 1,000 E. P.

 PRINTERS' ROLLERS. BEAEAPAND D. J. Reilly \& Co., 3.26 Pearlit., New Yoris City.









## The Scientific American.

## the most popular scientific paper

 IN THE WORLD.Published Weekly, $\begin{gathered}\text { 8.20 a Year; } \\ \mathbf{1} .60 \\ \text { Six Montha }\end{gathered}$ This unrivaled periodical, now in its fortieth year, and enjoys the largest circulation ever attained by any Every number contains sixteen large pages, beautifully printed, elegantly illustrated; it presents in popuar style a descriptive record of the most novel. interesting tures. It shows the progress of the World in respect to New Discoveries and Improvements, embracing Machin-
rry, Mechanical Works, Engineering in all branches, Chemistry, Metallurgy, Electricity, Light, Heat, Archi-
eecture, Domestic Economy, Agriculture, Natural Histecture, Domestic Economy, Agriculture, Natural His-
ory, etc. It abounds with fresh and interesting subjects for discussion, thought, or experiment; furnishes hundreds of useful suggestions for business. It promotes
Industry, Progress, TTrift, and Intelligence in every Thmunity where it circulates.
The SCIENTIFIC AMERICAN should have a place in
every Dwelling, Shop, Office, School, or Iibrary. Workmen, Foremen, Engineers, Superintendents, Directors, Presidents, Offcials, Merchants, Farmers, Teachers,
Lawyers, Phystcians, Clergymen, people in every walk Lawyers. Phystcians, Clergymen, people in every walk
and profession in life, will derive benefit from a regular reading of THE SCIEVTIFIC AMERICAN.
Termsfor the United States and Canada, $\$ 3.20 \mathrm{a}$ year ; 1.00 six months. specimen copies free. Remit by ostal Order or Check. $\underset{361}{ }$ CO., Publishers,

## THET

Scientific American Supplement. The Scientific American Supplem ent is a sepa-
rate and distinct publication from The Scievtifio AmERICAN, but is uniform therewith in size, every number ERICAN SUPPLIEMENT is published weekly, and includes
very very wide range of contents. It presents the most reent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine En-
gineering, Photography, Techhnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc
A vast amount of fresh and valuable information perA vast amount of fresh and valuable information per-
taining to these and allied subjects is given, the whole tainng to these and
profusely illustrated with engravings.
The most important Engineerihg Works, Mechanisms-
nd Manufactures at home and abroad are represented and Manufactures at home and abrat.
Price for the SUPPLEMENT for the United States and Canada, 85.00 a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed for one year for \$7.00. Address and remit by postal order or check,
MUNN \& Co.. 361 Broadway, N. Yo,
Publishers Scientific Amelican. publishers Scientipic Amelican.
To Foreikn Subscribers.-Under the facilities or
the Postal Union.the Scientific American is nowsent by post direct from New York, with regularity, to subscribers in Great Britain India. Australia, and all other British colonies ; to France, A Asstria, Belgium, Germany,
Russia, and all other European States; Japan. Brazil. Texico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, \$4, gold, for Scientific amirican, one year; $\$ 9$, gold, for both SCIENTIFIC AmiRICAN and SUPplement for by postal order or draft to order of
MUNN \& CO., 361 Broadway, New York.
PRINTING INTES,


