What Constitntes Good Mortar

Machinists and engineers often have occasion to use mortar, and will value the appended information: Good mortar is a solid silicate of lime, that is, the lime unites with the silica or sand to form a silicate of lime. In ancient day those who had some conception of the way the two things united superintended their mixing; but nowadays anybody is supposed to know how to make mortar, while nobody knows much about it. Dry lime and dry sand laid together or mixed and kept dry for a thousand years would not unite to form silicate of lime any more than acetic acid and carbonate of soda dry in a hottle would effervesce. To make silicate of lime just as good as was made by the Romans, all that is necessary is to proceed intelligently: Procure good causlic, i. e., fresh-burned lime, and if you find it all powder, i. e. air-slaked, don't use it; use only clear lumps. Slake this (if possible in a covered vessel), using only enough water to cause the lime to form a powder. To this while hot add clean sand-not dirt and loam called sand, but sand-and with the sand add enough water to form a paste. Then let it lie where it will not become dry by evaporation, if in a cellar so much the better; for as soon as you have mixed the sand and lime as above, they begin to react one on the other and if not stopped hy being deprived of moisture will go on reacting until silicate of lime (as hard as any silicate of lime ever was) is formed.
But if you take this so-called mortar as soon as made, aut lay bricks with it, unless the bricks are thoroughly wet you stop the formation of silicate of lime, and might as well lay your bricks in mud. Lime and sand, after being mixed, might lie two years witb advantage, and for certain uses, such as boiler setting, or where the whole structure of brick and mortar is to be dried, the mortar ought to be mixed for one year before use, and two would be better; but for bouse building, if the bricks are so wetted as not to rob the mortar of its moisture as soon as used, mortar that has been mixed a month will form good solid silicate of lime among the bricks it is laid with in ten years, an d will be still hard er in a hundred years. The practice of mixing mortar in the streets and using it at once is as foolish as it is ignorant, and would be no improvement. Silicate of lime is made only by the slow action of caustic lime and sand, one on the other-under the influence of moisture. Dry they never will unite, and mixing mortar as now mixed and using it at once, so as to dry it out and stop the formation that the mixing induced, is wrong.

Artificial Stone Masonry

Of the work which is going on at the Little and Big Gunpowder Falls, on the Philadelphia branch of the Baltimore and Ohio Railroad, there are, says the Baltimore Sun, about 10,000 yards of artificial masonry, 7,000 of which will be at the Big Gunpowder and 3,000 at the Little Falls. At the latter there will be 84 piers and 6 abutments, and at the former 6 huge piers, each of which will be 10 feet thick, 70 feet high, and 30 feet wide, with spans of 23 feet between the arches. The work is being done by the Hoopes Artificial Stone, Cement, and Paint Company, of this city.
The field of operations is six miles from Magnolia. The stone is manutactured on the spot, and is moulded in any size and shape required. It is composed of sand, mixed with broken stone or gravel, and with cementand a chemical solution. The process is simple and rapid. Everything is done by machinery, including the breaking of the stones. When the mixture is ready for use, it is run into a square ron bucket, resting upon a hand car, which is then pushed over to where the work is in progress. The bucket is then hoisted by means of pulleys drawn by mules and emptied nto a wooden mould, wbich is placed in position upon a pre vious layer. In twenty-four hours a fresh stone will be hard enough to bear another layer. Sixty yards are laid every day.
The machinery at the works is valued at $\$ 10,000$. There are four engines, with ninety-horse power in the aggregate. At the Big Gunpowder Works there is a cable 800 feet long suspended over a deep ravine. It has a car attachment which can be lowered or raised at any point. This car carries stone and other material across the ravine. The cable was formerly used in the construction of the famous orook lyn bridge. When stones are to be laid in the water-course, the water is first dammed and then bailed out. The work is going on day and night, one gang of men succeeding another. Thirty men are employed. Electric lamps light up the scepe and give the place an oddly picturesque appearance. The masonry will be finished about the middle of December.
Each pier and abutment is really one solid stone, but for the purpose of giving it a finish it is moulded with grooves so as to resemble stone in blocks. Its monolithic character will be a great advautage in railroading, as it will prevent that jarring and rebounding which is always caused by trains running over tracks laid upon stone or brick foundations.
It is believed by many persons that the art of making artificial stones is prehistoric, and that the Pyramids were built of artificial blocks manufactured from the sands of the surrounding plain. In modern times a Frenchman named Coignet has accomplished some wonderful work with arcificial stone. The most important and costly work that has yet been undertaken with Coignet's material is a section three miles in length of the Vanne aqueduct for supplying
water to the city of Paris. Another interesting application of this material has been made in the construction of the lightbouse at Port Said, Egypt. It is 180 feet high without joints, and resting upon a monolithic block of beton, oontaiuing uearly 400 cubic yards.

