AERIAL NAVIGATION.

by victor tatin.

The purely mechanical solution of the problem of aerial navigation bas been sougbt through three means-belicoptera, or large belices with vertical axes, imitation of the natural flight of tirds, and aeroplanes moved by helices with horizonal axes
Helicoptera.-The first belicopteron that was able to sustain itself in the air was that of Lannoy and Bienvenu, and dates lack to 1784, the epoch at which it was presented to the Academy of Sciences. The necessary motive power was furnished it by a bow of whalebone. At that time a practi cal solution was far from being reached, and the apparatus just mentioned awaited improvement for more than threequarters of a century. It was then that an ingenious experimenter, Mr. A. Penaud, bappily modified it by substituting a twisted rubber thread for the spring. 'This apparatus gave results so superior to those that bad before been obtained that it might almost liave passed for a new creation But despite the efforts of Penaud and a number of other investigators, it was impossible to devise any practical result from the belicepteron, and the little machine became an interesting playtbing, aud that was an
The only apparatus of the kind that bas since been constructed is Mr. Forlanini's belicopleron. This experiment was made upon a little larger scale. The springs were re placed by a small and very light steam engine, whose boiler consisted of a vessel filled with water raised to a ligh tem perature. The whole weighed $6 \frac{1}{2}$ pounds, and rose in the air when the engine developed a one fourth borse power, or one horse per 26 pounds. In spite of all the interest that such an experiment presents, we cannot prevent ourselves from remarking that the disposable weight was very feeble in proportion to the considerable work demanded of the engine. Notwithstanding the contrary opinion of many persons, we shall demonstrate without trouble that we can, by means of a belix, obtain much more favorable results. The experiments which we take for a basis were, like those of Mr. G. Tissandier, performed with belices which, through their very construction, did not possess a maximum of sustaining power. They were not constructed, as in Mr. Forlanini's apparatus, in view of a recoil of abnut 100 per cent. Every helix in fact, should be carefully studied from the standpoint of what we expect from it. So, in the belicopteron, as the belix is at the same time a sustaining plane, it should be likened to a surface moving borizontally, and in which, cousequently, the resistance to motion will be to the lifting power as the sinus is to the cosinus of the angle formed by such plane with the borizon. Should we construct, then, a like belix of sufficiently sbort pitch and of wide surface, we might theoreticaliy, and by push ing things to the extreme, liftan iodefinite weight with a very slight power, and we should be limited only by passive resistances and friciion. When, on the contrary, the belix, in- |rubber, caused a small machine to fly, our emulation was stead of being stationary, or nearly so, is destined to bave excited, and no one perhaps was more enthusiastic than we a motion in the direction of its axis, it can be given a longer in the pursuit of a definite result pitch, since it then attacks the air at an angle that is so much During the course of our researches, which lasted for sevethe smaller in proportion as the recoil is less. It is thus ral months, we constructed a large number of mechanical situated under as favorable circumstances as one with a very short pitcl, whose recoil is 100 per cent. We think the detract ors of the helix bave not understond this condition.
However this may be, it seems to us that the heiicopteron sys tem bas indeed but little future before it, because of the extreme lightness that it would be necessary to give the immense structures whose every part would be in motion. Besides, we may ask, What velocity would we obtain, since we would bave bere only one means to employ-that of inclining the rotary axes of the belices? To make use of secondary belices would evidently be a complication as compared with the use of the aeroplane. What also would be the relative immobility of the car suspended from the axes of two lelices revolving in opposite directions? These questions are not as yet answered.
Mechanical Birds.-The imita tion of nature must bave always seemed to map as the most rational means of artificially solving the problems that she herself bas worked out, and we
find a proof of this in some old mythological fables whos origin is lost in the depths of time. Among the attempt that bave been made since, none bas given a real result, and we are scarcely more advanced to-day than they were in th

Fig. 1.-TOY HELICOPTERON
time of Archytas of Tarentum. It is again to Mr. Penaud that we owe the first important results in this path-the most arduous that we could select in order to reach success with apparatus beavier than air, and the one in which we are

Fig. 2.-TATIN'S AEROPLANE. the the speed of those animals.

