THE SCIENTIFIC AMERICAN SOPPLEMENT. The Supplement is never out of print. The publigher print from plates, and can
numbers. Price, 10 cents each.
If any News Company or Agent pretends to be un.
able tournish any back number desired, please send the order direct to us, and we will have. it promptly filled.

monn \& Co., Publiberrs.

361 Broadway, New York
Back Volumes of the Supplement. We can supply back volumes of the SOPPLEmeNT,
bound in paper covers, at $\$ 2.50$ per volume; in cloth, bound in paper covers, at $\$ 2.50$ per volume; in cloth
$\$ 3.50$ per volume. The eutire teries un tothe close o 93.50 per volume. The eutire eriee
the year 1884 comprises 18 volumes.

Numbers	Numbers
deluded.	included.
Vol. I. 1-26	Vol. X.235-260
II 2\%-52	" XI......261-286
III. 53-78	" xII......287-313
IV........ 79-104	XIW......314-338
V....... 105-130	" XIV.......339-365
vI 131-156	" XV.......366-391
" VII........157-182	" XVI.......392-417
"VIIT........183-208	" xVII418-443
IX.... .. 209234	"XVIII... ...444-469

nually

Terme of eubbecrip
vear. Issued weekly
MUNN $\&$ Co., Pebluserse,
361 Broadway, New York.

HINTS TO CORRESPONDENTS.

(1) H. W. G. writes: 1. I bave a so-called lightning saw,atached to a small machine. The saw worke well in logs not larger than 1 foot 6 inches in
diameter; by cutting larger loge, che saw will grind the dust into flour, and do no cutting at all. How would it do to fle every third tooth down to a scraper,
thue making two double teeth for loosening the duat thus making two double teeth for loosening the dust
and one double toolh to serape it out? A. Probably and one double toolh to scrape it out? A. Probably
your saw is too small for loge larger than 18 inches your saw is too smail for hoge larger than 18 inches
diameter. Every tooth should be capable of taking out its own cut. Sharp, well set teech, proper feed and
power will m ike the saw cut. 2 Will there be any success in taking letters patent for a corm planter which will plant corn in square hills without squaring off or using the rope or wire so-called check rower? A. The suc ess of your corn planter depends apon its aulility and originality and yoor busineess application. 3. Wha
 kohlenstoff A. Saneretoff, oxygen; wasserstoff. bygas. 4. Do you know of anypublication, Treatise aci Perpetual Motion, in the Germau language? A. No and consider any attempt to attain perpetual motion
a
(2) M. S. asks (1) a receipt for making soap that wilt take erease spots out of cloth. A. Powof turpentine, add salt of tartar 1 ounce, best potash 1 ounce, work the whole into a paste with a little soap. . A receipt for a pate or composition that will polish gold or silver, something to be put up in tin boxees? A. Equal partis of precipitated subcarbonate of iron and
prepared chulk. An impalpable rouge may be prepared preparec cluilk. An mpalinating the oxalate of iron. Take quickeilver by calcinating the oxalate of iron. Take quickeiver
with chalk half an ounce, and prepared clalk 2 ounces; mix them. When used, add a amall quantity of alcohol and rub with chamois leather.
(3) J. A. G. writes: In using borax with each), are the antiseptic or disinfeccting qualities of the each), are the antisepic or dieinfecting quailities of the
acid chauped or diminished? Can you name a better
plany Disoolvig in water ane plan Y DiseolviLg in water alone is troublesome, and
in alcohol is expensive. A. Borax is of itself an antiseptic,and therefore aiddin itsdegree; alkalies and alkaline salts are said to increase the solubiity of salicylic acid. Another melthod consists in diesolving 11 parts
salicylic acid in 24 parts ammonia, and then adding 16 salicy chi acid in 24 parte ammonia, and then adding
paris dilute aceetic acid, or just enough to produce parts dilute acetic acid, or just enough to produce
slightyly acid reaction. For bee culture a made by dissolvingone ounce of theecrystallized salicylic acid in haif a pint of French spirits; of this solution add one once to pint of eoft water at $60{ }^{\circ}$ Fah. In cold
weal her perform this operation in a warm room. This is said to be the method used by all German masters.
(4) N. B. P.-In casting steel and other runs, so that it becomes tongitu nal one way than the other? A. No. 2. If combed and preseed in one direction while wholly in a liquid atate, will that make it
tougher one way than the other? A. No. Casteteel tougher one way than the other? A.
and cast iron are cranular, not flbrous.
(5) E. B. a-ks:1. What is the difference between a dynamo-electric machine and a magneto ma-
chinop A. Adynamoelectric machine turnishes a cur
ent which excites its own feld magnet. A magnetopermanent magnets, or with magneets excited by current from another machime. 2. What would be the cmperrture of a vacuum if no heat was supplied from he outside? A. We do not know by what means the temperature of an aboolute vacuum could be deterined. The term itself precludes the idea; for to sup. pose a state of heat or cold implies rhat something is
hot or cold. 3. Would a helix, if formed of steel wire nd magnetized, attract soft iron the same as copper wire with electricity flowing through it; and would the atraction be permanent in the steel heifix without the use of electricity, that it, if the helis was irst magnet-
ized? A. A helis formed of steel wire would act like ized? A. A helix formed of stel wire would act like a
copper helix, but not to the same degree. If the steel is hardened, the helix may retain some magnetiom, but a spiral form would not give the steel any advan-
(6) W. F. H. writes: Ashes of forest trees here arechiefly carbonate lime. Is this common? Can
you supply a few approximate analysee of common you supply a few approximate analyses of common
forest tree ashes, such as oak, fir, beech, or other? If our ashee are chieffly lime, and no potash to speak of
can we draw any conclusion as to beet crop after burnplowe A. The following analyses are taken from Pro feesor Johnsen's How Crops Grow, a etandard au
thority on such subjects:

	Oak.	Fir.	Beech.
Potash.	. $10 \cdot 0$	11.8	16.
Soda.		$4 \cdot 6$	$3 \cdot 4$
Magnesia.......	. 48	$9 \cdot 1$	10.8
Lime....	. 735	$50 \cdot 1$	56.4
Phosphoric acid.	.. 5•5	$5 \cdot 8$	$5 \cdot 3$
Sulphuric acid.	.. 14	$2 \cdot 3$	1.0
Silica $1 \cdot 1$	15.0	$4 \cdot 7$
Chlorine.....	. 0.2	$0 \cdot 4$	0.1

In each case you will notice that the lime exceeds in amount the other ingredients. We should therefore
infer that your finding so much carbonate of lime per fectly normal. It would hardly be eafe to calculate in regard to the crops, unless upon exactinformation.
(7) M. R. W. asks whether there is such a thingpossible as keeping in solution the pulp from which fine paper is made, so that it might at any time then quickly harden and become paper, and adhesive? Or any chemical that will diseolve paper, and hold it in a liquid form? A. As the mixture of paper fiber and water which forms a paper pulp is entirely mechaniin the water, exceptby means of size, water glass, or in the water, exceptby means of size, water glass, or
some similar substance. Collodion is the nearest ap-
(8) W. H. K. asks if a battery can be mad powerful enough to feed an incandescent lamp. If so, please tell me which kind of hattery would do for that require. A. A battery may be used for supplying an incandescent lamp, but it is iot an economical was of producing a light. 10 or 12 cells of plunging bichro-
mate battery will operate a medium sized incandescent lamp; it will require 15 to 20 cells of Bunsen or Grove antery to do the same thing.
(9) N. W. writes: I claim that at the same number of revolutions per minute a 5 ton fly wheel of heel 15 feet diameter, because the rim of the 30 fo wheel has twice the leverage and twice the velocity the rim of the 15 feet diameter, and what is true of m is true of the weight in the arms. Other enginee ight as faras the momentum is concerned, but there are mechanical reasons inimical to the constrnction of large light fly wheels for the quick running modern engines, such as deep wheel pit, difficuity of truing, as well as height and floor space. The friction in air would also be greater than the additional frictio
the smaller and heavier wheel upon its journals.
(10) P. S. M. asks: What are proper speeds or turning soft wood, hard wood, brass, cast iron, and wrought iron, and what are proper speeds for circular and band saws for ordinary wood sawing? A. The
cntting quality of woods and metals is so variable hat no empirical rule adapted to forms and qualities can be given. A goodrule is to give the work all the
speed it will bear without injurg to tools. These peeds may be from 500 to 1,000 feet per minute for oft woods, about the same for hard woods, 30 to 60 feet per minute for brass, 10 to 30 feet per minute for cast and wrought iron. Much depends upon the size
f the cut. Large cut should be slow, while a small water cut may be run at a high speed.