the "champion" six-lever rim night latch

Our illustration shows an improved night latch, which by an easy adjustment may be applied to doors of any ordinary hickness, opening either to right band or to left, and to such as open inward as well as those opening oatward.
As may be observed from the design of the key, tbe e sential parts of the cyliuder are placed as far removed as possible from the face of the door and from view from the outside. The cylinder contains six rotating disks or tum. blers, having in their outer edges notches that may be brought into line by the proper key. The whole circumfer ence of each disk being available for notches, the manufac turers have no difficulty in making as many combinations as may be required, so that no two sets of their latch keys will be found alike, unless made to order.
As most other latcbes and locks are constructed, it is wel

known that they may be "picked" by any contrivance that will tring a strain upon the key hub or upon the bolt, and then picking up the tumblers in turn. This theory of picking is not applicable to this latch, because the key fub and tumblers all rotate freely, so that a strain cannot be brought mom
In view of the earnest and costly efforts by prominent manufacturers in hoth England and America, who have devised so many hundred different forms of keys, and of diff cult keyholes, so many " wards," "drill pins," and the like, to cover over the weak spots in their locks, it seems strange that the chief defect should have been so long retained even in locks of high pretensions. But, in spite of the corrugated and complicated key and keyholes, in every instance in which a strain can be made to bind one or more of the tumblers, it is learned, sooner or later, and at the expense of con sumers, that such locks cannot afford that degree of securi ty nowadays required.
The principle applied in this latch ts uot a new principle of security. It has been used by the same manufacturers in their "Champion"six-lever padlocks, whose reliability is so well established that they have been adopted and for several years largely used oy the treasury departments of the United States and of other governments, and have ac quired more than a national reputation.
The escutcheon of the Champion latch is screwed upon th nosing of the cylinder, and is beld in place by suitable claws upon its inner face. This method of securlng the escutcheon permits an adjustment, adapling the cyllnder to the thickness of the door, and thus renders' it a very easy latch for the carpenter to put on.
For prices and further particularsseemanufacturers' card, page 349 of our advertising columns.

Separation of Wool from Cotton.
Heddebault has succeeded in separating rags of cotton and wool, mixed, by subjecting them t_{0} the action of a jet of superheated steam. Under a pressure of five atmospheres, the wool melts, and sinks to the bottom of the receptacle; while cotton, linen, and other vegetable fibers stand, thus remaining suitable for the paper manufacture. The liquid mud which contains the wool thus precipitated is then desiccated. The residue, which has received the name of azotine, is completely soluble in water, and is valuable on account of its nitrogen. Moreover, its preparation costs nothing; beause the increased value of the pulp, free from wool, is sufflieut to cover the cost of the process.

Ornamental Hardy Shrabs.

After an expericnce of fifteen years with a great number of shrubs, Editor E. S. Carman recommends, in the Rural Neio-Yorker, the following as the best for the average country bome:

Tiburnumplicatum should be mentioned among the first as one of the most valuable and beautiful flowering shrubs, ar surpassing the older varieties of Snowball.
Chionanthus Virginica, White Fringe, is a native shrub or mall tree, notable for its large leaves and graceful, drooping panicles of slender-petaled flowers that seem almost to float in the air, so slight are the pedicels which hold them to atems.
Pyrus Japonica, the Japan Quince, should find a place in very garden. The leaves are ever bright and glossy, while the blossoms are almost unequaled for brilliancy by those of any hardy, early blooming shruh. The range of colors is rom white through rose to dark red. In clumps or small clusters composed of several or all of the different colors, we have during May a brilliant effect indeed.
Forsythia viridissima and F. Fortuneii, Golden Bell, are the finest of the golden blooming shrubs. They hegin to bloom about the middle of A pril, before the green leaves appear, and by May first are a mass of bright yellow. These plants are very effective trained to a single stem. Fortune's Goldèn Bell bears fiowers rather larger in size and a few days earlier than viridissima.
Hydrangea paniculata grandiflora, the Great Panicled Hydrangea, has proved very hardy. Its panicles of sterile flowers are often a foot or more in length, changing from a greenish white to pink as the nights grow cold. It is a coarse but showy sbrub.
Spircea prunifolia, the Double Spiræa, commonly called Bridal Wreath. The little double white fiowers appear in late May, and soon the shrub becomes a mass of white, which lasts until June.
Spirca Thunbergii is one of the first of all hardy shrubs to bloom. It is a small bush, bearing white blossoms in great profusion.
Deutzias and Weigelias in variety may be selected from nurserymen's catalogues, since there is no greal choice bet ween them. All are pretty and floriferous.
Exochorda grandiffora bears white flowers resembling those of Crab Apples. The leaves keep green until after frost; the shrub grows to the height of ten feet, and is entirely bardy in this climate.
Cercis Japonica, the Japan Iudas tree, wreathes its naked branches in late spring with rosy purple flowers, and later clothes itself with shiny, thick leaves of a heart shape.
Halesios betraptera, the Silv.er Bell; is a well shaped little tree, found wild in Ohio and sonth ward. The white bell flowers droop from the stems in small racemes, leaving a winged ssed, from which the specific name is derived. The stems of this little tree are clean and shapely, the wood very hard, the bark prettily striated with gray and dark brown.
Tbese, says Mr. Carman, were we again laying out rounds, we should choose if confined to a few. For the est, we may mention Pavia macrostachya, Stuartia penayna, Hypericum Kalmianum, the Golden Nine bark, Rose of Sharon, Standard Honeysuckles, Smoke Tree, the improved kinds of Lilacs, and Purple Barberry.

Preparation of Magnesium.

A process patented by Gratzel, for the separation of alkafine metals by-electrolysis, has been very successful in the reduction of magnesium. In Berlin there has recenily been exhibited, as a product of this process, a ball of pure magnesium, of about five inches diameter. It was exceedingly brilliant, closely resembling silver; and had lost nothing of its luster since its separation. This preservation from corrosion is a stgn of the high degree of purity of the metal, and forms a striking contrast to the magnesium hitherto obtained, which was always more or less alloyed with potassium, and consequently easily oxidized, especially in a damp atmosphere. The purer magnesium is considered to be destined to increasing maritime use, because the rays of the mag. nesium light appear to have a greater penetrative power in ogs and mists than the electric arc.

A New Hydrocarbon Mineral.

A new mineral hydrocarbon has recently been discovered near Seefeld, in the Tyrol. It occurs crudely in the form of bituminous rock, of peculiar constitution; and the bitumen is believed to be composed of the decomposed remains of prehistoric marine animals. Treated with strong sulphuric acid, the bitumen yields a soft substance, which when neutralized is not unilike vaseline in consistence, but resembles coal tar in color. It differs from all known vegetable and mineraltars, however, by its odor, and by the possession of peculiar physical properties. It forms an emulsion with water; and is partly soluble in alcohol and etlier. A mixture of these two liquids completely dissolves it. It is miscible in all proportions with vaseline and oils. The name "ichtyol" has been given to the substance, which is cbaracterized above all by its richness in sulplur, of which it con tans about 10 per cent. This element is so intimately mixed with the ichtyol that it can only be separated by the complete decomposition of the latter. Besides sulpliur, ichtyol contains oxygen, carbon, hydrogen, and traces of phos phorus. In consequence of the high proportion of sulphur the new hydrocarbon is regarded hopefully as a medicament or unguent.