Fig. 3.-EXPERIMENT AT CHALAIS-MEUDON.
gramme up to that of more than a kilogramme, and reaching in the latter case a spread of wings of more than two meters. In our smallest models the rubber spring was always used, but we varied the form and relative extent of he wings αd infinitum, as we did the number and amplitude of their strokes. We compared the advantages and disadvantages accompanying the use of wings of birds or cleiroptera, and finally we obtained results that bave never been surpassed, nor even reached, but always by exceeding a power that was out of proportinn to the effect obtained. We afterward tried to find as exactly as possible the value of this excessive expenditure, by constructing compressed air machines designed to replace the rubber. These apparatus were the largest that we experimented with, and their extreme lightness permitted us to furnisb a mecbanical bird nearly ten tlmes its weight in kilogrammes per second.
After modifications without number, and entire or partial recunstructions, the results were so unfortunate that we bad to give up the struggle, at least in this direction. Is that to say that a mech anical bird is a machine impossible to realize? In no wise; we must not conclude from our defeat that better cannot be done, but we sball not advise any one to try it with a view to obtaining a practical result in aeronautics. The very complex motions of a bird's wing during fligbt are very difficult to imitate in mechanics, and, if nature bas used them, it is because the organs of these animals could not adapt themselves effectively to other and simpler motions that mechandes make use of-rotary motion, for example. It, will he thought, perbaps, that we bave been a pretty bad mechanic. We admit this very willingly, but at present we are convinced by force of time and money that the imitation of nature bas no other interest than that of making us better understaud the means that she employs. It seems to us inadmissible to construct a mechanical bird in order to navigate the air. Our fathers did not try to construct the locomotive after the type of the bare or antelope in order to imi-

Aeroplanes. - By this name are designated apparatus whose onention is quite recent, since the first rational priject published about them is due to Henson, and dates back to 1842 only. This, morenver, is the type that bas always been repr:aduced since then. The principle of this apparatus consists io the maintaining in air of a vast plaue, to which propelling belices communicate a rapid forward motion. No one that we know of had obtained gond results by means of these apparatus before Penaud, who again employed twisted rubher for setting these small and astonishingly simple apparatus in motion. This ingenious experimenter unfortunately devised nothing but types of aeroplanes of small dimensions. The disease that was to remove him from us doubtless interfered with his researches.
A few years before bis death he published, in conjunction with one of our friends, Mr. P. Gauchot, a project for'an aeroplane of large dimensions, but bis demise prevented its heing carried nut. This comstruction would doubtless bave entailed quite a beavy expense, but we believe that it would bave given a victorious proof of the superiority of the aeroplane over all the apparatus that we have described above At the epoch at which Penaud definitely devoted bimself to the use of the aeroplane as the most capable method of giving practical results, we were still engaged io constructing apparatus based upon the imitation of the flight of birds. Our eyes were finally opened to the evidence, and we entered a path which since then we bave not ceased to follow. We soon congratulated ourself upon this change, for, from the very time of our first trials, the results have been satisfactory.

A small aeroplane of about 0.7 square meter surface was actuated by two belices that revolved in opposite directions. The motor was a compressed air machine analogrus to a steam engine, whose boiler was replaced by a relatively large receptacle of 8 liters capacity. Despite the little weight that we could dispose of we were, nevertheless, enabled to give the receptacle sufficient strength to cause it to resist, on trial, more than 20 atmospheres (in our experiments the pressure never exceeded 7). Its weight - was only 700
grammes. The little engine, which develoned a motive power of about 2 kilogrammeters per sec nd, weighed 300 grammes. Finally, the total weight of the apparatus, mounted upon rollers. was 1.75 kilogrammes. This entire affar (H 'ig. 2) left the earth at a velocity of 8 meters per tire affar (H ig. 2) left the earth at a velocity of 8 meters per
secrind, although the resistances were almost equal to those