Speed of eaws, 8 inches, 4,000 to 4,500 rev. per minute.

 $\begin{array}{ccc}10 & " & 3,600 \\ 18 & " & 2000 \\ 24 & " & 1,500 \\ 3 \theta & " & 1,000\end{array}$Intermediate sizes in proportion. Speed for band saws
(11) J. R. S. writes: We bave a Worthington pump 10x10x7, double action suction pipe 4 elevation 16 feet. We cannot find out why it 2,00 feet, work well. I think the distance is too far to fetch the water. My friend thinks not. Please give the cause f failure. A. You do not state enough particulars as the layof the pipe, or whether you have a foot valve. The pipe should be laid so that the air will naturally ise toward the pump, with a foot valve at the end of supply-an opening or stand pipe near the pump
through which the whole pipe may be flled before tarting. If there are siphons in the line that will re air air,they should have openings at their apices, with plugs that can be made air tight. The plugs to be nsed or filling the suction with water; also have a large air chamber near the pump. With these' precautions we
think you will have no difficulty. Air in a long sucion is very elastic, and cushions in the clearance of the pump.
(12) R. D. G. writes: 1. What is the stand ard taperfor steam andgas pipe thread, tapsand dies,
and number of threads of different sized pipes? A.

Taper of pipe threads, $\%$ inch in 1 foot in diameter; inch pipe 27 threads; $3 / 4$ inch and $3 / 3$ inch pipe 18 threads, nch pipe 111/2 threads; $21 / 2$ inch and upward 8 threade 2. Whatis the best way to braze small articles $1 / \mathrm{in}$ inch to
2 inch diameter, outside open forge fire? Can I get heat enough any way from an alcohol lamp? I canno get gas. A. You may brazesmall articles with a blow pipe and alcohol lamp, using a large wick, say $1 / 2$ incl
diameter, in a side nozzle like a tea kettle spout. gives you facility for casting a downward flame upon the work. 3. Can you give me dimensions to go by to make a camera box for making 5 inch by 8 inch piccan buy a leus, and make my own box if I could get
measurements. How can I tell the focal distance by a measurements. How can I tell the focal distance by a a good achromatic lens or a pair to make an acceptable picture. Get the focal distance by casting an image of focal length. Better get the lens before you make the
(13)
(13) R. A. R. asks: 1. Does water running through piping produce friction? If so, at what rate?
A. It does; the amount of friction is governed by the A. It does; the amount of friction is governed by the 2. Can water be brought a great distance on the siphon system, say 134 miles, with a fall of 30 feet, the wate lower where it starts from than some of the intermediate points? Will a 1 inch stream run through an inch and a half piping one mile with a fall of 20 feet, and no
intermediate points higher than where it starts from? Suppose,then, water cau be conveyed $11 / 4$ miles through piping on the siphon plan, when the fal is 30 feet with of water would rinthrough per day, when the piping at starti.g point is 2 inches for a quarter of a mile and 13/ inches for a mile? If larger piping is used at eithe to use it at to get the largest flow of water? Or is it inch a part of the distance? A. If the apex of a lon arched siphon is lower than the source of supply, th flow will be forced over it naturally. words, if the source of supply is higher than any in dulation of the pipe laid over the ground will not un terially affect the flow, although the girmayhave to be discharged at the apices where the undulation is excessive. With 11/3 inch pipe the whole distance you will obtain a flow of 8,000 gallons in twenty-four hours you will increase the fiow about 1,000 gallons per day We do not recommend two sizes of pipe in the line but if two sizes are required for special reasons, put the largest at the supply end. In constructing a line ove ndulatingground thatis made for starting the siphonge by putting openings with short standpipes at the high points for filling. After flling, the opeuingsmust b capped air tight. Cocks or plugs must be used at both
euds wh ile filling. Fill at the highest point, or, if you have a force pump, you may fill by pumping in the water at the source of supply, keeping the vents open (14) T. D. Wh
(14) T. D. writes: A large amount of oney is wasted by manufacturers in using a blast for yas. We heat our soldering irons in this way, and have
often thought it a wasteful method. Would a row of small holes for small gas jets be cheapers A. Mixed gas and air, either by concentric nozzles or the Bunse