Fig. 5.-skeleton of iguanodon.
DINOSAURS.
nimatiles as crawling als would certainly have modified the opinion that they xpressed bad they known the strange creatures whose bis ory we are about to sketch.
These animals, which are designated as ornithoscelians or dinosaurians, partake, by certan characteristics of their organization, of the nature of mammals, birds, and reptiles properly so called, while at the same time exbibiting characters that are proper 10 themselves. They seem to bridge over the gap which in present nature separates the most perfect of the reptiles, the crocodiles and the torthises, from the lower mam mals-t be marsupials-and from such birds as the ostrich, emu, and cassowary. They are so far removed from the repiles that we have to form a distinct subclass for them equai in value to that which is admitted for reptiles of the present time.
The differences that they present from our reptiles are much greater than those that we find between tortoises and serpents, for example, to merely cite the two extreme terns of the series. We know the borizon. The experiment was performed in 1879 at, the \mid nothing of the dinosaurs except their skeleton. It is proba-Chalais-Meudon Military Establishment. The aeroplane, which was attached by a cord to the center of a circular flooring, revolved around the track, rose from the ground, and once, even, passed over the head of a spectator (Fig. 3). We can only renew bere the thanks that we have already addressed in Messrs. Renard and Krebsfor their extreme oblig. ingness and the interest which they appeared to take in our experiments.
After this result we formed a project of studying with this apparatus the advantages or disadvantages connected with the use of more or less extended planes, of more or less open angles, and of different velocities in the two cases; but our resources, which were then more than exhausted by these long aud costly labors, did not permit it, and, to our grea regret, we bave since bad to content ourself with indicating the programme of our experiment, without carrying it out ourself.
The experiment which we have just described confirmed our previsions, however, and we think that we are now able to trace the principal lines of an aeroplane without fear of committing a grave error. In an aeroplane, as iu a balloon, the resistance to a forward motion increases as the square of the velocity. The motive power, then, will here also bave to increase as the cube of such velocity; but since, for a given increase as the cube of such v
angle that is supposed invariable, the sustaining thrust and the resistance to motion will always be in the same ratio, the disposable weight will increase with the square of the velocity, so that, as re gards this point, we will be more favored than by the use of ballonns.
It must be remarked, per contra, that, with the aeroplane system, large constructions will merely offer the advantage of permitting us 10 obtain motors that are relatively lighter and more economical.
It is very evident that the first essays made with aeroplanes would be only of short duration. Let us at first have modest views. Let an aerial machine work only an bour, balf an bour even, at a velocity of 15 meters per second, and the progress made will be immense; one may even say that the problem will be entirely solved. After this first step will rapidly come the improvements that experience will indicate. New motors will become an object of researches that will soon prove fecund, and bumanity will finally find itself in possession of the most powerful engine that it bas ever imagined. -La Nature.

Cholera bas prevailed in this country in 1832, 1848-49, 1854, 1865-66, and 1873.

Fig. 8.-AMESICAN LANDSCAPE OF THE JURASSIC EPOCH WITH REPTHES AND PLANTS OF the period. e that if it were permitted us to know what their organ zation was, how their circulation was effected, and what beir mode of development, was, we should not besitate to pu hem into a class intermediate between that of the mammals and birds and that of the reptiles properly so called. It was along toward 820 that Gideon ant foud first bones of dinoauriansin the midst f 'Tilgate forest, on be Isle of Wight, in trata which are re ferred to the lower portion of the Cretaceous formation, estrial and fresb
as regards form, with those of a lizard of the present time called the iguana. Since that epoch, and especially since a few years back, our knowledge concerning the dinosaurs has peculiarly increased, and we are beginning to get a glimpse among these animals, of very different types, which indicate orders just as distinct as are those of the pachyderms, ruminants, and carnivora among mammals.
Upnn the sides of the Rocky Mountains, in the United States, we find strata which can be followed for several bundred miles in extent, and which bave yielded for the invesigation of paleontologists a small marsupial, remains of fishes, remains of pterodactyls, crocodiles, and tortoises, and especially an enormous quantity of bones of gigantic dino-

saurs. We have here a true bone yard in which lie burjed, pellmell, the most curious and strange forms of all the animals that the ancient ages have bequeathed to us. It is to the admirable researches of Marsh and Cope that we owe our knowledge of a fauna that has entirely disappeared.

Fig. 4.-SKELETON OF BRONTOSAURUS ($\times 1$ 1-125),
water ones that mark a transition from the Jurassic to Guided by the two great laws of correlation of forms the Cretaceous. Tbese bones, which were very incomplete, and subordination of characters-laws which we owe to were referred by Mantell to an animal of great size, which be the incımparable genius of Cuvier, and which, like Aricalled an iguanodon, as the teeth offered certain analogies. $\begin{aligned} & \text { adne's thread, permit us to find our way in the inextrica- }\end{aligned}$
ble labyrinth that is presented by the forms of extinct animals-these two learned American paleontologists bave evoked an entirely new world, and brought up before us the evidences of a fauna of which nothing in existing bature could have given us the least notion.
During the secondary epoch the dinossurs lived also in Europe and in Southern Africa, where they were represented by very diverse types, as has been shown us by the learned researches of Mantell, Oren, Pbillips, Huxley, Seeley, Hulke,Dollo, and Matheron
Very recent researches have thrown an entirely new light upon the organization of these animals, and permitted of as complete a study of their skeletons as could bave been made of those of animals now living. We can grasp the general features that connect them with other reptiles, and the peculiar ones that distinguish them from each other.
What essentially separates the dinosaurs from all otber reptiles is that the sacrum is always composed of more than wo vertebræ, which forms a very solid, single bone like Ibat of mammals. These vertebræ, which exceed the normal number of two, are candal ones that are modified so as to serve as a support of the pel-