(15) A. M. F. asks: What horse power ton boat of 125 feet length?
A. The best resnlt does not come especially from the power applied, but de pends upon the lines of the boat and the form of the
screw. A 75 horse power engine and boiler would pro bably give you a good working speed of say 7 to 10 bably give you a good working speed of say 7 to
miles an hour, according to lines and load. We do no know of the engine you mention, and if we understand
ber.
(16) T. D. G. asks (1) for the process of tin melting. A. The metallurgy of tin is given quite fully in the English edition by Crookes and Rohrig of lurgy." Both the English and Continental processe of smeltiug are described, and illustrations of the fur naces used are given. 2. Will putting limestone in lime, and matis added to water will dissolve to a certain extent, and an free carbonic acid forming in the water will combin with the limestone, forming the bicarbonate.
(17) G. H. J. asks (1) the difference be tween benzine, naphtha, and gasoline. A. The names mentioned are given to products of the disullation o temperature, and consequently they vary in their specific gravity thus: Gasoline is the lightest mentioned, and has a density of 95° to 80° Baume, naphtha 80° to
65° Baume, and benzine 65° to 60° Baume 2 . Where 65° Baume, and benzine 65° to 60° Baume 2. Where
can I find the process of boring artesian wells described, and the tools used? A. The subject of artesian well. contained in the Soientifio Amerioan Supplement Nos. 156, 157, 158, 159, and 160.
(18) M. C. writes: Please give me a receipt or sticking cork to metal, as cork to the keys of musical instruments. Do yoa know if a palissandre (rose-
wood) is liable to crack in our climate? If so, what is good to fill surface cracks, besides shellac? I can use the wax that is in use for express packages for cork to metal, but that will require heat, which I wish
to avoid. A. For cement use shellac dissolved in alcohol. The condition of the rosewood must be con sidered before a deffite answer can be given. Well seasoned wood shonld not crack. Filling composition
or fllers can readily be purchased from painters or dealers in their supplies. These consist of whiting plaster of Paris, pumice stone, and litharge with suitablecoloring matter selected to match the wood. French yellow, asphaltum, Vandyke brown, and terra di
sienna are the principal substancesused for the colorsienna are the principal substancesused for the color
ing. After the proper shade has been determined, the
lected ingredients are mized with 1 part japan, 2 of boiled oil, and 3 of turpentine, and ground fine in a (19) N. Y. K. askz: Will you please tell me of some article that will effectually remove the color have the desired effect. A. Peroxide of hydrogen is undoubtedly the best bleaching agent that can be used to remove the coloring matter from hair. Gaseous horine has been used, but not with such great success as the hydrogen peroxide. In fact, the oxygen is the leaching agent, and whether it beobtained from the its effect must be the same. 2. The best article you seffect must be the same. 2. The best article you
now of that will remove hair. A. Electricity is used or remove superfluous hair from the face. Various pastes made from the sulphide of the alkalies aud alkaine earths are likewise used. The following is a well known depilatory: Mix 3 parts sod um sulphide crys-
tallized, 10 parts fllely powdered quick lime, and 11 tallized, 10 parts fluely powdered quick lime, and 11
parts starch. It should not be applied longer than 2 to parts starch. It should not be applied longer than 2 to
(20) J. A. writes: Is there any particular rule for the manufacture of triangles? In a portion of
this town the ringing of bells on locomotives is \&o freuent that the ordinary beil alarm on a fire station dues ot attract the attention of the people, and a triangle suggested. We want a triangle contaning about est, and is there any particular rule for the make of it A. For a triangle, take a bar of good tool steel 1 nch equare about 7 or 8 feetlong. Suspend it by a cord at two posuts, or lay it apon two pieces of rope upon trike the bar with a mallet and ascertain the axis of vibration by moving the bearings in or out until a full tone is obtained, then mark the bearings and bend the
triangle. riangle.
INDEX OF INVENTIONS
For which Letters Patent of the United
states were Granted

November 18, 1884

AND EACH BEARING THAT DATE.

[See noteat end of list about copies of these , patents.]

ir compressor, rotary. L. S. Chichester....... ... 308,061 larm. see Burglar alarm.

 Alarm. See Burglar alarm.Aluminium, extracting the metal, w. Frishmuth. 308.152 Ammonia soda, apparatus for the manufacture
of. B. D. Maguin............................... 308,083
Anti-friction device, J. M. Weymouth...... 308,117 Axle box, J. White. J. 308.223 308,123
Axle lubricator, car, w. H. Wright............ Ble lubricator, car, W. H. Wright.................. 30,29
Balanee, proportiona1, D. L. Roberts............. 308,198
Barrel header, W. Hoftman.... 308.072 Beak horn, portable, revolving, E. Mansi............ 308,084
Beariugs, automatic alarm for frictlon, J. OConBeariugs, automatic alarm for friction, J. OCon-
nell........................... 808,192
Belt fastener, M. Hefternau
 Blanks, manufacture of split, W. Garrett.... 308,250
Bolt cutter, . W. Wevalley................ 308,667 Book, pocket memorandum, H. T. Whipple................. 308,295
 oox.
 utton, E. F. Bosworth....... Button fastener blank, P. H. Swee Button fastening. J. F. Atwood
Car coupling, G. O. S. Conway Car coupling, G. O. S. Conway
Car
Cor ar coupling W. Car coupling, W. H.Paugh........
Car coupling, A. A. Stetson.
Car coupling, T. Wood

Carrier. See Trace or shaft carrier.
Case. See Label case. Violin case.
Cash indicator, register, and recorder, w.
Centrifugal.....
Chains, art of and machine foland, Jr making, E. Oury.
Chair, G. C. Winchester ..
Chimoney cowl, M. Lu
Churn, A. Clark...
Churn. A. J. Taylor.
Churn, B. I. William
Cigarmaker's gauge. I. . J. Watteyne.............................. 308, 308,115 lamp. See Thill clamp.
Cleaner. See Coal cleaner.
leaner. See Coal cleaner.

Cock, cylinder, Twiggs \& Porter Jennings

308,169
308,133
Coke oven, F. Carves........
Cooler. See Bottle cooler.
Cotton press packing box, J. S. Smith.............. 308,208
otton, treating certain kinds of, W. H. Martin.. 308,185 Coupling. See Car coupling.
cultivator. M. H. Hitchcock........................... 308,071
Cultivator. hand, J. B. Hurd ... 308.07163
sultivator shield, E. B. Jackson................ 308.166
ut-off valve, J. H. Man............ 308,181
Cutting apparatus, w. H. Sharood.................. 308,328

Whitehead...
Desk, A. Cutler.
Doorrs, stay roller for siliding, E. E. Laass
Drawers, Weishampel $\&$ Towles..........
rawers, dust cover for, A. J. Hamilton 3088,221 Drier. See Fruit drier. Grain drier. Drill. See Grain drill.
Electric cable support or hanger, A. S. Weaver... $309,3, y$

